首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction mechanism and pathway of the ozonation of 2,4,6-trichlorophenol (2,4,6-TCP) in aqueous solution were investigated. The removal efficiency and the variation of H2O2, Cl formic acid, and oxalic acid were studied during the semi-batch ozonation experiments (continuous for ozone gas supply, fixed volume of water sample). The results showed that when there was no scavenger, the removal efficiency of 0.1 mmol/L 2,4,6-TCP could reach 99% within 6 min by adding 24 mg/L ozone. The reaction of molecular ozone with 2,4,6-TCP resulted in the formation of H2O2. The maximal concentration of H2O2 detected during the ozonation could reach 22.5% of the original concentration of 2,4,6-TCP. The reaction of ozone with H2O2 resulted in the generation of a lot of OH• radicals. Therefore, 2,4,6-TCP was degraded to formic acid and oxalic acid by ozone and OH• radicals together. With the inhibition of OH• radicals, ozone molecule firstly degraded 2,4,6-TCP to form chlorinated quinone, which was subsequently oxidized to formic acid and oxalic acid. Two reaction pathways of the degradation of 2,4,6-TCP by ozone and O3/OH• were proposed in this study. Translated from Acta Scientiae Circumstantiae, 2005, 25(12): 1619–1623 [译自: 环境科学学报]  相似文献   

2.
The adults of the leaf beetle Platyphora kollari (Chrysomelidae) are able to metabolise the oleanane triterpene β-amyrin (1) into the glycoside 3-O-β-d-glucopyranosyl-(1→4)-β-d-glucuronopyranosyl-hederagenin (2) that is stored in their defensive glands. The aim of this study was to test the hypothesis that oleanolic acid (3) is an intermediate in the conversion of 1 into 2 and to check whether the sequestration of pentacyclic triterpenes is selective in favour of β-amyrin (1). To this end, adults of P. kollari were fed with Ipomoea batatas leaf disks painted with a solution of [2,2,3-2H3]oleanolic acid or [2,2,3-2H3]α-amyrin and the secretion of their defensive glands analysed by HPLC–ESIMS. The data presented in this work indicated that the first step of the transformation of β-amyrin (1) into the sequestered glycoside 2 is its oxidation into oleanolic acid (3) and that this conversion is selective but not specific in favour of β-amyrin (1).  相似文献   

3.
合成了3个氨基乙醇席夫碱Cu2+配合物并进行了表征.利用分光光度法考查了配合物催化降解酸性蓝9的性能和动力学曲线;利用Graph Pad Prism 5软件进行了米氏常数的测定;利用HPLC法测定了降解产物.发现配合物均为单核五配位配合物.发现配合物能催化废水中酸性蓝9降解,催化活性Cu Cl Lb·H2O最好,Cu Cl La·H2O其次,Cu Cl Lc·H2O最差,说明给电子基团有利于催化活性,位阻基团不利于催化活性.发现Cu Cl La·H2O、Cu Cl Lb·H2O催化酸性蓝9的V-S曲线与米氏方程吻合,米氏常数分别为1.35×10-2mmol·L-1和1.54×10-2mmol·L-1,说明催化过程具有酶促特性,Cu Cl La·H2O与底物的结合能力比Cu Cl Lb·H2O与底物结合能力弱.发现降解产物有顺式丁烯二酸.推测了配合物的催化机理和酸性蓝9的降解机制.得到了两个性能优良的酸性蓝9降解的仿酶催化剂,催化活性可以通过基团进行调控,为开发新的染料废水的有效治理技术提供了理论和实践支持.  相似文献   

