首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
An annual pigment budget was constructed for Dabob Bay, Washington (USA) by comparing the downward vertical loss of phytoplankton pigments (chlorophyll and pheopigments) to the production of chlorophyll within the euphotic zone. The vertical flux of pigments was measured with sediment traps deployed at intervals of 1 to 6 wk over a 2.5 yr period yielding 763 d of trap exposure (28 November 1978–16 June 1981). The production rate of chlorophyll was calculated from measurements of algal specific growth rates, chlorophyll (chl) crops, primary production (as carbon) and appropriate C: chl ratios. Sixty one to 77% of the annual chlorophyll production was accounted for by the vertical flux of pheopigments resulting from herbivorous zooplankton grazing (macrozooplankton). Algal sinking, represented by downward chlorophyll flux, accounted for only 5 to 6% of the annual chlorophyll production. The remaining fraction of chlorophyll production was estimated to be consumed by small herbivores (microzooplankton), whose fecal material contributes to the suspended pool of pheopigments found in the euphotic zone. The suspended pheopigments are continuously removed by photodegradation. In Dabob Bay, the major process controlling phytoplankton abundance is zooplankton grazing and it appears that the ultimate fate of most phytoplankton is to be consumed by herbivores.  相似文献   

2.
Vertical distributions and nocturnal migrations of the developmental stages of Nyctiphanes couchi (Bell) in relation to the summer thermocline in the Celtic Sea, 25 to 26 August 1982, have been investigated using the Longhurst-Hardy Plankton Recorder (LHPR). The vertical distributions of the metanauplii and adult females suggest that N. couchi liberates its young within the euphotic zone as mature metanauplii which, in a matter of hours, moult into the first feeding stage (Calyptopis I). The ascent migration by adult females took a maximum of 3 h (17.10 to 20.05 hrs) and had an amplitude of 50m (54 to 4 m) from below to above the thermocline. A 7C° thermocline occurred between 20 to 30 m in these profiles. The nocturnal migrations by the females were for the purpose of breeding as well as feeding within the euphotic zone and were not influenced by the presence of the thermocline. The majority of the calyptopes and furciliae remained above the thermocline over the sampling period. The post-larval males and females migrated; their vertical distributions showed a pattern similar to those of the adult females. The larger the developmental stage, the deeper was the mode of its vertical distribution. The zooplankton dry weight in the profiles ranged from 3.74 to 6.91 g per haul (=1.85 to 3.45 g C m-2, 0 to 100 m). The euphausiids represented 35% of total zooplankton dry weight and their migrations removed a large percentage of the total zooplankton biomass from the euphotic zone for 18 h d-1. Such a large displacement of biomass would have a major impact on the biological interactions within the ecosystem.  相似文献   

3.
The vertical structure of the ecosystem in the euphotic zone of the western Equatorial Pacific has been studied. The studies were based on a continuous sounding of the bioluminescence field, with simultaneous, vertically aimed sampling made with the aid of a 5l water bottle and plankton nets. The bioluminescence field has a two-maxima structure with a more pronounced and permanent lower maximum found in the oligotrophic regions as deep as 60 to 100 m. In the narrow (10 m) layer of maximum bioluminescence, the concentration of zooplankton, as well as the concentration, activity and production of bacteria and phytoplankton, are several times higher than those in immediately adjacent waters at greater or lesser depth. At the same time, the concentration of nutrient salts in that layer diminishes sharply and approaches zero in the overlying water. Analysis of the data obtained shows that the production processes above the lower maximum layer are dependent not only on the turbulent influx of nutrient salts from the underlying layers, but also on the horizontal supply from the zone of upwelling. A pelagic community, in its different time aspects from the moment of water ascending until its sinking in the convergence zone, is suggested as a common system for modelling.  相似文献   

