首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Industrial-scale injection of CO2 into saline formations in sedimentary basins will cause large-scale fluid pressurization and migration of native brines, which may affect valuable groundwater resources overlying the deep sequestration aquifers. In this paper, we discuss how such basin-scale hydrogeologic impacts (1) may reduce current storage capacity estimates, and (2) can affect regulation of CO2 storage projects. Our assessment arises from a hypothetical future carbon sequestration scenario in the Illinois Basin, which involves twenty individual CO2 storage projects (sites) in a core injection area most suitable for long-term storage. Each project is assumed to inject five million tonnes of CO2 per year for 50 years. A regional-scale three-dimensional simulation model was developed for the Illinois Basin that captures both the local-scale CO2–brine flow processes and the large-scale groundwater flow patterns in response to CO2 storage. The far-field pressure buildup predicted for this selected sequestration scenario support recent studies in that environmental concerns related to near- and far-field pressure buildup may be a limiting factor on CO2 storage capacity. In other words, estimates of storage capacity, if solely based on the effective pore volume available for safe trapping of CO2, may have to be revised based on assessments of pressure perturbations and their potential impacts on caprock integrity and groundwater resources. Our results suggest that (1) the area that needs to be characterized in a permitting process may comprise a very large region within the basin if reservoir pressurization is considered, and (2) permits cannot be granted on a single-site basis alone because the near- and far-field hydrogeologic response may be affected by interference between individual storage sites. We also discuss some of the challenges in making reliable predictions of large-scale hydrogeologic impacts related to CO2 sequestration projects.  相似文献   

2.
Saline aquifers of high permeability bounded by overlying/underlying seals may be surrounded laterally by low-permeability zones, possibly caused by natural heterogeneity and/or faulting. Carbon dioxide (CO2) injection into and storage in such “closed” systems with impervious seals, or “semi-closed” systems with non-ideal (low permeability) seals, is different from that in “open” systems, from which the displaced brine can easily escape laterally. In closed or semi-closed systems, the pressure buildup caused by continuous industrial-scale CO2 injection may have a limiting effect on CO2 storage capacity, because geomechanical damage caused by overpressure needs to be avoided. In this research, a simple analytical method was developed for the quick assessment of the CO2 storage capacity in such closed and semi-closed systems. This quick-assessment method is based on the fact that native brine (of an equivalent volume) displaced by the cumulative injected CO2 occupies additional pore volume within the storage formation and the seals, provided by pore and brine compressibility in response to pressure buildup. With non-ideal seals, brine may also leak through the seals into overlying/underlying formations. The quick-assessment method calculates these brine displacement contributions in response to an estimated average pressure buildup in the storage reservoir. The CO2 storage capacity and the transient domain-averaged pressure buildup estimated through the quick-assessment method were compared with the “true” values obtained using detailed numerical simulations of CO2 and brine transport in a two-dimensional radial system. The good agreement indicates that the proposed method can produce reasonable approximations for storage–formation–seal systems of various geometric and hydrogeological properties.  相似文献   

3.
This work is motivated by the growing interest in injecting carbon dioxide into deep geological formations as a means of avoiding its atmospheric emissions and consequent global warming. Ideally, the injected greenhouse gas stays in the injection zone for a geologic time, eventually dissolves in the formation brine and remains trapped by mineralization. However, one of the potential problems associated with the geologic method of sequestration is that naturally present or inadvertently created conduits in the cap rock may result in a gas leakage from primary storage. Even in supercritical state, the carbon dioxide viscosity and density are lower than those of the formation brine. Buoyancy tends to drive the leaked CO2plume upward. Theoretical and experimental studies of buoyancy-driven supercritical CO2 flow, including estimation of time scales associated with plume evolution and migration, are critical for developing technology, monitoring policy, and regulations for safe carbon dioxide geologic sequestration.In this study, we obtain simple estimates of vertical plume propagation velocity taking into account the density and viscosity contrast between CO2 and brine. We describe buoyancy-driven countercurrent flow of two immiscible phases by a Buckley–Leverett type model. The model predicts that a plume of supercritical carbon dioxide in a homogeneous water-saturated porous medium does not migrate upward like a bubble in bulk water. Rather, it spreads upward until it reaches a seal or until it becomes immobile. A simple formula requiring no complex numerical calculations describes the velocity of plume propagation. This solution is a simplification of a more comprehensive theory of countercurrent plume migration [Silin, D., Patzek, T.W., Benson, S.M., 2007. A Model of Buoyancy-driven Two-phase Countercurrent Fluid Flow. Laboratory Report LBNL-62607. Lawrence Berkeley National Laboratory, Berkeley, CA]. In a layered reservoir, the simplified solution predicts a slower plume front propagation relative to a homogeneous formation with the same harmonic mean permeability. In contrast, the model yields much higher plume propagation estimates in a high-permeability conduit like a vertical fracture.  相似文献   