4.
Humin, the most recalcitrant and abundant organic fraction of soils and of sediments, is a significant contributor to the stable carbon pool in soils and is important for the global carbon budget. It has significant resistance to transformations by microorganisms. Based on the classical operational definition, humin can include any humic-type substance that is not soluble in water at any pH. We demonstrate in this study how sequential exhaustive extractions with 0.1 M sodium hydroxide (NaOH) + 6 M urea, followed by dimethylsulphoxide (DMSO) + 6% (v/v) sulphuric acid (H2SO4) solvent systems, can extract 70–80% of the residual materials remaining after prior exhaustive extractions in neutral and aqueous basic media. Solid-state 13C NMR spectra have shown that the components isolated in the base + urea system were compositionally similar to the humic and fulvic acid fractions isolated at pH 12.6 in the aqueous media. The NMR spectra indicated that the major components isolated in the DMSO + H2SO4 medium had aliphatic hydrocarbon associated with carboxyl functionalities and with lesser amounts of carbohydrate and peptide and minor amounts of lignin-derived components. The major components will have significant contributions from long-chain fatty acids, waxes, to cuticular materials. The isolates in the DMSO + H2SO4 medium were compositionally similar to the organic components that resisted solvation and remained associated with the soil clays. It is concluded that the base + urea system released humic and fulvic acids held by hydrogen bonding or by entrapment within the humin matrix. The recalcitrant humin materials extracted in DMSO + H2SO4 are largely biological molecules (from plants and the soil microbial population) that are likely to be protected from degradation by their hydrophobic moieties and by sorption on the soil clays. Thus, the major components of humin do not satisfy the classical definitions for humic substances which emphasise that these arise from microbial or chemical transformations in soils of the components of organic debris.  相似文献   

5.
To reveal the biological characteristics of urban forest soil and the effects of soil enzyme on soil fertility as well as the correlation between physicochemical properties and enzyme activities, 44 urban forest soil profiles in Nanjing were investigated. Basic soil physicochemical properties and enzyme activities were analyzed in the laboratory. Hydrogen peroxidase, dehydrogenase, alkaline phosphatase, and cellulase were determined by potassium permanganate titration, TTC (C19H15N4·Cl) colorimetry, phenyl phosphate dinatrium colorimetry, and anthrone colorimetry, respectively. The result showed that soil pH, organic carbon (C), and total nitrogen (N) had great effects on hydrogen peroxidase, dehydrogenase, and alkaline phosphatase activities in 0–20 cm thick soil. However, pH only had great effect on hydrogen peroxidase, dehydrogenase, and alkaline phosphatase activities in 20–40 cm thick soil. Hydrogen peroxidase, dehydrogenase, and alkaline phosphatase were important biological indicators for the fertility of urban forest soil. Both in 0–20 cmand 20–40 cmsoil, soil enzyme system (hydrogen peroxidase, dehydrogenase, alkaline phosphatase, and cellulase) had a close relationship with a combination of physicochemical indicators (pH, organic C, total N, available K, available P, cation exchange capacity (CEC), and microbial biomass carbon (Cmic)). The more soil enzyme activities there were, the higher the fertility of urban forest soil. __________ Translated from Urban Environment & Urban Ecology, 2007, 20(4): 4–6, 9 [译自: 城市环境与城市生态]  相似文献   

6.
为研究硝酸纤维素膜(NCM)作为新型污染物降解材料在水处理领域的应用潜力,本文以对硝基苯酚为目标污染物,NCM为活性氧物种来源,考察了溶液p H、光照条件、水体成分等因素对光解的影响及其作用机制.结果表明,NCM光致·OH量子产率为1. 30×10~(-4),是传统光催化材料TiO_2的1. 86倍.纯水中对硝基苯酚的直接光解速率仅为9. 52×10-4min-1,而在NCM存在情况下光解速率达到0. 005 5 min-1.这种促进作用主要是由NCM表面光致·OH引起的,其中UVA对光解起重要作用.水体酸性条件有利于NCM光解对硝基苯酚,在p H=2. 0时,降解率达到90%以上,相应的光解速率为0. 016 5min-1.对硝基苯酚的光解速率随光照强度、膜面积的增大而提高.水体成分对光解影响呈显著差异,NO-3可通过光致·OH的生成促进光解;而可溶性有机质主要通过滤光作用抑制对硝基苯酚的光解.气相色谱-质谱分析中间产物主要有苯酚、对苯二酚、丙二酸和草酸等,由此给出了可能的光解途径.  相似文献   