4.
Bacterioplankton were studied in the euphotic zone of the Southern California Bight, USA, with special attention to biological factors affecting bacterial distribution and activity. Measurements were made of bacterial abundance, thymidine incorporation into acid insoluble material, primary production (particulate and dissolved), chlorophyll, phaeopigments, total microbial ATP, particulate organic carbon and nitrogen, dissolved organic carbon, dissolved primary amines, and glucose and thymidine turnover rates. The data were analyzed by pairwise rank correlations with significance tested at the P<.005 level. Bacterial abundance and thymidine incorporation both declined progressively with increasing distance from shore (to 100 km); similar trends occurred for the phytoplankton, with several stations having subsurface maxima. Bacterial abundance, thymidine incorporation, and thymidine and glucose turnover rates were all significantly correlated to each other, suggesting they are comparable as relative measures of bacterial activity. Thymidine incorporation per cell, an indicator of specific growth rate, was not correlated to bacterial abundance, suggesting density independent specific growth rates. Bacterioplankton growth rate was evidently influenced more by the standing stock of phytoplankton than by the primary production of the phytoplankton. Thus, bacterial growth may possibly be stimulated by leakage of dissolved organic matter not so much from healthy photosynthesizing cells as from phytoplankton being disrupted and incompletely digested during predation by the zooplankton and nekton.  相似文献   

5.
Vertical profiling of the upper ocean with a laser/fiber optic fluorometer enabled the determination of fluorescence emission spectra of photosynthetic pigments over small vertical scales. Simultaneous acquisition of phycoerythrin (PE) and chlorophyll (chl) emission spectra allowed in situ differentiation between PE-containing cells (cryptomonads and cyanobacteria) and other chl-containing autotrophs. Further, fluorescence spectral peak shifts associated with different species of PE-containing cells resulted in even finer scale in situ taxonomic differentiation. We found that the phycoerythrin fluorescence emission maxima shifted from 578 nm near the surface, to 585 m at the base of the shallow thermocline (30% light level), and to 590 nm below the thermocline at the base of the euphotic zone (1% light level). These shifts in peak emission coincided with a taxonomic change in the PE-containing cells (as determined from analysis of discrete bottle samples) from a greater proportion of Synechococcus spp. in the upper water column to a greater proportion of cryptomonads at the base of the euphotic zone. These results indicate that the composition of the phytoplankton assemblage may be assessed in situ without sample collection.  相似文献   

6.
Depth profiles of particulate protein-nitrogen at 4 oceanic and 2 upwelling stations in the North Atlantic Ocean were measured by a new fluorometric method. The protein-nitrogen in the upper 20 m ranged from 0.19 to 1.61 μg-at N/1 at the oceanic stations and from 0.43 to 3.54 μg-at/1 at the upwelling stations. The mean values in the euphotic zone were 0.54 μg-at N/1 for the oceanic stations and 1.70 μg-at N/1 for the upwelling stations. The ratio of protein-nitrogen to chlorophyll at the two sets of stations was 2.83 and 0.54 μg-at N/μg chlorophyll, respectively. Regression analysis of the pooled data yielded a detritus and zooplankton-free ratio of 0.38 μg-at N:μg chlorophyll. Calculations of the phytoplankton protein-nitrogen, based on this ratio, suggest that in the oceanic water only 20% of the sestonic protein-nitrogen is associated with the phytoplankton. In the upwelling waters, the phytoplankton may account for 65% of the sestonic proteinnitrogen.  相似文献   

7.
In mid-summer 1975 throughout the Western Slope Water of the North Atlantic Ocean, massive numbers ofSalpa aspera performed a diel vertical migration of at least 800 m. This resulted in a movement of 85 to 90% of the total zooplankton biomass out of the upper 500 m during the day. Fecal pellet production and losses from this salp population were estimated to contribute approximately 12 mg C m-2 day-1 to the deep planktonic and benthic populations. If all this organic matter reached the deep-sea floor, it would represent over 100% of the daily deep-sea benthic infauna energy requirements.  相似文献   

8.
Longmuir A  Shurin JB  Clasen JL 《Ecology》2007,88(7):1663-1674
Interactions between trophic levels during food web assembly can drive positive correlations in diversity between producers, consumers, and decomposers. However, the contribution of trophic interactions relative to local environmental factors in promoting species diversity is poorly understood, with many studies only considering two trophic levels. Here we examine correlations in diversity among zooplankton, phytoplankton, and bacteria in the pelagic zone of 31 lakes in British Columbia, Canada. We sampled species diversity of zooplankton and phytoplankton through morphological identification, and bacterial genetic diversity was estimated by denaturing gradient gel electrophoresis (DGGE) of 16S rDNA polymorphisms. We looked for correlations in diversity that were independent of the abiotic environment by statistically controlling for 18 limnological variables. No significant correlations were found between the diversity of zooplankton, phytoplankton, and bacteria. In addition, the physical factors that were associated with species composition in one trophic level were independent of those that were important for another. Our results provide no support for the importance of direct feedbacks between producers, consumers, and decomposers in maintaining diversity. Zooplankton, phytoplankton, and bacterial diversity and composition are regulated independently from one another and respond to different environmental variables. These results suggest that species of lake plankton show loose trophic associations with one another due to broad diets in consumers and decomposers.  相似文献   

