首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neutral theory and the evolution of ecological equivalence   总被引:21,自引:0,他引:21  
Hubbell SP 《Ecology》2006,87(6):1387-1398
Since the publication of the unified neutral theory in 2001, there has been much discussion of the theory, pro and con. The hypothesis of ecological equivalence is the fundamental yet controversial idea behind neutral theory. Assuming trophically similar species are demographically alike (symmetric) on a per capita basis is only an approximation, but it is equivalent to asking: How many of the patterns of ecological communities are the result of species similarities, rather than of species differences? The strategy behind neutral theory is to see how far one can get with the simplification of assuming ecological equivalence before introducing more complexity. In another paper, I review the empirical evidence that led me to hypothesize ecological equivalence among many of the tree species in the species-rich tropical forest on Barro Colorado Island (BCI). In this paper, I develop a simple model for the evolution of ecological equivalence or niche convergence, using as an example evolution of the suite of life history traits characteristic of shade tolerant tropical tree species. Although the model is simple, the conclusions from it seem likely to be robust. I conclude that ecological equivalence for resource use are likely to evolve easily and often, especially in species-rich communities that are dispersal and recruitment limited. In the case of the BCI forest, tree species are strongly dispersal- and recruitment-limited, not only because of restricted seed dispersal, but also because of low recruitment success due to heavy losses of the seedling stages to predators and pathogens and other abiotic stresses such as drought. These factors and the high species richness of the community strongly reduce the potential for competitive exclusion of functionally equivalent or nearly equivalent species.  相似文献   

2.
A critical decision in species conservation is whether to target individual species or a complex of ecologically similar species. Management of multispecies complexes is likely to be most effective when species share similar distributions, threats, and response to threats. We used niche overlap analysis to assess ecological similarity of 3 sensitive desert fish species currently managed as an ecological complex. We measured the amount of shared distribution of multiple habitat and life history parameters between each pair of species. Habitat use and multiple life history parameters, including maximum body length, spawning temperature, and longevity, differed significantly among the 3 species. The differences in habitat use and life history parameters among the species suggest they are likely to respond differently to similar threats and that most management actions will not benefit all 3 species equally. Habitat restoration, frequency of stream dewatering, non‐native species control, and management efforts in tributaries versus main stem rivers are all likely to impact each of the species differently. Our results demonstrate that niche overlap analysis provides a powerful tool for assessing the likely effectiveness of multispecies versus single‐species conservation plans. Evaluación de la Posible Efectividad del Manejo Multi‐Especie paraPeces de Desierto en Peligro Mediante el Análisis de Traslape de Nichos  相似文献   

3.
Recognizing that protected areas (PAs) are essential for effective biodiversity conservation action, the Convention on Biological Diversity established ambitious PA targets as part of the 2020 Strategic Plan for Biodiversity. Under the strategic goal to “improve the status of biodiversity by safeguarding ecosystems, species, and genetic diversity,” Target 11 aims to put 17% of terrestrial and 10% of marine regions under PA status by 2020. Additionally and crucially, these areas are required to be of particular importance for biodiversity and ecosystem services, effectively and equitably managed, ecologically representative, and well‐connected and to include “other effective area‐based conservation measures” (OECMs). Whereas the area‐based targets are explicit and measurable, the lack of guidance for what constitutes important and representative; effective; and OECMs is affecting how nations are implementing the target. There is a real risk that Target 11 may be achieved in terms of area while failing the overall strategic goal for which it is established because the areas are poorly located, inadequately managed, or based on unjustifiable inclusion of OECMs. We argue that the conservation science community can help establish ecologically sensible PA targets to help prioritize important biodiversity areas and achieve ecological representation; identify clear, comparable performance metrics of ecological effectiveness so progress toward these targets can be assessed; and identify metrics and report on the contribution OECMs make toward the target. By providing ecologically sensible targets and new performance metrics for measuring the effectiveness of both PAs and OECMs, the science community can actively ensure that the achievement of the required area in Target 11 is not simply an end in itself but generates genuine benefits for biodiversity.  相似文献   

4.
I examined patterns of extirpation among Virginia's 197 historically native freshwater fish species to address the following questions: (1) Are extinction-prone species ecologically distinct? and (2) Are distinctive features similar to those identified for extinction-prone species in terrestrial systems? All species were assigned to categories for a series of attributes reflecting geographical distribution, habitat use, trophic habits, life history, size, and reproductive behavior. Associations between species that had been extirpated and those that had not were examined for each attribute. Univariate associations were observed between extirpation and three ecological attributes: diadromy, limited physiographic range, and limited range of water sizes. Species specialized with respect to multiple ecological attributes also were especially likely to be extirpated. These associations reflected the effects of reduced habitat area and increased isolation (insularization), which are also important determinants of extinction in terrestrial systems. Multivariate analyses suggested that extirpated species were ecologically similar to each other, but were not completely distinct from the nonextirpated fauna. My results suggest that ecological knowledge of species can help identify extinction-prone species and provide a basis for proactive conservation. Current approaches to conservation, which are largely reactive and piecemeal, are inadequate to protect biodiversity. Because aquatic degradation is complex and pervasive, conservation of aquatic biodiversity requires proactive comprehensive approaches to water resource management, including emphasis on protecting the ecological integrity of entire systems.  相似文献   