7.
探究硫铁矿生物氧化过程的影响因素有利于揭示酸性矿山废水形成规律.本研究采用摇瓶试验,探究了氧化亚铁硫杆菌Acidithiobacillus ferrooxidans LX5(A.ferrooxidans LX5)密度对硫铁矿生物氧化的影响.同时,在菌密度为1.40×107cells·m L-1的环境中,研究了微生物营养(无铁改进型9K液体培养基)供给对硫铁矿生物氧化的影响.结果表明,A.ferrooxidans LX5及其营养成分的引入显著加速了硫铁矿生物氧化体系H+的释放,0.70×107~2.10×107cells·m L-1A.ferrooxidans LX5的引入,可使得H+释放量较无菌对照提高1.51~3.31倍.半量浓度和全量浓度无铁改进型9K液体培养基的加入,可使菌密度为1.40×107cells·m L-1硫铁矿氧化体系的H+释放量提高3.24与2.75倍.相对于A.ferrooxidans LX5密度为0.70×107cells·m L-1的体系,1.40×107cells·m L-1或2.10×107cells·m L-1A.ferrooxidans LX5的引入明显提高硫铁矿氧化体系总Fe离子与SO2-4的释放效率,且71.9%~88.3%的总Fe离子主要以Fe2+存在.微生物营养供给使得总Fe离子与SO2-4的释放效率加速显著,而总Fe离子几乎全部以Fe3+存在.当菌密度大于1.40×107cells·m L-1时,体系生物氧化后所得硫铁矿表面存在明显的侵蚀坑.相对于半量浓度改进型9K培养基养分供给,全量改进型9K液体培养基的引入由于体系次生铁矿物覆盖硫铁矿明显而抑制了总Fe离子与SO2-4的释放.硫铁矿氧化所得酸性废水经Ca O中和至pH约为7.00,总Fe近乎全部去除,而SO2-4去除率相对较低(26.7%~73.9%).本研究所得结果对明晰酸性矿山废水形成规律具有一定的指导意义.  相似文献   

8.
以FeCl_3·6H_2O、FeCl_2·4H_2O、(C_2H_5)_4SiO_4、Bi(NO_3)_3·5H_2O、KCl为主要原料,采用化学共沉淀法和水热法制备了BiOCl/SiO_2/Fe_3O_4光催化剂,并对其进行EDS、TEM、XRD、FT-IR、UV-Vis表征,最后通过亚甲基蓝降解实验,研究了催化剂在合成过程中pH及催化剂投加量对其光催化性能的影响.结果表明,在pH=6、催化剂初始投加量为0.5 g·L~(-1)时,对亚甲基蓝的可见光催化效果最佳,光照120 min后对10 mg·L~(-1)的亚甲基蓝溶液的脱色率达到93.2%.BiOCl/SiO_2/Fe_3O_4经过简单的无水乙醇和水洗后,可高效重复利用4次.综合表明,BiOCl/SiO_2/Fe_3O_4是一种在处理染料废水中具有应用前景的磁性光催化剂.  相似文献   

9.
N  -heteroaromatic compounds are utilized by micro-organisms as a source of carbon (and nitrogen) and energy. The aerobic bacterial degradation of these growth substrates frequently involves several hydroxylation steps and subsequent dioxygenolytic cleavage of (di)hydroxy-substituted heteroaromatic intermediates to aliphatic metabolites which finally are channeled into central metabolic pathways. As a rule, the initial bacterial hydroxylation of a N-heteroaromatic compound is catalyzed by a molybdenum hydroxylase, which uses a water molecule as source of the incorporated oxygen. The enzyme's redox-active centers – the active site molybdenum ion coordinated to a distinct pyranopterin cofactor, two different [2Fe2S] centers, and in most cases, flavin adenine dinucleotide – transfer electrons from the N-heterocyclic substrate to an electron acceptor, which for many molybdenum hydroxylases is still unknown. Ring-opening 2,4-dioxygenases involved in the bacterial degradation of quinaldine and 1H-4-oxoquinoline catalyze the cleavage of two carbon-carbon bonds with concomitant formation of carbon monoxide. Since they contain neither a metal center nor an organic cofactor, and since they do not show any sequence similarity to known oxygenases, these unique dioxygenases form a separate enzyme family. Quite surprisingly, however, they appear to be structurally and mechanistically related to enzymes of the α/β hydrolase fold superfamily. Microbial enzymes are a great resource for biotechnological applications. Microbial strains or their enzymes may be used for degradative (bioremediation) or synthetic (biotransformation) purposes. Modern bioremediation or biotransformation strategies may even involve microbial catalysts or strains designed by protein engineering or pathway engineering. Prerequisite for developing such modern tools of biotechnology is a comprehensive understanding of microbial metabolic pathways, of the structure and function of enzymes, and of the molecular mechanisms of biocatalysis.  相似文献   