9.
Micro-zooplankton abundance in Long Island Sound varied from 103 to 104 animals l-1 at the station studied and consisted almost entirely of tintinnids. The micro-zooplankton were found to sometimes remove a significant portion of the chlorophyll a standing stock, with an upper limit of 41% of the standing stock being ingested per day. Observed ingestion rates ranged from 0.001 to 0.17 ng chlorophyll a removed animal-1 h-1 and from 0.06 to 87 cells removed animal-1 h-1, depending on season and type of cell being ingested. Filtering rates varied from 1.03 to 84.7 l animal-1 h-1. As a community, the micro-zooplankton exhibited the same order of magnitude ingestion and filtering rates as those noted for copepods.Contribution No. 259 of the Marine Sciences Center  相似文献   

10.
C. Guo  W. M. Dunstan 《Marine Biology》1995,122(2):333-339
Chlorophyll a-specific in vivo fluorescence exhibited depth-dependent changes in a Sargasso Sea phytoplankton community, decreasing from a maximum value at the surface to a minimum at 90m, and then increasing again below 90 m. This distribution pattern was not explained by irradiance conditions, diurnal variability, senescence in the deep population, or changes in light-absorption efficiency of chlorophyll a. However, a significant positive correlation was found between mean phytoplankton cell size and fluorescence number in the upper euphotic zone, where nutrient concentrations were low. We hypothesize that the direct cause for this observed correlation was nutrient limitation. In this picoplankton-dominated community, packaging effect was minimal. Under nutrient-limiting conditions, as mean cell size increases photosynthetic efficiency decreases and therefore fluorescence number increases. In the lower euphotic zone where nutrients were not limiting, changes in fluorescence number exhibited weak size-dependence and appeared to be related to species compositional changes.  相似文献   

11.
In this paper we investigate the seasonal autochthonous sources of dissolved organic carbon (DOC) and nitrogen (DON) in the euphotic zone at a station in the upper Chesapeake Bay using a new mass-based ecosystem model. Important features of the model are: (1) carbon and nitrogen are incorporated by means of a set of fixed and varying C:N ratios; (2) dissolved organic matter (DOM) is separated into labile, semi-labile, and refractory pools for both C and N; (3) the production and consumption of DOM is treated in detail; and (4) seasonal observations of light, temperature, nutrients, and surface layer circulation are used to physically force the model. The model reasonably reproduces the mean observed seasonal concentrations of nutrients, DOM, plankton biomass, and chlorophyll a. The results suggest that estuarine DOM production is intricately tied to the biomass concentration, ratio, and productivity of phytoplankton, zooplankton, viruses, and bacteria. During peak spring productivity phytoplankton exudation and zooplankton sloppy feeding are the most important autochthonous sources of DOM. In the summer when productivity peaks again, autochthonous sources of DOM are more diverse and, in addition to phytoplankton exudation, important ones include viral lysis and the decay of detritus. The potential importance of viral decay as a source of bioavailable DOM from within the bulk DOM pool is also discussed. The results also highlight the importance of some poorly constrained processes and parameters. Some potential improvements and remedies are suggested. Sensitivity studies on selected parameters are also reported and discussed.  相似文献   