5.
Kondoh M  Kato S  Sakato Y 《Ecology》2010,91(11):3123-3130
Nested structure, in which specialists interact with subsets of species with which generalists interact, has been repeatedly found in networks of mutualistic interactions and thus is considered a general feature of mutualistic communities. However, it is uncertain how exclusive nested structure is for mutualistic communities since few studies have evaluated nestedness in other types of networks. Here, we show that 31 published food webs consist of bipartite subwebs that are as highly nested as mutualistic networks, contradicting the hypothesis that antagonistic interactions disfavor nested structure. Our findings suggest that nested networks may be a common pattern of communities that include resource-consumer interactions. In contrast to the hypothesis that nested structure enhances biodiversity in mutualistic communities, we also suggest that nested food webs increase niche overlap among consumers and thus prevent their coexistence. We discuss potential mechanisms for the emergence of nested structure in food webs and other types of ecological networks.  相似文献   

6.
Abstract:  World chocolate demand is expected to more than double by 2050. Decisions about how to meet this challenge will have profound effects on tropical rainforests and wild species in cocoa-producing countries. Cocoa, "the chocolate tree," is traditionally produced under a diverse and dense canopy of shade trees that provide habitat for a high diversity of organisms. The current trend to reduce or eliminate shade cover raises concerns about the potential loss of biodiversity. Nevertheless, few studies have assessed the ecological consequences and economic trade-offs under different management options in cocoa plantations. Here we describe the relationships between ant ecology (species richness, community composition, and abundance) and vegetation structure, ecosystem functions, and economic profitability under different land-use management systems in 17 traditional cocoa forest gardens in southern Cameroon. We calculated an index of profitability, based on the net annual income per hectare. We found significant differences associated with the different land-use management systems for species richness and abundance of ants and species richness and density of trees. Ant species richness was significantly higher in floristically and structurally diverse, low-intensity, old cocoa systems than in intensive young systems. Ant species richness was significantly related to tree species richness and density. We found no clear relationship between profitability and biodiversity. Nevertheless, we suggest that improving the income and livelihood of smallholder cocoa farmers will require economic incentives to discourage further intensification and ecologically detrimental loss of shade cover. Certification programs for shade-grown cocoa may provide socioeconomic incentives to slow intensification.  相似文献   

7.
The factors that determine species' range limits are of central interest to biologists. One particularly interesting group comprises odonates (dragonflies and damselflies), which show large differences in secondary sexual traits and respond quickly to climatic factors, but often have minor interspecific niche differences, challenging models of niche-based species coexistence. We quantified the environmental niches at two geographic scales to understand the ecological causes of northern range limits and the coexistence of two congeneric damselflies (Calopteryx splendens and C. virgo). Using environmental niche modeling, we quantified niche divergence first across the whole geographic range in Fennoscandia, and second only in the sympatric part of this range. We found evidence for interspecific divergence along the environmental axes of temperature and precipitation across the northern range in Fennoscandia, suggesting that adaptation to colder and wetter climate might have allowed C. virgo to expand farther north than C. splendens. However, in the sympatric zone in southern Fennoscandia we found only negligible and nonsignificant niche differences. Minor niche differences in sympatry lead to frequent encounters and intense interspecific sexual interactions at the local scale of populations. Nevertheless, niche differences across Fennoscandia suggest that species differences in physiological tolerances limit range expansions northward, and that current and future climate could have large effects on the distributional ranges of these and ecologically similar insects.  相似文献   

