首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Runoff from crop production in agricultural watersheds can cause widespread soil loss and degradation of surface water quality. Beneficial management practices (BMPs) for soil conservation are often implemented as remedial measures because BMPs can reduce soil erosion and improve water quality. However, the efficacy of BMPs may be unknown because it can be affected by many factors, such as farming practices, land-use, soil type, topography, and climatic conditions. As such, it is difficult to estimate the impacts of BMPs on water quality through field experiments alone. In this research, the Soil and Water Assessment Tool was used to estimate achievable performance targets of water quality indicators (sediment and soluble P loadings) after implementation of combinations of selected BMPs in the Black Brook Watershed in northwestern New Brunswick, Canada. Four commonly used BMPs (flow diversion terraces [FDTs], fertilizer reductions, tillage methods, and crop rotations), were considered individually and in different combinations. At the watershed level, the best achievable sediment loading was 1.9 t ha(-1) yr(-1) (89% reduction compared with default scenario), with a BMP combination of crop rotation, FDT, and no-till. The best achievable soluble P loading was 0.5 kg ha(-1) yr(-1) (62% reduction), with a BMP combination of crop rotation and FDT and fertilizer reduction. Targets estimated through nonpoint source water quality modeling can be used to evaluate BMP implementation initiatives and provide milestones for the rehabilitation of streams and rivers in agricultural regions.  相似文献   

2.
Past agricultural management practices have contributed to the loss of soil organic carbon (SOC) and emission of greenhouse gases (e.g., carbon dioxide and nitrous oxide). Fortunately, however, conservation-oriented agricultural management systems can be, and have been, developed to sequester SOC, improve soil quality, and increase crop productivity. Our objectives were to (i) review literature related to SOC sequestration in cotton (Gossypium hirsutum L.) production systems, (ii) recommend best management practices to sequester SOC, and (iii) outline the current political scenario and future probabilities for cotton producers to benefit from SOC sequestration. From a review of 20 studies in the region, SOC increased with no tillage compared with conventional tillage by 0.48 +/- 0.56 Mg C ha(-1) yr(-1) (H(0): no change, p < 0.001). More diverse rotations of cotton with high-residue-producing crops such as corn (Zea mays L.) and small grains would sequester greater quantities of SOC than continuous cotton. No-tillage cropping with a cover crop sequestered 0.67 +/- 0.63 Mg C ha(-1) yr(-1), while that of no-tillage cropping without a cover crop sequestered 0.34 +/- 47 Mg C ha(-1) yr(-1) (mean comparison, p = 0.04). Current government incentive programs recommend agricultural practices that would contribute to SOC sequestration. Participation in the Conservation Security Program could lead to government payments of up to Dollars 20 ha(-1). Current open-market trading of C credits would appear to yield less than Dollars 3 ha(-1), although prices would greatly increase should a government policy to limit greenhouse gas emissions be mandated.  相似文献   

3.
Clear Lake is on Iowa's list of impaired water bodies because of high P concentration. This study assessed soil-test phosphorus (STP), management practices, and P loads from its agricultural watershed. Management practice histories and STP for eight basins were surveyed in 1999. Soil samples (15-cm depth) were analyzed for STP with agronomic [Bray P1 (BP), Olsen (OP), Mehlich 3 (M3P) and environmental [iron oxide-impregnated paper (FeP) and water extraction (WP)] tests. Total phosphorus (TP) concentrations in water discharge from five basins were measured during two years, and TP loads were measured for two basins. The agronomic P tests showed that 46 to 83% (depending on the test) of the area tested above optimum for crops. Correlations among tests were high for OP, M3P, and FeP (r > 0.96) and lower for BP and WP (r = 0.88-0.93). Moldboard- and chisel-plow tillage predominated (82% of the area). Applied P (mainly fertilizer) averaged 15 kg P ha(-1) yr(-1), and 40% of the high-testing area (M3P test) was being fertilized. The mean annual water TP concentration across five basins was 275 to 474 microg L(-1). The two-year mean TP loads for the two gauged basins were 1504 and 1510 g P ha(-1) yr(-1). Water TP concentration increased linearly with increasing STP. Relationships were stronger for M3P and FeP (R2 = 0.96-0.97 for annual means and 0.77-0.79 for storm-flow events) than for BP or WP (R2 = 0.88-0.91 and 0.59-0.69, respectively). Improving P and soil conservation practices in high-testing areas could reduce P loads to the lake.  相似文献   