12.
We estimated primary productivity and distributions of carbon in the phytoplankton, micro-zooplankton, and suspended and dissolved matter in various areas of the World Ocean to increase our information about the organic carbon cycle in the surface layer of the sea. Primary productivity ranged from about 0.1 gC m–2 day–1 in the Gulf of Mexico to 9 gC m–2 day–1 in nutrient-rich water off Peru. Phytoplankton carbon ranged from less than 10 g/l in the former to 750 g/l in the latter and in nutrient-rich water off southwest Africa. Micro-zooplankton carbon usually was less than 50 g/l in all waters, and was dominated by ciliates, copepodids, and copepod nauplii in all areas. Concentrations of particulate carbon ranged from 12 g/l off the east coast of South America to 850 g/l off southwest Africa. Concentrations of dissolved organic carbon varied between 0.5 and 1.5 mg/l in all areas except off Peru, where maximum values of 4.5 mg/l were observed. Turnover rates of carbon by small standing crops of micro-flagellates (1 to 5 longest dimension) and dinoflagellates in nutrient-poor waters were lower than those by large standing crops of diatoms and micro-flagellates in nutrient-rich waters. Concentrations of phytoplankton usually accounted for 20 to 55% and micro-zooplankton for 2 to 30% of the particulate carbon in the surface layer of the sea. Concentrations of dissolved organic carbon were not related to concentrations of particulate carbon in most waters except off Peru, where they appear to be directly related.  相似文献   

13.
The diel grazing activity of zooplankton was measured at a single study site in a temperate fjord, Dabob Bay, Washington, USA at several periods during spring, summer and fall of 1979–1981. Pheopigments were used as an indicator of herbivorous zooplankton activity. The downward vertical flux of pheopigment-containing fecal pellets was measured with sediment traps deployed over repetitive 4 h periods. Experiments were run for 24 to 36 h. A maximum in the flux of pheopigments was consistently noted within the euphotic zone during hours of darkness. Diel fluctuations in pheopigment flux showed amplitudes up to 29-fold. Nightly grazing activity accounted for 41 to 82% of the daily (24 h) grazing and was indirectly related to seasonal changes in daylength.Contribution No. 1405 from the School of Oceanography, University of Washington  相似文献   

14.
Zooplankton ingestion of phytoplankton carbon in the iceedge zone of the Eastern Bering Sea was measured using a deck incubation approach in 1982. Using further samples collected in 1983, the plant cell carbon to cell volume ratio was estimated at 0.0604 pg m–3 from an experimentally determined particulate carbon to seston volume relationship. The application of this conversion to the results of experimental incubations of natural plant stocks with net-caught zooplankton produced ingestion rates of 68.8 and 10.26 mg C g–1 grazer d–1 for copepods and euphausiids, respectively. Extrapolating these rates to in situ zooplankton biomass at the edge of the seasonal ice pack yielded carbon flux rates through the zooplankton community ranging between 6.5 and 32.8 mg C m–2 d–1. This consumption amounted to less than 2% of the daily phytoplankton production in the ice-edge zone.  相似文献   

15.
The vertical distribution and migration (seasonal, diel and ontogenetic) of Calanus helgolandicus are described from the shallow (100 m) shelf-seas to the south-west of the British Isles. In 1978 and 1979, the overwintering population of C. helgolandicus consisted primarily of Stage V copepodites and adults. By late winter/early spring the copepodites had moulted to adult females (>90%), which matured and bred the first cohorts of the year, prior to onset of the spring phytoplankton bloom in April/May. C. helgolandicus reached a peak of numerical abundance in August of 20x103 copepodites m-2 (over the depth range sampled -0 to 70 m), which was 200 times the population in winter. The seasonal peak of abundance occurred 4 mo after the peak of the bloom of phytoplankton in spring. The yearly development of the copepod was not always out of phase with the diatom bloom, as seen when the data from 1978 was placed in the context of a longer time-series collected at 10 m over 22 yr (1960–1981, inclusive). Large vertical migrations were observed in the younger copepodites (CI and II) in May from below to above the thermocline. In the remainder of the year, the CI and CII stages behaved differently and were located above the thermocline within the euphotic zone. The largest vertical displacements of biomass were seen in the summer months due to the migrations of the CV stages and adults, which had developed from the spring cohorts. It was contended that the seasonal and vertical migrations of C. helgolandicus are part of a more complex pattern of inherent behavior than has been reported previously and that, however difficult this is to discern in the natural populations, it always expresses itself.  相似文献   

