首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
物化-生化组合工艺处理化纤厂浆粕综合废水   总被引:12,自引:0,他引:12  
根据化纤厂浆粕综合废水的水质特点 ,选择采用中和曝气 水解酸化 生物接触氧化 絮凝沉降处理工艺。实验结果表明 :当浆粕综合废水进水CODCr浓度 310 0~ 34 6 0mg/L ,BOD5浓度 10 2 0~ 142 0mg/L范围内时 ,处理后水质可达到《污水综合排放标准》GB8978 96中化纤浆粕工业二级排放标准。  相似文献   

2.
以某精制棉生产有限公司精制棉废水处理工程为例,介绍预处理-生化处理-气浮工艺处理精制棉废水的工程应用,总结并分析了工程设计及运行经验。设计处理流量2 000 m3/d,进水CODCr,BOD5,SS质量浓度分别为1 200,623,567 mg/L;运行结果表明:经该组合工艺处理后,出水CODCr,BOD5,SS等水质指标均满足GB 8978—1996《污水综合排放标准》中的二级排放标准。  相似文献   

3.
电解和臭氧技术在染料废水处理中的实践   总被引:4,自引:1,他引:4  
介绍电解和臭氧二级物化技术结合生化工艺处理染料废水的方法.将高浓度染料废水先用电解方法破坏高分子有机物的链状结构,并在Fe2 的催化作用下,臭氧直接氧化废水中的有机污染物,再和低浓度废水混合后采用接触氧化工艺处理.运行结果表明,CODCr、SS和色度的平均去除率分别为91.7%、89.8%、99.9%,出水水质能符合GB8978-1996《污水综合排放标准》中的一级标准.该工艺具有处理效果好、设施运行稳定、占地省、处理成本低、污泥量少等优点,具有较好的应用和推广价值.  相似文献   

4.
水洗、印染废水中的悬浮物含量高、色度高、难降解有机物含量较高,处理达标难度大,根据污水处理厂的进水水质和出水水质应达到的标准,确定采用厌氧池、卡鲁塞尔氧化沟组合工艺,对水洗、印染废水进行处理.出水可以达到《纺织染整工业水污染物排放标准》一级排放标准.CODCr去除效率为97.1%,SS去除效率为90%以上,具有很好的经济效益、环境效益、社会效益.  相似文献   

5.
采用SAF-化学絮凝-微滤分离膜组合工艺对高浓度生活污水进行处理.SAF处理系统对污染物的去除效果良好,CODCr,BOD5,SS和NH4 -N的去除率分别为92%,93%,90%和98%.SAF生物处理系统的出水再经化学絮凝和微滤分离膜深度处理后,CODCr,BOD5,NH4 -N,PO43--P的浓度分别低于40 mg/L,10mg/L,4mg/L,0.3mg/L;浊度小于0.5NTU,色度小于10度.试验结果表明该组合工艺处理后的污水水质优良,可满足生活杂用和市政杂用.  相似文献   

6.
生物絮凝吸附有机物降解动力学模型研究   总被引:1,自引:0,他引:1  
生物絮凝吸附强化一级处理对于解决中小城镇污水处理问题有较大意义,在生物絮凝吸附后串联生物接触氧化法构成强化生物絮凝+生物接触氧化一体化工艺,利用高负荷段的生物絮凝吸附强化一级处理提高SS、COD的去除率来降低后续生物膜的处理负荷,从而形成一种高效、低耗的新型处理工艺。探讨了生物絮凝吸附段的有机物降解动力学模型,并对模型进行了检验。  相似文献   

7.
生物接触氧化工艺改造购物中心综合污水处理的应用   总被引:2,自引:2,他引:0  
王卫刚  管锡珺 《环境工程》2007,25(5):100-102
利用生物接触氧化工艺和调整鼓风量改造原处理工艺,处理购物中心综合污水,设计能力400m3/d。废水进水水质CODCr为1083~1146mg/L、SS为315~436mg/L;调试稳定后,出水水质CODCr为126~145mg/L、SS为65~83mg/L,CODCr、SS去除率分别为87%~93%、79%~81%,出水水质达到国家二级排放标准。  相似文献   

8.
瓷厂污水中的污染物主要以有机物为主,可生化性较好,易于用生物法处理.采用曝气生物滤池(BIOFOR)工艺处理瓷厂污水.其污水水质:ρ(CODCr))为400mg·L-1;ρ(BOD5)为200 mg·L-1;ρ(NH3-N)为35mg·L-1;ρ(SS)为300 mg·L-1.运行结果表明,该工艺处理效率高、操作简单、运行费用低、占地面积小,出水水质达到了《污水综合排放标准》(GB 8978-1996)一级排放标准.  相似文献   