4.
Fate of applied N in forage-based agricultural systems is important to long-term production and environmental impacts. We evaluated the factorial combination of N fertilization targeted to supply 20 g N m 2 yr(-1) and harvest strategies on soil-profile inorganic N during the first 5 yr of 'Coastal' bermudagrass [Cynodon dactylon (L.) Pers.] management. Harvest strategy had much larger effects than fertilization strategy, most notably that soil-profile inorganic N was lower when hayed than under other systems. In the upper rooting zone (0- to 0.3-m depth), soil inorganic N (initially at 3.1 g m(-2)) remained unchanged during the 5 yr under unharvested and low and high grazing pressures (0.00 +/- 0.08 g m(-2) yr(-1)), but declined with haying (-0.25 g m(-2) yr(-1)). In the lower rooting zone (0.3- to 0.9-m depth), soil inorganic N (initially at 2.9 g m(-2)) accumulated with unharvested and low and high grazing pressure (0.64 +/- 0.20 g m(-2) yr(-1)), but remained unchanged with haying (-0.06 g m(-2) yr(-1)). Below the rooting zone (0.9- to 1.5-m depth), soil inorganic N (initially at 5.8 g m(-2)) increased with unharvested and high grazing pressure (0.34 +/- 0.03 g m(-2) yr(-1)), was unchanged with low grazing pressure (-0.10 g m(-2) yr(-1)), and declined with haying (-0.50 g m(-2) yr(-1)). Applied N appears to have been efficiently utilized by forage with subsequent sequestration into soil organic matter and little movement of inorganic N below the rooting zone (< 2% of applied N), irrespective of inorganic or organic fertilization strategy designed to supply sufficient N for high animal production from grazing.  相似文献   

5.
Papermill biosolids (PB) can provide multiple benefits to the soil system. The purpose of this study was to quantify the effects of a high C/N ratio (C/N = 100) de-inked PB on soil physical and chemical properties, including soil bulk density, infiltration rates, wet aggregate stability, total soil carbon, and heavy metal concentrations. Four rates of PB (0, 50, 100, and 150 Mg ha(-1)) were applied annually, for up to 3 yr, on four agricultural soils in Ontario, Canada. Decreases in soil bulk density between 0.27 and 0.35 g cm(-3), relative to the nonamended treatment, were observed in soils receiving PB treatments over 3 yr. Total soil carbon increased within 1 yr on PB-amended soils planted to soybeans but not on soils planted to corn. Hydraulic conductivities (K fs) were greater in all soils receiving PB amendments relative to the nonamended treatment throughout the study. Other properties measured, such as pH and electrical conductivity, were relatively unchanged after 2 yr of PB applications. While some increases in heavy metal accumulation occurred, there were no clear trends observed at any of the sites related to PB rates. The results of this study provide support to the idea that annual applications of PB can add significantly to the stability of soil structure.  相似文献   

6.
Determining long-term (decadal) deep drainage rate using multiple tracers   总被引:1,自引:0,他引:1  
The deep drainage rate is a critical hydrological parameter in understanding contamination mechanisms of soil and groundwater. Little research has been conducted on the temporal variations in deep drainage rate during the last century. The objective of this study was to determine the long-term deep drainage rate on a cultivated loamy soil in the Canadian Prairies. Three tracers were used: KCl applied in 1971, fallout tritium in 1963, and NO3* released during the initial cultivation of the field (1923). Two soil cores to a depth of 3.6 m were taken along a flat portion of the field, and soil Cl(-), 3H, and NO3* concentrations were measured as a function of depth. An additional four cores were taken for soil water content measurements between 2000 and 2003. Distinct peaks in the depth distribution of these three tracers were located at 1.27 m for Cl(-), 1.31 m for 3H, and 1.52 m for NO3*, 32, 40, and 80 yr after the application of Cl(-), 3H, and NO3*, respectively. The average deep drainage rates, calculated as the product of the estimated tracer velocity and volumetric soil water content below the active root zone, were 2.0 mm yr(-1) from the Cl(-) tracer, 2.2 mm yr(-1) from 3H, and 2.5 mm yr(-1) from the NO3* tracer. Therefore, there was little temporal variability in the groundwater recharge over the eight decades that the field has been cultivated. The recharge rates are less than 1% of the mean annual precipitation (333 mm).  相似文献   