10.
This study focused on the adsorptive behaviors of humic acid onto freshly prepared hydrous MnO2(s) (δMnO2), and investigated the feasibility of employing δMnO2 for humic acid removal from drinking water. Effects of such parameters as molecular mass of humic acid, kinds of divalent cations on adsorptive behaviors and possible mechanisms involved were investigated. This study indicated that humic acid with higher molecular mass exhibited more tendency of adsorbing onto δMnO2 than that with lower molecular mass. Ca2+ facilitated more humic acid adsorption than Mg2+; UV-Vis spectra analysis indicated higher capabilities of Ca2+ coordinating with acidic functional groups of humic acid than that of Mg2+. Additionally, ζ potential characterization indicated that Ca2+ showed higher potential of increasing gz potential of δMnO2 than Mg2+. Ca2+ of 1.0 mmol/L increased ζ potential of δMnO2 from −37 mV (pH 7.9) to +7 mV (pH 7.2), while 1.0 mmol/L Mg2+ increased to lower value as −9 mV (pH 6.5), correspondingly. Fourier transform infrared (FTIR) spectra demonstrated the adsorption of humic acid onto δMnO2, showing the important roles of-COO functional groups and surface Mn-OH in the adsorption of humic acid onto δMnO2. Translated from Acta Scientiae Circumstantiae, 2005, 25(3): 351–355 [译自: 环境科学学报]  相似文献   

11.
柴铖  许路  金鑫  石烜  吴晨曦  金鹏康 《环境科学》2022,43(2):896-906
系统研究了新型氮掺杂生物炭材料(N-C)催化臭氧对于水中布洛芬(IBP)的氧化降解效能及机制,并深入探究了初始pH、臭氧投加量、催化剂投加量、不同阴离子和背景水质条件对IBP降解效率的影响.结果 表明,相较于一些常见的碳基催化剂(g-C3N4、生物炭、颗粒活性炭)及金属催化剂(MnO2、Fe3O4),N-C催化臭氧体系...  相似文献   

12.
The ozone oxidation of endocrine disruptor bisphenol A in drinking water was investigated. A stainless completely mixed reactor was employed to carry out the degradation experiments by means of a batch model. With an initial concentration of 11.0 mg/L, the removal efficiencies of BPA (bisphenol A) could be measured up to 70%, 82%, and 90% when the dosages of ozone were 1, 1.5, and 2 mg/L, respectively. The impacts on BPA degradation under the conditions of different ozone dosages, water background values, BPA initial concentrations, and ozone adding time were analyzed. The results showed that ozone dosage plays a dominant role during the process of BPA degradation, while the impact of the contact time could be ignored. UV wavelength scanning was used to confirm that the by-products were produced, which could be absorbed at UV254. The value of UV254 was observed to have changed during the ozonation process. Based on the change of UV254, it could be concluded that BPA is not completely degraded at low ozone dosage, while shorter adding time of total ozone dosage, high ozone dosage, and improvement of dissolved ozone concentration greatly contribute to the extent of BPA degradation. The effects of applied H2O2 dose in ozone oxidation of BPA were also examined in this study. The O3-H2O2 processes proved to have similar effects on the degradation of BPA by ozone oxidation. Translated from Environmental Science, 2006, 27(2): 294–299 [译自: 环境科学]  相似文献   