4.
Geologic carbon sequestration is the injection of anthropogenic CO2 into deep geologic formations where the CO2 is intended to remain indefinitely. If successfully implemented, geologic carbon sequestration will have little or no impact on terrestrial ecosystems aside from the mitigation of climate change. However, failure of a geologic carbon sequestration site, such as large-scale leakage of CO2 into a potable groundwater aquifer, could cause impacts that would require costly remediation measures. Governments are attempting to develop regulations for permitting geologic carbon sequestration sites to ensure their safety and effectiveness. At present, these regulations focus largely on decreasing the probability of failure. In this paper we propose that regulations for the siting of early geologic carbon sequestration projects should emphasize limiting the consequences of failure because consequences are easier to quantify than failure probability.  相似文献   

5.
Enhanced oil recovery (EOR) through CO2 flooding has been practiced on a commercial basis for the last 35 years and continues today at several sites, currently injecting in total over 30 million tons of CO2 annually. This practice is currently exclusively for economic gain, but can potentially contribute to the reduction of emissions of greenhouse gases provided it is implemented on a large scale. Optimal operations in distributing CO2 to CO2-EOR or enhanced gas recovery (EGR) projects (referred to here collectively as CO2-EHR) on a large scale and long time span imply that intermediate storage of CO2 in geological formations may be a key component. Intermediate storage is defined as the storage of CO2 in geological media for a limited time span such that the CO2 can be sufficiently reproduced for later use in CO2-EHR. This paper investigates the technical aspects, key individual parameters and possibilities of intermediate storage of CO2 in geological formations aiming at large scale implementation of carbon dioxide capture and storage (CCS) for deep emission reduction. The main parameters are thus the depth of injection and density, CO2 flow and transport processes, storage mechanisms, reservoir heterogeneity, the presence of impurities, the type of the reservoirs and the duration of intermediate storage. Structural traps with no flow of formation water combined with proper injection planning such as gas-phase injection favour intermediate storage in deep saline aquifers. In depleted oil and gas fields, high permeability, homogeneous reservoirs with structural traps (e.g. anticlinal structures) are good candidates for intermediate CO2 storage. Intuitively, depleted natural gas reservoirs can be potential candidates for intermediate storage of carbon dioxide due to similarity in storage characteristics.  相似文献   

6.
A prerequisite to the wide deployment at an industrial scale of CO2 geological storage is demonstrating that potential risks can be efficiently managed. Corrective measures in case of significant irregularities, such as CO2 leakage, are hence required as advocated by the recent European directive on Carbon Capture and Storage operations. In this regard, the objective of the present paper is to investigate four different corrective measures aiming at controlling the overpressure induced by the injection operations in the reservoir: stopping the CO2 injection and relying on the natural pressure recovery in the reservoir; extracting the stored CO2 at the injection well; extracting brine at a distant well while stopping the CO2 injection, and extracting at a distant well without stopping the CO2 injection. The efficiency of the measures is assessed using multi-phase fluid flow numerical simulations. The application case is the deep carbonate aquifer of the Dogger geological unit in the Paris Basin. A comparative study between the four corrective measures is then carried using a cost-benefit approach. Results show that an efficient overpressure reduction can be achieved by simply shutting-in the well. The overpressure reduction can be significantly accelerated by means of fluid extraction but the adverse consequences are the associated higher costs of the intervention operations.  相似文献   