7.
Soil and plant indices of soil fertility status have traditionally been developed using conventional soil and crop management practices. Data on managing N fertilizer for corn (Zea mays L.) produced on soils amended with C-rich organic materials, such as oily food waste (OFW) is scarce. Identification of a reliable method for making N fertilizer recommendations under these conditions is imperative. The objective of this research was to evaluate soil NO(3)-N (0- to 30-cm depth) at preplant and presidedress (PSNT) times of sampling for predicting N requirements for corn grown on fields receiving OFW. Experiments were conducted at two locations in Ontario, Canada over 3 yr (1995-1997) where OFW was applied at different rates (0, 10, and 20 Mg ha(-1)), times (fall and spring), and slope positions (upper, mid, and lower) within the same field. Presidedress soil NO(3)-N contents were higher compared with preplant time of sampling under all OFW management conditions. Corn grain yields were significantly affected by OFW management and N fertilizer application rates. Maximum economic rate of N application (MERN) varied depending on OFW management conditions. Presidedress soil NO(3)-N contents had a higher inverse relationship with MERN (r = -0.88) compared with soil NO(3)-N at preplant (r = -0.74) time of sampling. A linear regression model (Y = 180.1 - 8.22 NO(3)-N at PSNT) is proposed for making N fertilizer recommendations to corn grown on soils amended with OFW in this geographical region.  相似文献   

8.
Pesticide transport through the unsaturated zone is a function of chemical and soil characteristics, application, and water recharge rate. The fate and transport of 82 pesticides and degradates were investigated at five different agricultural sites. Atrazine and metolachlor, as well as several of the degradates of atrazine, metolachlor, acetochlor, and alachlor, were frequently detected in soil water during the 2004 growing season, and degradates were generally more abundant than parent compounds. Metolachlor and atrazine were applied at a Nebraska site the same year as sampling, and focused recharge coupled with the short time since application resulted in their movement in the unsaturated zone 9 m below the surface. At other sites where the herbicides were applied 1 to 2 yr before sampling, only degradates were found in soil water. Transformations of herbicides were evident with depth and during the 4-mo sampling time and reflected the faster degradation of metolachlor oxanilic acid and persistence of metolachor ethanesulfonic acid. The fraction of metolachlor ethanesulfonic acid relative to metolachlor and metolachlor oxanilic acid increased from 0.3 to >0.9 at a site in Maryland where the unsaturated zone was 5 m deep and from 0.3 to 0.5 at the shallowest depth. The flux of pesticide degradates from the deepest sites to the shallow ground water was greatest (3.0-4.9 micromol m(-2) yr(-1)) where upland recharge or focused flow moved the most water through the unsaturated zone. Flux estimates based on estimated recharge rates and measured concentrations were in agreement with fluxes estimated using an unsaturated-zone computer model (LEACHM).  相似文献   

9.
Experiments to document the long-term effects of clipping management on N requirements, soil organic carbon (SOC), and soil organic nitrogen (SON) are difficult and costly and therefore few. The CENTURY ecosystem model offers an opportunity to study long-term effects of turfgrass clipping management on biomass production, N requirements, SOC and SON, and N leaching through computer simulation. In this study, the model was verified by comparing CENTURY-predicted Kentucky bluegrass (Poa pratensis L.) clipping yields with field-measured clipping yields. Long-term simulations were run for Kentucky bluegrass grown under home lawn conditions on a clay loam soil in Colorado. The model predicted that compared with clipping-removed management, returning clippings for 10 to 50 yr would increase soil C sequestration by 11 to 25% and nitrogen sequestration by 12 to 28% under a high (150 kg N ha(-1) yr(-1) nitrogen (N) fertilization regime, and increase soil carbon sequestration by 11 to 59% and N sequestration by 14 to 78% under a low (75 kg N ha(-1) yr(-1)) N fertilization regime. The CENTURY model was further used as a management supporting system to generate optimal N fertilization rates as a function of turfgrass age. Returning grass clippings to the turf-soil ecosystem can reduce N requirements by 25% from 1 to 10 yr after turf establishment, by 33% 11 to 25 yr after establishment, by 50% 25 to 50 yr after establishment, and by 60% thereafter. The CENTURY model shows potential for use as a decision-supporting tool for maintaining turf quality and minimizing negative environmental impacts.  相似文献   