8.
Loss of key plant–animal interactions (e.g., disturbance, seed dispersal, and herbivory) due to extinctions of large herbivores has diminished ecosystem functioning nearly worldwide. Mitigating for the ecological consequences of large herbivore losses through the use of ecological replacements to fill extinct species’ niches and thereby replicate missing ecological functions has been proposed. It is unknown how different morphologically and ecologically a replacement can be from the extinct species and still provide similar functions. We studied niche equivalency between 2 phenotypes of Galápagos giant tortoises (domed and saddlebacked) that were translocated to Pinta Island in the Galápagos Archipelago as ecological replacements for the extinct saddlebacked giant tortoise (Chelonoidis abingdonii). Thirty‐nine adult, nonreproductive tortoises were introduced to Pinta Island in May 2010, and we observed tortoise resource use in relation to phenotype during the first year following release. Domed tortoises settled in higher, moister elevations than saddlebacked tortoises, which favored lower elevation arid zones. The areas where the tortoises settled are consistent with the ecological conditions each phenotype occupies in its native range. Saddlebacked tortoises selected areas with high densities of the arboreal prickly pear cactus (Opuntia galapageia) and mostly foraged on the cactus, which likely relied on the extinct saddlebacked Pinta tortoise for seed dispersal. In contrast, domed tortoises did not select areas with cactus and therefore would not provide the same seed‐dispersal functions for the cactus as the introduced or the original, now extinct, saddlebacked tortoises. Interchangeability of extant megaherbivores as replacements for extinct forms therefore should be scrutinized given the lack of equivalency we observed in closely related forms of giant tortoises. Our results also demonstrate the value of trial introductions of sterilized individuals to test niche equivalency among candidate analog species. Equivalencia de Tortugas Gigantes de las Galápagos Utilizadas como Especie de Reemplazo Ecológico para Restaurar las Funciones de los Ecosistemas  相似文献   

9.
Ecological theory predicts that low productivity systems should have low biodiversity. However, despite the oligotrophic status of the Gulf of Aqaba (Northern Red Sea) ciliate species richness was unexpectedly high. In addition, phytoplankton, as main ciliate prey, was made up by only few genera, indicating a significant niche overlap among the grazers. Up to 97% of the ciliates were from the same taxonomic group and of the same size range, implying very similar food niches. Ciliate diversity was highest at times of lowest chlorophyll concentrations, during the period of stable abiotic conditions, but relatively high genetic diversity within the ciliate prey, notably among the cyanobacteria Synechococcus and Prochlorococcus. In the absence of disturbance and with little predation pressure, the alternate explanations for the observed ciliate diversity are either very fine niche partitioning by the ciliates, or their competitive equivalence resulting in a random assortment of species immigrating from a larger metacommunity, in accordance with Hubbell’s, (The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton, 2001) neutral model. While the use of species abundance distributions (SAD’s) is far from definitive, the theoretical SAD’s that best fit the Gulf of Aqaba ciliate data was most often not that expected by neutral theory.  相似文献   

10.
Response of complex food webs to realistic extinction sequences   总被引:4,自引:0,他引:4  
Although an ecosystem's response to biodiversity loss depends on the order in which species are lost, the extinction sequences generally used to explore such responses in food webs have been ecologically unrealistic. We investigate how several extinction orders affect the minimum number of secondary extinctions expected within pelagic food webs from 34 temperate freshwater lakes. An ecologically plausible extinction order is derived from the geographically nested pattern of species composition among the lakes and is corroborated by species' pH tolerances. Simulations suggest that lake communities are remarkably robust to this realistic extinction order and highly sensitive to the reverse sequence of species loss. This sensitivity is not well explained by the known sensitivity of networks to the loss of highly connected species but appears to be better explained by our observation that trophic specialists preferentially consume widely distributed species at low risk of extinction. Our results highlight an important aspect of community organization that may help to maintain biodiversity amidst changing environments.  相似文献   

11.
Tan J  Pu Z  Ryberg WA  Jiang L 《Ecology》2012,93(5):1164-1172
Species immigration history can structure ecological communities through priority effects, which are often mediated by competition. As competition tends to be stronger between species with more similar niches, we hypothesize that species phylogenetic relatedness, under niche conservatism, may be a reasonable surrogate of niche similarity between species, and thus influence the strength of priority effects. We tested this hypothesis using a laboratory microcosm experiment in which we established bacterial species pools with different levels of phylogenetic relatedness and manipulated the immigration history of species from each pool into microcosms. Our results showed that strong priority effects, and hence multiple community states, only emerged for the species pool with the greatest phylogenetic relatedness. Community assembly also resulted in a significant positive relationship between bacterial phylogenetic diversity and ecosystem functions. Interestingly, these results emerged despite a lack of phylogenetic conservatism for most of the bacterial functional traits considered. Our results highlight the utility of phylogenetic information for understanding the structure and functioning of ecological communities, even when phylogenetically conserved functional traits are not identified or measured.  相似文献   