9.
根据化学合成制药排放废水的特点,水解酸化、微电解、絮凝、UBF、生物接触氧化、气浮工艺处理制药废水。实际运行结果表明:出水COD,BOD,SS等各项指标均能达到GB8978—1996((污水综合排放标准》中I级排放标准,投资费用较低,运行效果稳定。  相似文献   

10.
介绍电解和臭氧二级物化技术结合生化工艺处理染料废水的方法。将高浓度染料废水先用电解方法破坏高分子有机物的链状结构,并在Fe^2+的催化作用下,臭氧直接氧化废水中的有机污染物,再和低浓度废水混合后采用接触氧化工艺处理。运行结果表明,CODcr、SS和色度的平均去除率分别为91.7%、89.8%、99.9%,出水水质能符合GB8978-1996(污水综合排放标准)中的一级标准。该工艺具有处理效果好、设施运行稳定、占地省、处理成本低、污泥量少等优点,具有较好的应用和推广价值。  相似文献   

11.
Toxic effects of two agrochemicals on nifH gene in agricultural black soil were investigated using denaturing gradient gel electrophoresis (DGGE) and sequencing approaches in a microcosm experiment. Changes of soil nifH gene diversity and composition were examined following the application of acetochlor, methamidophos and their combination. Acetochlor reduced the nifH gene diversity (both in gene richness and diversity index values) and caused changes in the nifH gene composition. The effects of acetochlor on nifH gene were strengthened as the concentration of acetochlor increased. Cluster analysis of DGGE banding patterns showed that nifH gene composition which had been affected by low concentration of acetochlor (50 mg/kg) recovered firstly. Methamidophos reduced nifH gene richness that except at 4 weeks. The medium concentration of methamidophos (150 mg/kg) caused the most apparent changes in nifH gene diversity at the first week while the high concentration of methamidophos (250 mg/kg) produced prominent effects on nifH gene diversity in the following weeks. Cluster analysis showed that minimal changes of nifH gene composition were found at 1 week and maximal changes at 4 weeks. Toxic effects of acetochlor and methamidophos combination on nifH gene were also apparent. Different nifH genes (bands) responded differently to the impact of agrochemicals: four individual bands were eliminated by the application of the agrochemicals, five bands became predominant by the stimulation of the agrochemicals, and four bands showed strong resistance to the influence of the agrochemicals. Fifteen prominent bands were partially sequenced, yielding 15 different nifH sequences, which were used for phylogenetic reconstructions. All sequences were affiliated with the alpha- and beta-proteobacteria, showing higher similarity to eight different diazotrophic genera.  相似文献   

12.
The effects of arbuscular mycorrhizal (AM) fungus (Glomus mosseae) and phosphorus (P) addition (100 mg/kg soil) on arsenic (As) uptake by maize plants (Zea mays L.) from an As-contaminated soil were examined in a glasshouse experiment.Non-mycorrhizal and zero-P addition controls were included.Plant biomass and concentrations and uptake of As,P,and other nutrients,AM colonization,root lengths,and hyphal length densities were determined.The results indicated that addition of P significantly inhibited root colonization and development of extraradical mycelium.Root length and dry weight both increased markedly with mycorrhizal colonization under the zero-P treatments,but shoot and root biomass of AM plants was depressed by P application.AM fungal inoculation decreased shoot As concentrations when no P was added,and shoot and root As concentrations of AM plants increased 2.6 and 1.4 times with P addition,respectively.Shoot and root uptake of P,Mn,Cu,and Zn increased,but shoot Fe uptake decreased by 44.6%,with inoculation, when P was added.P addition reduced shoot P,Fe,Mn,Cu,and Zn uptake of AM plants,but increased root Fe and Mn uptake of the nonmycorrhizal ones.AM colonization therefore appeared to enhance plant tolerance to As in low P soil,and have some potential for the phytostabilization of As-contaminated soil,however,P application may introduce additional environmental risk by increasing soil As mobility.  相似文献   