10.
The flux of dissolved organic carbon (DOC) in soil facilitates transport of nutrients and contaminants in soil. There is little information on DOC fluxes and the relationship between DOC concentration and water flux in agricultural soils. The DOC fluxes and concentrations were measured during 2.5 yr using 30 automatic equilibrium tension plate lysimeters (AETPLs) at 0.4 m and 30 AETPLs at 1.20-m depth in a bare luvisol, previously used as an arable soil. Average annual DOC fluxes of the 30 AETPLS were 4.9 g C m(-2) y(-1) at 0.4 m and 2.4 g C m(-2) y(-1) at 1.2 m depth. The average leachate DOC concentrations were 17 mg C L(-1) (0.4 m) and 9 mg C L(-1) (1.2 m). The DOC concentrations were unrelated to soil moisture content or average temperature and rarely dropped below 9 mg C L(-1) (0.4 m) and 5 mg C L(-1) (1.2 m). The variability in cumulative DOC fluxes among the plates was positively related to leachate volume and not to average DOC concentrations at both depths. This suggests that water fluxes are the main determinants of spatial variability in DOC fluxes. However, the largest DOC concentrations were inversely proportional to the mean water velocity between succeeding sampling periods, suggesting that the maximal net DOC mobilization rate in the topsoil is limited. Elevated DOC concentrations, up to 90 mg C L(-1), were only observed at low water velocities, reducing the risks of DOC-facilitated transport of contaminants to groundwater. The study emphasizes that water flux and velocity are important parameters for DOC fluxes and concentrations.  相似文献   

11.
To ensure regional self-sufficiency and adequate rural livelihoods in the North China Plain (NCP), tremendous efforts were made over the last two decades by the Chinese government to raise the productivity of crops, despite increasing pressure on the land caused by a growing population. Emphasis was placed on high external input use, especially for wheat, maize and cotton, ignoring the particularities and limitations of the natural resource base. This study assesses the sustainability of current soil fertility management practices on the basis of selected location-specific indicators, such as fertilizer use, soil pH, soil organic matter content, levels of nitrogen (N), phosphorus (P) and potassium (K) in the soil, and identifies determining factors of the yield and environmental impacts of inputs use. Data used for the analysis were gathered from soil tests, groundwater and chive plant tests, household surveys, and statistical yearbooks. Stepwise multiple regression analysis is applied to determine factors affecting the yields. The study revealed unbalanced use of nutrients. Organic fertilizers (manure, crop residues) and K are insufficiently applied, whereas N and P are considerably overused in comparison with recommended doses. The intensive cropping in the area using high-input technologies -particularly fertilizer- has resulted in a remarkable general enhancement of crop productivity and improvement of soil fertility over the years. The yield of wheat and maize has increased 173 and 180 kg ha(-1) annually from 1982 to 2000, respectively and soil fertility status also improved over the years and the values of the selected indicators are within the borderline for sustainability. Irrigation water, FYM application, and total labor used during the cultivation season (with the exception of cotton and chive) for production are the main factors determining the yields of four major crops under study, while popularly and overly used N did not appear to be a significant factor affecting the yield. Its overuse, however, leads to leaching of nitrate into groundwater and nitrate enrichment of vegetables. Of 20 groundwater samples, 16 showed nitrate levels between 55 and 180 mg l(-1), which exceeds recommendations for drinking water (相似文献   