13.
The genetic information encoding metabolic pathways for xenobiotic compounds in bacteria often resides on catabolic plasmids. The aim of the present work was to know the location of the genes for degrading 1,2,4-trichlorobenzen. In this paper a 1,2,4-trichlorobenzene-degrading strain THSL-1 was isolated from the soil of Tianjin Chemical Plant using 1,2,4-trichlorobenzene as the sole carbon source. The strain was identified as Pseudomonas stutzeri through morphologic survey and 16S rDNA sequence determination. A plasmid was discovered from strain THSL-1 by using the alkali lysis method. When the plasmid was transformed into E. coli. JM109 by the CaCl2 method, the transformant could grow using 1,2,4-trichlorobenzene as the sole carbon source and had the degradation function of 1,2,4-trichlorobenzene. Therefore, it could be deemed that the plasmid carried the degradative genes of 1,2,4-trichlorobenzene. The average size of the plasmid was finally determined to be 40.2 Kb using selectively three kinds of restricted inscribed enzymes (HindIII, BamHI, and XholI) for single cutting and double cutting the plasmid pTHSL-1, respectively. __________ Translated from China Environmental Science, 2005, 25(4): 385–388 [译自: 中国环境科学]  相似文献   

14.
低营养水体中芽孢杆菌降解有机氮的研究   总被引:2,自引:0,他引:2       下载免费PDF全文
芽孢杆菌具有降解有机氮的功能,但在养殖水体等低营养水体中,其降解效果可能受到影响.为研究低营养水体中有机氮的降解情况,通过模拟凡纳滨对虾中间培育过程配制低营养水体,分别接种芽孢杆菌NT9和YB3(NT9水体和YB3水体),然后研究水体中微生物的生长与有机氮的降解情况,并构建数学模型进行分析.结果显示,起始接种量为10×10~5 cfu·mL~(-1)时,NT9水体总菌量呈下降趋势,平均为(3.46×10~5±2.39×10~5) cfu·mL~(-1),YB3水体总菌量则上升到(25.43×10~5±8.84×10~5) cfu·mL~(-1),但均高于未接种的对照水体.NT9水体和YB3水体的有机氮降解率显著高于对照水体(p0.05),分别提高50.28%和119.41%,降解速率也分别提高65.22%和121.74%.对照水体、NT9水体和YB3水体单位菌量的有机氮降解效率分别为1.238、1.649和1.904 mg·L~(-1),降解模型分别为y=-6.40+1.39x_1+1.45x_2、y=2.11+8.21x_3-0.64x_4-1.26x_1x_3-0.32x_2x_4和y=1.73+6.11x_2(x_1、x_2、x_3、x_4分别表示总菌量、总菌增量、有机氮含量和时间).研究表明,在低营养水体中接种芽孢杆菌有利于有机氮的降解,但不同的菌株具有不同的降解模式,菌株YB3为能够适应低营养水平、增殖能力较强的菌株,可以更有效地促进有机氮的降解,提高降解效率.  相似文献   

15.
将人工智能应用于催化臭氧氧化催化剂SrFexZr1-xO3的开发过程,采用共沉淀法制备了50种不同配方的催化剂,考察聚乙二醇(PEG)投加量、煅烧时间、老化时间、氨水投加量和铁掺杂量对SrFexZr1-xO3催化剂催化臭氧降解间甲酚反应活性的影响.同时,利用人工神经网络(ANN)和响应面(RSM)对催化剂合成条件与TOC去除率和间甲酚转化率的关系进行拟合,训练集中ANN的R2值分别为0.91和0.97,高于RSM的R2值0.35和0.41;在4组测试集上ANN的均方误差(MSE)分别为9.87和17.67,远小于RSM的23.89和28.87.结果表明,ANN模型对催化剂制备过程的复杂体系具有更好的拟合和泛化能力.在ANN训练好的模型中通过枚举法寻找最优合成条件为:PEG投加量为19.00%,煅烧时间为1.25 h,老化时间为26.50 h,氨水投加量为6.21 mL,铁掺杂量为3.37%,所得催化剂为SrFe0.13Zr0.87O3-B.最佳反应条件下,间甲酚转化率和TOC去除率分别达到98.52%和17.21%,优于空白组的73.46%和1.86%.  相似文献   