13.
Several main metabolites of benzo[a]pyrene (BaP) formed by Penicillium chrysogenum, Benzo[a]pyrene-1,6-quinone (BP 1,6- quinone), trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene (BP 7,8-diol), 3-hydroxybenzo[a]pyrene (3-OHBP), were identified by high-performance liquid chromatography (HPLC). The three metabolites were liable to be accumulated and were hardly further metabolized because of their toxicity to microorganisms. However, their further degradation was essential for the complete degradation of BaP. To enhance their degradation, two methods, degradation by coupling Penicillium chrysogenum with KMnO4 and degradation only by Penicillium chrysogenum, were compared; Meanwhile, the parameters of degradation in the superior method were optimized. The results showed that (1) the method of coupling Penicillium chrysogenum with KMnO4 was better and was the first method to be used in the degradation of BaP and its metabolites; (2) the metabolite, BP 1,6-quinone was the most liable to be accumulated in pure cultures; (3) the effect of degradation was the best when the concentration of KMnO4 in the cultures was 0.01% (w/v), concentration of the three compounds was 5 mg/L and pH was 6.2. Based on the experimental results, a novel concept with regard to the bioremediation of BaP-contaminated environment was discussed, considering the influence on environmental toxicity of the accumulated metabolites.  相似文献   

14.
Sorption of chlorotoluron in ammonium sulfate, urea and atrazine multi-solutes system was investigated by batch experiments. The results showed application of nitrogen fertilizers to the soil could affect the behavior of chlorotoluron. At the same concentration of N, sorption of chlorotoluron decreased as the concentration of atrazine increased on the day 0 and 6 in soil, respectively. The sorption of chlorotoluron increased from 0 to 6 d when soils were preincubated with deionized water, ammonium sulfate and urea solution for 6 d. That indicated incubation time was one of the most important factors for the sorption of chlorotoluron in nitrogen fertilizers treatments. The individual sorption isotherms of chlorotoluron in rubbery polymer and silica were strictly linear in single solute system, but there were competition sorption between pesticides or between pesticides and nitrogen fertilizers. That indicated the sorption taken place by concurrent solid-phase dissolution mechanism and sorption on the interface of water-organic matter or water-mineral matter.  相似文献   

15.
In this study an effort has been made to use plant polyphenol oxidases; potato (Solanum tuberosum) and brinjal (Solanum melongena), for the treatment of various important dyes used in textile and other industries. The ammonium sulphate fractionated enzyme preparations were used to treat a number of dyes under various experimental conditions. Majority of the treated dyes were maximally decolorized at pH 3.0. Some of the dyes were quickly decolorized whereas others were marginally decolorized. The initial first hour was sufficient for the maximum decolorization of dyes. The rate of decolorization was quite slow on long treatment of dyes. Enhancement in the dye decolorization was noticed on increasing the concentration of enzymes. The complex mixtures of dyes were treated with both preparations of polyphenol oxidases in the buffers of varying pH values. Potato polyphenol oxidase was significantly more effective in decolorizing the dyes to higher extent as compared to the enzyme obtained from brinjal polyphenol oxidase. Decolorization of dyes and their mixtures, followed by the formation of an insoluble precipitate, which could be easily removed simply by centrifugation.  相似文献   

16.
RemovalofheavymetalsfromsewagesludgebylowcostingchemicalmethodandrecyclinginagricultureWuQitang,NyirandegePascasie,MoCehuiF...  相似文献   

17.
Single and joint effects of pesticides and mercury on soil urease   总被引:6,自引:3,他引:3  
The influence of two pesticides including chlorimuron-ethyl and furadan and mercury (Hg) on urease activity in 4 soils (meadow burozem and phaeozem) was investigated. The soils were exposed to various concentrations of the two pesticides and Hg individually and simultaneously. Results showed that there was a close relationship between urease activity and organic matter content in soil. Chlorimuron-ethyl and furadan could both activate urease in the 4 soils. The maximum increment of urease activity by chlorimuronethyl was up to 14%-18%. There was almost an equal increase (up to 13%-21%) in the urease activity by furadan. On the contrary, Hg markedly inhibited soil urease activity. A logarithmic equation was used to describe the relationship (P〈0.05) between the concentration of Hg and the activity of soil urease in the 4 tested soils. Semi-effect dose (ED50) values by the stress of Hg based on the inhibition of soil urease in the 4 soils were 88, 5.5, 24 and 20 mg/kg, respectively, according to the calculation of the corresponding equations. The interactive effect of chlorimuron-ethyl or furadan with metal Hg on soil urease was mainly synergic at the highest tested concentrations.  相似文献   