12.
Land treatment of municipal wastewater effluent is a proven method for augmenting freshwater resources and avoiding direct nutrient discharges to surface waters. We assessed changes in soil test phosphorus (P) of the Ap horizon of cropped fields continuously irrigated for 26 yr with secondary effluent from the Penn State University wastewater treatment plant. For annual P additions averaging 97 kg P ha(-1), Mehlich-3 P (M3P) response in the 0- to 20-cm surface soil (initially < 20 mg kg(-1)) was represented by two lines. For the first 12 yr of irrigation, soil test P increased, with 14.5 kg P ha(-1) needed to increase M3P by 1 mg P kg(-1). After the initial buildup, M3P maintained a quasi-steady-state value of approximately 110 mg kg(-1). Over time, the surface soil equilibrium P concentration at zero sorption increased markedly (from < 1 to 5.5 mg P L(-1)), and extractable aluminum (Al) decreased significantly (P < 0.001). Speciation modeling using Visual MINTEQ suggests complexation of Al by dissolved organic carbon at site pH conditions. Loss of Al from the surface layer lowered its P-sorbing capacity, causing added effluent-P to move into the subsoil. Results suggest that current management practices can continue for many years without exceeding the surface soil M3P environmental threshold (200 mg kg(-1)) used in state P-based nutrient policies.  相似文献   

13.
Decades of plowing have depleted organic C stocks in many agricultural soils. Conversion of plowed fields to pasture has the potential to reverse this process, recapturing organic matter that was lost under more intensive cropping systems. Temperate pastures in the northeast USA are highly productive and could act as significant C sinks. However, such pastures have relatively high biomass removal as hay or through consumption by grazing animals. In addition, the ability to sequester C decreases over time as previously depleted stocks are replenished and the soil returns to equilibrium conditions. The objective of this research was to use eddy covariance systems to quantify CO(2) fluxes over two fields in central Pennsylvania that had been managed as pastures for at least 35 yr. Net ecosystem exchange measurements averaged over 8 site-years suggested that the pastures were acting as small net C sinks of 19 g C m(-2) yr(-1) (positive values indicate uptake). However, when biomass removal and manure deposition were included to calculate net biome productivity, the pastures were a net source of -81 g C m(-2) yr(-1) (negative values indicate loss to the atmosphere). Manure generated from the hay that was consumed off site averaged 18 g C m(-2) yr(-1). Returning that manure to the pastures would have only partially replenished the lost C, and the pastures would have remained net C sources. Heavy use of the biomass produced on these mature pastures prevented them from acting as C sinks.  相似文献   

14.
Biomass crops are being promoted as environmentally favorable alternatives to fossil fuels or ethanol production from maize (Zea mays L.), particularly across the Corn Belt of the United States. However, there are few if any empirical studies on inorganic N leaching losses from perennial grasses that are harvested on an annual basis, nor has there been empirical evaluation of the hydrologic consequences of perennial cropping systems. Here we report on the results of 4 yr of field measurements of soil moisture and inorganic N leaching from a conventional maize-soybean [Glycine max (L.) Merr.] system and two unfertilized perennial grasses harvested in winter for biomass: Miscanthus x giganteus and switchgrass (Panicum virgatum cv. Cave-in-Rock). All crops were grown on fertile Mollisols in east-central Illinois. Inorganic N leaching was measured with ion exchange resin lysimeters placed 50 cm below the soil surface. Maize--soybean nitrate leaching averaged 40.4 kg N ha(-1) yr(-1), whereas switchgrass and Miscanthus had values of 1.4 and 3.0 kg N ha(-1) yr(-1), respectively. Soil moisture monitoring (to a depth of 90 cm) indicated that both perennial grasses dried the soil out earlier in the growing season compared with maize-soybean. Later in the growing season, soil moisture under switchgrass tended to be greater than maize-soybean or Miscanthus, whereas the soil under Miscanthus was consistently drier than under maize--soybean. Water budget calculations indicated that evapotranspiration from Miscanthus was about 104 mm yr(-1) greater than under maize-soybean, which could reduce annual drainage water flows by 32% in central Illinois. Drainage water is a primary source of surface water flows in the region, and the impact ofextensive Miscanthus production on surface water supplies and aquatic ecosystems deserves further investigation.  相似文献   