16.
利用波长为254 nm的紫外灯活化过氧化氢(H_2O_2)氧化降解美罗培南(MPN),考察了H_2O_2投加量、初始pH值、水中常见共存阴离子(Cl~-、HCO~-_3、NO~-_3)和天然有机化合物(NOM)等重要影响因素对MPN降解的影响.结果表明,紫外光功率为4 W,初始pH为7.0,n(H_2O_2)/n(MPN)=20∶1时,反应20 min后,MPN的降解率达到97.8%.H_2O_2投加量的增加会加快MPN的降解速率,Cl~-和HCO~-_3对UV/H_2O_2体系中MPN去除效果的影响较小,极少量的NO~-_3会促进MPN的降解,当NO~-_3的浓度≥10 mg·L~(-1)时,MPN的降解受到抑制,且离子浓度越高,抑制程度表现越明显.NOM的存在对MPN的降解有抑制作用.与纯水相比,MPN在实际水体中的去除受到抑制,归因于水体基质的影响.大肠杆菌的急性毒性实验研究表明,MPN的中间转化产物保留了一些抗菌性能,但光解的最终产物无抗菌性能.  相似文献   

17.
采用磷酸改性的黍糠基生物炭作为纳米零价铁(Nanoscale zero-valent iron,nZVI)载体,成功制备出一种高效非均相活化材料一磷酸改性生物炭负载纳米零价铁(nZVI@PBC),用来活化过硫酸盐(Persulfate,PS)降解印染废水中的典型染料—活性蓝(Reactive Blue 19,RB19)...  相似文献   

18.
基于费米能级差,构建了以BiVO_4为光阳极,Cu_2O/CuO为光阴极的双光电极可见光响应光催化燃料电池体系,研究了该体系在不同氧化剂的辅助作用下光电催化降解苯酚的效率与动力学.结果表明,向该体系中投加H_2O_2可以显著促进苯酚的降解,且反应过程光电流稳定,铜溶出量低.详细探究了H_2O_2初始浓度、pH对降解的影响,结果表明在H_2O_2投加量为5 mmol·L~(-1),初始pH为3.5条件下利于苯酚降解,5 mg·L~(-1)的苯酚可在120 min内完全去除.顺磁共振和猝灭实验表明该体系的主要氧化物种为·OH、·O~-_2和光生空穴.该催化体系实现了苯酚在可见光下的高效催化降解.  相似文献   

19.
磁性纳米复合物非均相类Fenton反应催化降解罗丹明B   总被引:3,自引:2,他引:1  
以锰锌铁氧体Mn0.6Zn0.4Fe2O4(Fe-MNPs)为磁核,利用正硅酸乙酯(TEOS)水解制备得到可磁分离的"核-壳"结构纳米复合物Mn0.6Zn0.4Fe2O4@Si O2(Si-Fe-MNCs),并采用X射线衍射(XRD)、N2吸附-脱附、扫描电镜(SEM)、透射电镜(TEM)、X射线光电子能谱(XPS)和振动样品磁强计(VSM)对Si-Fe-MNCs进行了表征.同时,以难生物降解染料罗丹明B(Rh B)为目标污染物,利用Si-Fe-MNCs催化过氧化氢降解Rh B,考察了不同体系、过氧化氢用量、催化剂投加量及温度等对催化活性的影响.结果表明,当温度为303 K,催化剂用量为0.5 g·L-1,过氧化氢(质量分数15%)加入量为4 m L,Rh B(20 mg·L~(-1))加入量为50 m L时,H2O2利用率为81.3%,罗丹明B降解率为95%,CODC r去除率为98.0%;自由基验证实验及XPS表征结果表明,Rh B与Si-Fe-MNCs催化H2O2产生的·OH反应而得以降解,该反应为固液界面催化反应,FeMNPs中存在的氧空位对催化反应起到协同强化作用.  相似文献   

20.
We have found that giant hornets (Vespa mandarinia japonica) are killed in less than 10 min when they are trapped in a bee ball created by the Japanese honeybees Apis cerana japonica, but their death cannot be solely accounted for by the elevated temperature in the bee ball. In controlled experiments, hornets can survive for 10 min at the temperature up to 47°C, whereas the temperature inside the bee balls does not rise higher than 45.9°C. We have found here that the CO2 concentration inside the bee ball also reaches a maximum (3.6 ± 0.2%) in the initial 0–5 min phase after bee ball formation. The lethal temperature of the hornet (45–46°C) under conditions of CO2 concentration (3.7 ± 0.44%) produced using human expiratory air is almost the same as that in the bee ball. The lethal temperature of the honeybee is 50–51°C under the same air conditions. We concluded that CO2 produced inside the bee ball by honeybees is a major factor together with the temperature involved in defense against giant hornets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号