7.
Laboratory studies and a number of field pilots have demonstrated that CO2 injection into coal seams has the potential to enhance coalbed methane (CBM) recovery with the added advantage that most of the injected CO2 can be stored permanently in coal. The concept of storing CO2 in geologic formations as a safe and effective greenhouse gas mitigation option requires public and regulatory acceptance. In this context it is important to develop a good understanding of the reservoir performance, uncertainties and the risks that are associated with geological storage. The paper presented refers to the sources of uncertainty involved in CO2 storage performance assessment in coalbed methane reservoirs and demonstrates their significance using extensive digital well log data representing the Manville coals in Alberta, Canada. The spatial variability of the reservoir properties was captured through geostatistical analysis, and sequential Gaussian simulations of these provided multiple realisations for the reservoir simulator inputs. A number of CO2 injection scenarios with variable matrix swelling coefficients were evaluated using a 2D reservoir model and spatially distributed realisations of total net thickness and permeability.  相似文献   

8.
The potential to capture carbon from industrial sources and dispose of it for the long-term, known as carbon capture and sequestration (CCS), is widely recognized as an important option to reduce atmospheric carbon dioxide emissions. Specifically, CCS has the potential to provide emissions cuts sufficient to stabilize greenhouse gas levels, while still allowing for the continued use of fossil fuels. In addition, CCS is both technologically-feasible and commercially viable compared with alternatives with the same emissions profile. Although the concept appears to be solid from a technical perspective, initial public perceptions of the technology are uncertain. Moreover, little attention has been paid to developing an understanding of the social and political institutional infrastructure necessary to implement CCS projects. In this paper we explore a particularly dicey issue--how to ensure adequate long-term monitoring and maintenance of the carbon sequestration sites. Bonding mechanisms have been suggested as a potential mechanism to reduce these problems (where bonding refers to financial instruments used to ensure regulatory or contractual commitments). Such mechanisms have been successfully applied in a number of settings (e.g., to ensure court appearances, completion of construction projects, and payment of taxes). The paper examines the use of bonding to address environmental problems and looks at its possible application to nascent CCS projects. We also present evidence on the use of bonding for other projects involving deep underground injection of materials for the purpose of long-term storage or disposal.  相似文献   

9.
To test the injection behaviour of CO2 into brine-saturated rock and to evaluate the dependence of geophysical properties on CO2 injection, flow and exposure experiments with brine and CO2 were performed on sandstone samples of the Stuttgart Formation representing potential reservoir rocks for CO2 storage. The sandstone samples studied are generally fine-grained with porosities between 17 and 32% and permeabilities between 1 and 100 mD.Additional batch experiments were performed to predict the long-term behaviour of geological CO2 storage. Reservoir rock samples were exposed over a period of several months to CO2-saturated reservoir fluid in high-pressure vessels under in situ temperature and pressure conditions. Petrophysical parameters, porosity and the pore radius distribution were investigated before and after the experiments by NMR (Nuclear Magnetic Resonance) relaxation and mercury injection. Most of the NMR measurements of the tested samples showed a slight increase of porosity and a higher proportion of large pores.  相似文献   

10.
ABSTRACT: A methodology for assessing reservoir management was applied to the historical conflict between winter fish and wildilife flows below Island Park Reservoir on Henrys Fork of the Snake River and the fulfillment of storage water rights. The methodology consists of (1) identifying impacts of flow regulation, (2) quantifying relationships among variables affecting physical reservoir fill, and (3) assessing effects of these discharges on the fulfillment of water rights in the context of a larger system of interrelated reservoirs. Winter (storage season) flows are critical to management of fish and wildlife populations below Island Park Dam, but flow regulation has resulted in decreased winter discharge. Allowable winter flows are a function of inflow, length of storage season, reservoir content at the start of storage season, and potential for downstream capture of excess storage season water discharged at Island Park. Modeling results indicate that winter flows in the range of those recommended for fish and wildlife management are attainable during average years but not during years when initial reservoir content is low. The methodology was successful in quantifying information useful to decision makers in a variety of agencies and disciplines and could be applied to solve water management problems on other regulated river systems.  相似文献   

11.
A preliminary study for a source–sink match for application of Carbon Capture and Storage (CCS) in Portugal is presented. The location of the main CO2 emission sources in Portugal, existing and planned, was analysed and three main source clusters, emitting a total of 26.8 Mt/year, were defined. The three source clusters are connected by a natural gas pipeline network.CO2 storage reservoirs are likely to be restricted to deep saline formations. Potential storage formations are described in the Porto, Lusitanian and Algarve sedimentary basins. Due to the large continental shelf, composed mainly of sedimentary rocks, it is important to consider offshore opportunities. A Geographical Information System (GIS), including information on the stratigraphy, seismicity, neotectonics and geothermal features, was used for prioritising the areas where reservoir identification and characterization studies should be conducted. Despite not showing the most promising geological conditions, the area around the deepwater harbour of Sines is given the highest priority, since sources in the area account for more than 40% of point source emissions in Portugal.  相似文献   