15.
Securing sustainable livelihood conditions and reducing the risk of outmigration in savanna ecosystems hosted in the tropical semiarid regions is of fundamental importance for the future of humanity in general. Although precipitation in tropical drylands, or savannas, is generally more significant than one might expect, these regions are subject to considerable rainfall variability which causes frequent periods of water deficiency. This paper addresses the twin problems of “drought and desertification” from a water perspective, focusing on the soil moisture (green water) and plant water uptake deficiencies. It makes a clear distinction between long‐term climate change, meteorological drought, and agricultural droughts and dry spells caused by rainfall variability and land degradation. It then formulates recommendations to better cope with and to build resilience to droughts and dry spells. Coping with desertification requires a new conceptual framework based on green‐blue water resources to identify hydrological opportunities in a sea of constraints. This paper proposes an integrated land/water approach to desertification where ecosystem management supports agricultural development to build social‐ecological resilience to droughts and dry spells. This approach is based on the premise that to combat desertification, focus should shift from reducing trends of land degradation in agricultural systems to water resource management in savannas and to landscape‐wide ecosystem management.  相似文献   

16.
Rainfall can transport herbicides from agricultural land to surface waters, where they become an environmental concern. Tile drainage can benefit crop production by removing excess soil water but tile drainage may also aggravate herbicide and nutrient movement into surface waters. Water management of tile drains after planting may reduce tile drainage and thereby reduce herbicide losses to surface water. To test this hypothesis we calculated the loss of three herbicides from a field with three water management systems: free drainage (D), controlled drainage (CD), and controlled drainage with subsurface irrigation (CDS). The effect of water management systems on the dissipation of atrazine (6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine), metribuzin [4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazine-5(4H)-one), and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide] in soil was also monitored. Less herbicide was lost by surface runoff from the D and CD treatments than from CDS. The CDS treatment increased surface runoff, which transported more herbicide than that from D or CD treatments. In one year, the time for metribuzin residue to dissipate to half its initial value was shorter for CDS (33 d) than for D (43 d) and CD (46 d). The half-life of atrazine and metolachlor were not affected by water management. Controlled drainage with subsurface irrigation may increase herbicide loss through increased surface runoff when excessive rain is received soon after herbicide application. However, increasing soil water content in CDS may decrease herbicide persistence, resulting in less residual herbicide available for aqueous transport.  相似文献   

17.
Changes in agricultural management can minimize NO3-N leaching, but then the time needed to improve ground water quality is uncertain. A study was conducted in two first-order watersheds (30 and 34 ha) in Iowa's Loess Hills. Both were managed in continuous corn (Zea mays L.) from 1964 through 1995 with similar N fertilizer applications (average 178 kg ha(-1) yr(-1)), except one received applications averaging 446 kg N ha(-1) yr(-1) between 1969 and 1974. This study determined if NO3-N from these large applications could persist in ground water and baseflow, and affect comparison between new crop rotations implemented in 1996. Piezometer nests were installed and deep cores collected in 1996, then ground water levels and NO3-N concentrations were monitored. Tritium and stable isotopes (2H, 18O) were determined on 33 water samples in 2001. Baseflow from the heavily N-fertilized watershed had larger average NO3-N concentrations, by 8 mg L(-1). Time-of-travel calculations and tritium data showed ground water resides in these watersheds for decades. "Bomb-peak" precipitation (1963-1980) most influenced tritium concentrations near lower slope positions, while deep ground water was dominantly pre-1953 precipitation. Near the stream, greater recharge and mixed-age ground water was suggested by stable isotope and tritium data, respectively. Using sediment-core data collected from the deep unsaturated zone between 1972 and 1996, the increasing depth of a NO3-N pulse was related to cumulative baseflow (r2 = 0.98), suggesting slow downward movement of NO3-N since the first experiment. Management changes implemented in 1996 will take years to fully influence ground water NO3-N. Determining ground water quality responses to new agricultural practices may take decades in some watersheds.  相似文献   