16.
The size distributions (2 to 160 m equivalent spherical diameter) of suspended particulate material sampled on two cruises along a transect in the Irish Sea in 1988 are described in relation to hydrographic conditions, chlorophylla concentration and carbon to nitrogen ratios. Particulates were more abundant and larger size modes in the distribution were more evident, in the upper mixed layer of stratified water than in areas where the water column was fully mixed. The detrital content was estimated at 52% of total particulate matter above the thermocline in stratified regions and at around 97% at mixed water sites. In stratified regions the predominance of larger sized phytoplankton and lower levels of detritus is argued to support a more direct and efficient transfer of energy to fish larvae via larger sizes of copepods. Conversely, in mixed areas of high detrital loading the smaller size spectrum of particulates incorporates a less efficient transfer of energy through bacterial cycling and smaller copepods.  相似文献   

17.
Excretion of ammonia by mesozooplankton (>200 m zooplankton) and its potential contribution to the nitrogen requirement for phytoplankton growth has been estimated for different hydrographical situations along a transect across the Catalan Sea (Northwestern Mediterranean). The nitrogen excreted as ammonia was estimated from mesozooplankton biomass and specific excretion rates. Nitrogen requirements of phytoplankton were estimated by means of carbon fixation rates and C:N ratios of <200 m particulate organic matter. Minimum C:N ratios and maximum primary production, zooplankton biomass, phytoplankton nitrogen requirements, and nitrogen excretion of zooplankton occurred near the Catalan density front. On average, the nitrogen regenerated by the mesozooplankton accounted for 43% of the nitrogen requirements of the phytoplankton. The specific excretion rates of ammonia and the percentage of phytoplanktonnitrogen requirements supplied by excreted nitrogen were higher at coastal stations. In some coastal and frontal stations, the ammonia excreted exceeded the phytoplanktonnitrogen demand. Bacteria competing for nutrient supply and the possible uncoupling between rate processes and standing stocks of phyto- and zooplankton could explain the apparent excess of regenerated ammonia.  相似文献   

18.
Fluorometric determination of chlorophyll a and pheopigments was carried out in the sea area off southern Japan. Maximum concentration of chlorophyll pigments was determined to be at or below the lower limit of the euphotic zone, namely from 50 to 150 m depth. To estimate the activity of phytoplankton in this maximum chlorophyll layer, changes of chlorophyll concentration and number of cells were measured in samples taken from this layer before and after exposure to different light intensities. It was concluded that the growth of shade-adapted phytoplankton and the deterioration of chlorophyll pigments by light are the main factors causing the chlorophyll maximum to occur in a rather deep oceanic layer.  相似文献   

19.
The simultaneous uptake of nitrogenous nutrients and inorganic carbon was measured in shipboard incubations of natural phytoplankton populations, using tracer additions of 13C-bicarbonate and 15N-labelled nitrogenous substrates. From March 1991 through March 1992, three stations on the Scotian Shelf (eastern Canada) were sampled monthly at ten depths in the euphotic zone. Additions of labelled nitrogen compounds ranged between 0.5 and 98% of ambient concentrations. Most of the C/N (at/at) uptake ratios were lower than the Redfield ratio, suggesting that nitrogen was not limiting. The fixation of carbon with and without addition of nitrate, ammonium or urea was generally similar. Some samples presented significant differences in carbon uptake rate between the four treatments, but these differences were not related to nitrogen enrichment (percent or nitrogen species). Given these results, the double-labelling method appears to be a reliable tool for measuring the simultaneous uptake of carbon and nitrogen by natural phytoplankton.  相似文献   

20.
A synoptic study of the phytoplankton and zooplankton distribution in the eastern Mediterranean Sea was carried out in the summer of 1965 during a cruise of R.V. “Pillsbury”. The phytoplankton maximum was normally found at 100 m, below the 1% level of surface light, with a frequent smaller peak at 40 m. In shallower waters, the main peak was at 80 m. The greatest number of phytophagous crustaceans was recorded at, or close to, the phytoplankton maximum. Depth relationships of phytoplankton and functionally phytoplanktonic species are discussed. Zooplankton was collected from depths down to 4,400 m, the deepest cast being in the Rhodes Deep. The most common species and genera of some selected groups of zooplankton were identified and their distribution considered in the light of some previous cruises in part of the area. The presence of Acantharia containing zooxanthellae with chlorophyll at, and below, 4,000 m was recorded for the first time. Potentially photosynthetic Ceratium vultur and C. carriense (Dinophyceae), both species in active division, were also found at these depths, as well as Halosphaera viridis (Prasinophyceae), which was recorded down to a depth of 1,000 m.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号