12.
Large volumes of CO2 captured from carbon emitters (such as coal-fired power plants) may be stored in deep saline aquifers as a means of mitigating climate change. Storing these additional fluids may cause pressure changes and displacement of native brines, affecting subsurface volumes that can be significantly larger than the CO2 plume itself. This study aimed at determining the three-dimensional region of influence during/after injection of CO2 and evaluating the possible implications for shallow groundwater resources, with particular focus on the effects of interlayer communication through low-permeability seals. To address these issues quantitatively, we conducted numerical simulations that provide a basic understanding of the large-scale flow and pressure conditions in response to industrial-scale CO2 injection into a laterally open saline aquifer. The model domain included an idealized multilayered groundwater system, with a sequence of aquifers and aquitards (sealing units) extending from the deep saline storage formation to the uppermost freshwater aquifer. Both the local CO2-brine flow around the single injection site and the single-phase water flow (with salinity changes) in the region away from the CO2 plume were simulated. Our simulation results indicate considerable pressure buildup in the storage formation more than 100 km away from the injection zone, whereas the lateral distance migration of brine is rather small. In the vertical direction, the pressure perturbation from CO2 storage may reach shallow groundwater resources only if the deep storage formation communicates with the shallow aquifers through sealing units of relatively high permeabilities (higher than 10?18 m2). Vertical brine migration through a sequence of layers into shallow groundwater bodies is extremely unlikely. Overall, large-scale pressure changes appear to be of more concern to groundwater resources than changes in water quality caused by the migration of displaced saline water.  相似文献   

13.
Injection and movement/saturation of carbon dioxide (CO2) in a geological formation will cause changes in seismic velocities. We investigate the capability of coda-wave interferometry technique for estimating CO2-induced seismic velocity changes using time-lapse synthetic vertical seismic profiling (VSP) data and the field VSP datasets acquired for monitoring injected CO2 in a brine aquifer in Texas, USA. Synthetic VSP data are calculated using a finite-difference elastic-wave equation scheme and a layered model based on the elastic Marmousi model. A possible leakage scenario is simulated by introducing seismic velocity changes in a layer above the CO2 injection layer. We find that the leakage can be detected by the detection of a difference in seismograms recorded after the injection compared to those recorded before the injection at an earlier time in the seismogram than would be expected if there was no leakage. The absolute values of estimated mean velocity changes, from both synthetic and field VSP data, increase significantly for receiver positions approaching the top of a CO2 reservoir. Our results from field data suggest that the velocity changes caused by CO2 injection could be more than 10% and are consistent with results from a crosswell tomogram study. This study demonstrates that time-lapse VSP with coda-wave interferometry analysis can reliably and effectively monitor geological carbon sequestration.  相似文献   

14.
We have developed a certification framework (CF) for certifying the safety and effectiveness of geologic carbon sequestration (GCS) sites. Safety and effectiveness are achieved if CO2 and displaced brine have no significant impact on humans, other living things, resources, or the environment. In the CF, we relate effective trapping to CO2 leakage risk which takes into account both the impact and probability of leakage. We achieve simplicity in the CF by using (1) wells and faults as the potential leakage pathways, (2) compartments to represent environmental resources that may be impacted by leakage, (3) CO2 fluxes and concentrations in the compartments as proxies for impact to vulnerable entities, (4) broad ranges of storage formation properties to generate a catalog of simulated plume movements, and (5) probabilities of intersection of the CO2 plume with the conduits and compartments. We demonstrate the approach on a hypothetical GCS site in a Texas Gulf Coast saline formation. Through its generality and flexibility, the CF can contribute to the assessment of risk of CO2 and brine leakage as part of the certification process for licensing and permitting of GCS sites around the world regardless of the specific regulations in place in any given country.  相似文献   