18.
A study was conducted to compare the diversity of 2-, 3-, and 4-chlorobenzoate degraders in two pristine soils and one contaminated sewage sludge. These samples contained strikingly different populations of mono-chlorobenzoate degraders. Although fewer cultures were isolated in the uncontaminated soils than contaminated one, the ability of microbial populations to mineralize chlorobenzoate was widespread. The 3- and 4-chlorobenzoate degraders were more diverse than the 2-chlorobenzoate degraders. One of the strains isolated from the sewage sludge was obtained. Based on its phenotype, chemotaxonomic properties and 16S rRNA gene, the organism S-7 was classified as Rhodococcus erythropolis. The strain can grow at temperature from 4 to 37℃. It can utilize several (halo)aromatic compounds. Moreover, strain S-7 can grow and use 3-chlorobenzoate as sole carbon source in a temperatures range of 10-30℃ with stoichiometric release of chloride ions. The psychrotolerant ability was significant for bioremediation in low temperature regions. Catechol and chlorocatechol 1,2-dioxygenase activities were present in cell free extracts of the strain, but no (chloro)catechol 2,3- dioxygenase activities was detected. Spectral conversion assays with extracts from R. erythropolis S-7 showed accumulation of a compound with a similar UV spectrum as chloro-cis,cis-muconate from 3-chlorobenzoate. On the basis of these results, we proposed that S-7 degraded 3-chlorobenzoate through the modified ortho-cleave pathway.  相似文献   

19.
A field study was conducted in the Taihu Lake region, China in 2004 to reveal the organochlorine pesticide concentrations in soils after the ban of these substances in the year 1983. Thirteen organochlorine pesticides (OCPs) were analyzed in soils from paddy field, tree land and fallow land. Total organochlorine pesticide residues were higher in agricultural soils than in uncultivated fallow land soils. Among all the pesticides, ΣDDX (DDD, DDE and DDT) had the highest concentration for all the soil samples, ranging from 3.10 ng/g to 166.55 ng/g with a mean value of 57.04 ng/g and followed by ΣHCH, ranging from 0.73 ng/g to 60.97 ng/g with a mean value of 24.06 ng/g. Dieldrin, endrin, HCB and α-endosulfan were also found in soils with less than 15 ng/g. Ratios of p,p'-(DDD DDE)/DDT in soils under three land usages were: paddy field > tree land > fallow land, indicating that land usage inlfuenced the degradation of DDT in soils. Ratios of p,p'-(DDD DDE)/DDT >1, showing aged residues of DDTs in soils of the Taihu Lake region. The results were discussed with data from a former study that showed very low actual concentrations of HCH and DDT in soils in the Taihu Lake region, but according to the chemical half-lives and their concentrations in soils in 1980s, the concentration of DDT in soils seemed to be underestimated. In any case our data show that the ban on the use of HCH and DDT resulted in a tremendous reduction of these pesticide residues in soils, but there are still high amounts of pesticide residues in soils, which need more remediation processes.  相似文献   

20.
The contribution of aliphatic-rich plant biopolymer to sorption of hydrophobic organic compounds is significantly important because of their preservation and accumulation in the soil environment,but sorption mechanism is still not fully understood.In this study, sorption of 1-naphthol by plant cuticular fractions was examined to better understand the contributions of respective fraction.Toward this end,cuticular materials were isolated from the fruits of tomato by chemical method.The tomato cuticle sheet consisted of waxes (6.5 wt%),cuticular monomer (69.5 wt%),and polysaccharide (24.0 wt%).Isotherms of l-naphthol to the cuticular fractions were nonlinear (N value (0.82-0.90)) at the whole tested concentration ranges.The KodKow ratios for bulk cuticle (TC1),dewaxed cuticle (TC2),cutin (TC4),and desugared cuticle (TC5) were larger than unity,suggested that tomato bulk cuticle and cutin are much powerful solption medium.Sorption capability of cutin (TC4) was 2.4 times higher than the nonsaponifiable fraction (TC3).The 1-naphthol interactions with tomato cuticular materials were governed by both hydrophobic-type interactions and polar (H-bonding) interactions. Removal of the wax and polysaccharide materials from the bulk tomato cuticle caused a significant increase in the sorption ability of the cuticular material.There was a linear negative trend between K_(oc) values and the amount of polysaccharides or fraction's polarities ((N O)/C);while a linear positive relationship between K_(oc) values and the content of cutin monomer (linear R~2=0.993) was observed for present in the cuticular fractions.Predominant sorbent of the hydrophobic organic compounds (HOCs) in the plant cuticular fraction was the cutin monomer,contributing to 91.7% of the total sorption of tomato bulk cuticle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号