18.
Quantification of soil carbon (C) cycling as influenced by management practices is needed for C sequestration and soil quality improvement. We evaluated the 10-yr effects of tillage, cropping system, and N source on crop residue and soil C fractions at 0- to 20-cm depth in Decatur silt loam (clayey, kaolinitic, thermic, Typic Paleudults) in northern Alabama, USA. Treatments were incomplete factorial combinations of three tillage practices (no-till [NT], mulch till [MT], and conventional till [CT]), two cropping systems (cotton [Gossypium hirsutum L.]-cotton-corn [Zea mays L.] and rye [Secale cereale L.]/cotton-rye/cotton-corn), and two N fertilization sources and rates (0 and 100 kg N ha(-1) from NH(4)NO(3) and 100 and 200 kg N ha(-1) from poultry litter). Carbon fractions were soil organic C (SOC), particulate organic C (POC), microbial biomass C (MBC), and potential C mineralization (PCM). Crop residue varied among treatments and years and total residue from 1997 to 2005 was greater in rye/cotton-rye/cotton-corn than in cotton-cotton-corn and greater with NH(4)NO(3) than with poultry litter at 100 kg N ha(-1). The SOC content at 0 to 20 cm after 10 yr was greater with poultry litter than with NH(4)NO(3) in NT and CT, resulting in a C sequestration rate of 510 kg C ha(-1) yr(-1) with poultry litter compared with -120 to 147 kg C ha(-1) yr(-1) with NH(4)NO(3). Poultry litter also increased PCM and MBC compared with NH(4)NO(3). Cropping increased SOC, POC, and PCM compared with fallow in NT. Long-term poultry litter application or continuous cropping increased soil C storage and microbial biomass and activity compared with inorganic N fertilization or fallow, indicating that these management practices can sequester C, offset atmospheric CO(2) levels, and improve soil and environmental quality.  相似文献   

19.
The Olsen-P status of grazed grassland (Lolium perenne L.) swards in Northern Ireland was increased over a 5-yr period (March 2000 to February 2005) by applying different rates of P fertilizer (0, 10, 20, 40, or 80 kg P ha(-1) yr(-1)) to assess the relationship between soil P status and P losses in land drainage water and overland flow. Plots (0.2 ha) were hydrologically isolated and artificially drained to v-notch weirs, with flow proportional monitoring of drainage water and overland flow. Annually, the collectors for overland flow intercepted between 11 and 35% of the surplus rainfall. Single flow events accounted for up to 52% of the annual dissolved reactive phosphorus (DRP) load. The Olsen-P status of the soil influenced DRP and total phosphorus (TP) concentrations in land drainage water and overland flow. Annual TP loss was highly variable and ranged from 0.19 to 1.55 kg P ha(-1) yr(-1) for the plot receiving no P fertilizer and from 0.35 to 2.94 kg P ha(-1) yr(-1) for the plot receiving 80 kg P ha(-1) yr(-1). Despite the Olsen-P status in the soils ranging from 22 to 99 mg P kg(-1), after 5 yr of fertilizer P applications it was difficult to identify a clear Olsen-P concentration at which P losses increased. Any relationship was confounded by annual variability of hydrologic events and flows and by hydrologic differences between plots. Withholding P fertilizer for over 5 yr was not long enough to lower P losses or to have an adverse effect on herbage P concentrations.  相似文献   

20.
Land application of coalbed natural gas (CBNG) co-produced water is a popular management option within northwestern Powder River Basin (PRB) of Wyoming. This study evaluated the impacts of land application of CBNG waters on soil chemical properties at five sites. Soil samples were collected from different depths (0-5, 5-15, 15-30, 30-60, 60-90, and 90-120 cm) from sites that were irrigated with CBNG water for 2 to 3 yr and control sites. Chemical properties of CBNG water used for irrigation on the study sites indicate that electrical conductivity of CBNG water (EC(w)) and sodium adsorption ratio of CBNG water (SAR(w)) values were greater than those recommended for irrigation use on the soils at the study sites. Soil chemical analyses indicated that electrical conductivity of soil saturated paste extracts (EC(e)) and sodium adsorption ratio of soil saturated paste extracts (SAR(e)) values for irrigated sites were significantly greater (P < 0.05) than control plots in the upper 30-cm soil depths. Mass balance calculations suggested that there has been significant buildup of Na in irrigated soils due to CBNG irrigation water as well as Na mobilization within the soil profiles. Results indicate that irrigation with CBNG water significantly impacts certain soil properties, particularly if amendments are not properly utilized. This study provides information for better understanding changes in soil properties due to land application of CBNG water. These changes must be considered in developing possible criteria for preserving fragile PRB ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号