15.
Abstract: Declining reservoir storage has raised the specter of the first water shortage on the Lower Colorado River since the completion of Glen Canyon and Hoover Dams. This focusing event spurred modeling efforts to frame alternatives for managing the reservoir system during prolonged droughts. This paper addresses the management challenges that arise when using modeling tools to manage water scarcity under variable hydroclimatology, shifting use patterns, and institutional complexity. Assumptions specified in modeling simulations are an integral feature of public processes. The policymaking and management implications of assumptions are examined by analyzing four interacting sources of physical and institutional uncertainty: inflow (runoff), depletion (water use), operating rules, and initial reservoir conditions. A review of planning documents and model reports generated during two recent processes to plan for surplus and shortage in the Colorado River demonstrates that modeling tools become useful to stakeholders by clarifying the impacts of modeling assumptions at several temporal and spatial scales. A high reservoir storage‐to‐runoff ratio elevates the importance of assumptions regarding initial reservoir conditions over the three‐year outlook used to assess the likelihood of reaching surplus and shortage triggers. An ensemble of initial condition predictions can provide more robust initial conditions estimates. This paper concludes that water managers require model outputs that encompass a full range of future potential outcomes, including best and worst cases. Further research into methods of representing and communicating about hydrologic and institutional uncertainty in model outputs will help water managers and other stakeholders to assess tradeoffs when planning for water supply variability.  相似文献   

16.
Hybrid life cycle assessment has been used to assess the environmental impacts of natural gas combined cycle (NGCC) electricity generation with carbon dioxide capture and storage (CCS). The CCS chain modeled in this study consists of carbon dioxide (CO2) capture from flue gas using monoethanolamine (MEA), pipeline transport and storage in a saline aquifer.Results show that the sequestration of 90% CO2 from the flue gas results in avoiding 70% of CO2 emissions to the atmosphere per kWh and reduces global warming potential (GWP) by 64%. Calculation of other environmental impacts shows the trade-offs: an increase of 43% in acidification, 35% in eutrophication, and 120–170% in various toxicity impacts. Given the assumptions employed in this analysis, emissions of MEA and formaldehyde during capture process and generation of reclaimer wastes contributes to various toxicity potentials and cause many-fold increase in the on-site direct freshwater ecotoxicity and terrestrial ecotoxicity impacts. NOx from fuel combustion is still the dominant contributor to most direct impacts, other than toxicity potentials and GWP. It is found that the direct emission of MEA contribute little to human toxicity (HT < 1%), however it makes 16% of terrestrial ecotoxicity impact. Hazardous reclaimer waste causes significant freshwater and marine ecotoxicity impacts. Most increases in impact are due to increased fuel requirements or increased investments and operating inputs.The reductions in GWP range from 58% to 68% for the worst-case to best-case CCS system. Acidification, eutrophication and toxicity potentials show an even large range of variation in the sensitivity analysis. Decreases in energy use and solvent degradation will significantly reduce the impact in all categories.  相似文献   

17.
The CO2SINK project in Ketzin represents a field laboratory for the storage of CO2 in a 650-m deep saline aquifer. The project is accompanied by a microbiological monitoring programme to characterise the composition and activity of the autochthonous microbial community in rock and brine samples and their changes in response to CO2 storage. A prerequisite of these studies is the acquisition of samples free of contamination from microorganisms and organic and inorganic components. Drilling mud and technical fluids are the main sources of contamination. This study describes the application of the fluorescent dye tracers fluorescein and rhodamine B as contamination controls for rock core and brine samples. Fluorescein was added to drilling mud that was used during the coring phase of the Ketzin wells Ktzi 200, 201 and 202. In addition, total organic carbon (TOC) concentrations, reflecting the carboxymethyl cellulose (CMC) component of the drilling mud, were determined to verify the tracer results. The fluorescence and TOC analyses revealed that drilling mud filtrate penetrated the outer 20 mm of mildly permeable sandstone cores. Rhodamine B was added to brines that were used to displace the drilling mud and to flush the wells after completion. The tracer monitoring during the discharge of drilling mud and displacement brines from the wells during hydraulic tests and nitrogen lifts enabled the quantification of reservoir fluid quality. After the production of 140–190 m3 (16–21 borehole volumes) of fluid, the drilling mud concentration was reduced to about 0.05%. The use of fluorescein emerged as a field-capable, sensitive and reliable method during the sampling of rock core and formation brine samples.  相似文献   

18.
This paper reports CO2 saturation estimations based on resistivity data obtained from laboratory measurements and induction logging results at the Nagaoka pilot CO2 injection site. The laboratory experiments put in evidence that the presence of clay content tends to reduce the increase of resistivity caused by the displacement of brine by less conductive CO2. As a result, CO2 saturations estimated from resistivity measurements without any correction for the clay effect are considerably lower than the actual saturations. The resistivity index (RI) provides better estimates of CO2 saturations than the Archie's equation because it requires the determination or assumption of only one rock parameter: the saturation exponent. CO2 saturations estimated from the induction logging data acquired at Nagaoka are considerably lower than the neutron porosity changes due to displacement between brine and CO2 in the reservoir. Even in the case of considering the De Witte's equation and the Poupon's to account for the clay effect, it was still difficult to get a good agreement with the neutron logging results. New relations based on the resistivity index with correction factors for the clay effect are developed and implemented in this study. One of these relations has proved to be effective to estimate CO2 saturations in saline formations with high clay content.  相似文献   

19.
Before implementing CO2 storage on a large scale its viability regarding injectivity, containment and long-term safety for both humans and environment is crucial. Assessing CO2–rock interactions is an important part of that as these potentially affect physical properties through highly coupled processes. Increased understanding of the physical impact of injected CO2 during recent years including buoyancy driven two-phase flow and convective mixing elucidated potential CO2 pathways and indicated where and when CO2–rock interactions are potentially occurring. Several areas of interactions can be defined: (1) interactions during the injection phase and in the near well environment, (2) long-term reservoir and cap rock interactions, (3) CO2–rock interactions along leakage pathways (well, cap rock and fault), (4) CO2–rock interactions causing potable aquifer contamination as a consequence of leakage, (5) water–rock interactions caused by aquifer contamination through the CO2 induced displacement of brines and finally engineered CO2–rock interactions (6). The driving processes of CO2–rock interactions are discussed as well as their potential impact in terms of changing physical parameters. This includes dissolution of CO2 in brines, acid induced reactions, reactions due to brine concentration, clay desiccation, pure CO2–rock interactions and reactions induced by other gases than CO2. Based on each interaction environment the main aspects that are possibly affecting the safety and/or feasibility of the CO2 storage scheme are reviewed and identified. Then the methodologies for assessing CO2–rock interactions are discussed. High priority research topics include the impact of other gaseous compounds in the CO2 stream on rock and cement materials, the reactivity of dry CO2 in the absence of water, how CO2 induced precipitation reactions affect the pore space evolution and thus the physical properties and the need for the development of coupled flow, geochemical and geomechanical models.  相似文献   

20.
The estimates for geological CO2 storage capacity worldwide vary, but it is generally believed that the capacity in saline aquifers will be sufficient for the amounts of CO2 that will need to be stored. The effort required to select and qualify a geological storage site for safe storage will, however, be significant and storage capacity may be a limited resource regionally. Both from a economic and resource management perspective it is therefore important that potential storage sites are exploited to their full potential.In static capacity estimates, where the maximum stored amount of CO2 is given as a fraction of the formation pore volume, typically arrive at efficiency factors in the range of a few per cents. Recent work has shown that when the dynamic behaviour of the injected CO2 is taken into account, the efficiency factor will be reduced because of the increase in pore pressure in the region around the injection well(s). The increase in pore pressure will propagate much further than the CO2. The EU directive on geological CO2 storage specifically addresses the restriction that will apply when different storage sites are interacting due to pressure communication. Consequently, the pore pressure increase at the boundary of the storage license area will be an important limiting factor for the amount of CO2 that can be injected.One obvious method to control the pore pressure is to produce water from the aquifer at some distance from the CO2 injection wells. This paper discusses results from simulations of CO2 injection in two aquifers on the Norwegian Continental Shelf; the Johansen aquifer and the southern part of the Utsira aquifer. These aquifers are candidates for injection of CO2 shipped out via pipeline from the Norwegian West Coast. The injected amounts of CO2 over a period of 50 years are 0.518 Gtonne for the Johansen aquifer and 1.04 Gtonne for the Utsira aquifer.Several design options for the injection operations are investigated: Injection of CO2 without water production; injection into several wells to distribute the injected fluids and reduce the local pressure increase around each injection well; and injection with simultaneous production of water from one or more wells. The boundaries of the aquifer formations are assumed closed in all simulations. The possible consequences of other types of boundary conditions (semi-closed or open) are briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号