12.
In heterogeneous environments, differential niche selection by two competing species will result in niche partitioning so that individuals of each species can maximise their fitness under different sets of environmental variables. Thus, niche partitioning is considered essential to allow co-existence of ecologically related species. To assess whether niche partitioning was occurring between native red squirrels and alien grey squirrels living together in a 13-ha high-quality mixed deciduous woodland in north Italy, we investigated temporal and spatial patterns in their activity and foraging behaviour between 1996 and 1998. We used live trapping and radio-tracking to study numbers, distribution and behaviour of squirrels. Daily and seasonal temporal activity patterns, and activity on the ground and in the trees, were similar in the two species. However, grey squirrels were more tree specialists and had a narrower tree-species niche width than red squirrels, in particular making greater use of oak. Other studies of red and grey squirrels in allopatry show that the two species differ in the extent they utilise oak. Overall, tree-species niche overlap was about 70%. Grey squirrels had larger home ranges than red squirrels. Home ranges and core areas of both species were larger in males than females. Also, intraspecific home range and core-area overlap patterns were similar to those found in allopatric populations of these species. Overall, there was no evidence that the use of space of one species was affected by the other. Our results show that there was no niche partitioning of activity or foraging behaviour in time or space during the study. This suggests that, at moderate grey-squirrel densities, red squirrels are unable to avoid competition with grey squirrels, and that competition for food and/or space will occur when these resources become limiting.  相似文献   

13.
Conserving Biological Diversity through Ecosystem Resilience   总被引:40,自引:0,他引:40  
Confusion over the term ecological redundancy (Walker 1992) requires that the concept be clarified in order to advance the developing theory that maintaining ecosystem function conserves biological diversity. The species approach to conserving biological diversity assumes that the species in trouble are already identified. The ecosystem approach attempts to deal with the problem of conserving all the species in an ecosystem, including those not yet known. This is best achieved by ensuring that the ecosystem continues to function approximately as it has by maintaining its essential structure. Ecosystem stability (the probability of all species persisting) is enhanced if each important functional group of organisms (important for maintaining function and structure) comprises several ecologically equivalent species, each with different responses to environmental factors. In this sense ecological redundancy is good because it enhances ecosystem resilience, but functionally important groups (guilds, functional types) that have only one or very few species deserve priority conservation attention because their functions could be quickly lost with species extinctions.  相似文献   

14.
Habitat classification models (HCMs) are invaluable tools for species conservation, land-use planning, reserve design, and metapopulation assessments, particularly at broad spatial scales. However, species occurrence data are often lacking and typically limited to presence points at broad scales. This lack of absence data precludes the use of many statistical techniques for HCMs. One option is to generate pseudo-absence points so that the many available statistical modeling tools can bb used. Traditional techniques generate pseudo-absence points at random across broadly defined species ranges, often failing to include biological knowledge concerning the species-habitat relationship. We incorporated biological knowledge of the species-habitat relationship into pseudo-absence points by creating habitat envelopes that constrain the region from which points were randomly selected. We define a habitat envelope as an ecological representation of a species, or species feature's (e.g., nest) observed distribution (i.e., realized niche) based on a single attribute, or the spatial intersection of multiple attributes. We created HCMs for Northern Goshawk (Accipiter gentilis atricapillus) nest habitat during the breeding season across Utah forests with extant nest presence points and ecologically based pseudo-absence points using logistic regression. Predictor variables were derived from 30-m USDA Landfire and 250-m Forest Inventory and Analysis (FIA) map products. These habitat-envelope-based models were then compared to null envelope models which use traditional practices for generating pseudo-absences. Models were assessed for fit and predictive capability using metrics such as kappa, threshold-independent receiver operating characteristic (ROC) plots, adjusted deviance (D(adj)2), and cross-validation, and were also assessed for ecological relevance. For all cases, habitat envelope-based models outperformed null envelope models and were more ecologically relevant, suggesting that incorporating biological knowledge into pseudo-absence point generation is a powerful tool for species habitat assessments. Furthermore, given some a priori knowledge of the species-habitat relationship, ecologically based pseudo-absence points can be applied to any species, ecosystem, data resolution, and spatial extent.  相似文献   

15.
Economic and Ecological Outcomes of Flexible Biodiversity Offset Systems   总被引:1,自引:0,他引:1  
The commonly expressed goal of biodiversity offsets is to achieve no net loss of specific biological features affected by development. However, strict equivalency requirements may complicate trading of offset credits, increase costs due to restricted offset placement options, and force offset activities to focus on features that may not represent regional conservation priorities. Using the oil sands industry of Alberta, Canada, as a case study, we evaluated the economic and ecological performance of alternative offset systems targeting either ecologically equivalent areas (vegetation types) or regional conservation priorities (caribou and the Dry Mixedwood natural subregion). Exchanging dissimilar biodiversity elements requires assessment via a generalized metric; we used an empirically derived index of biodiversity intactness to link offsets with losses incurred by development. We considered 2 offset activities: land protection, with costs estimated as the net present value of profits of petroleum and timber resources to be paid as compensation to resource tenure holders, and restoration of anthropogenic footprint, with costs estimated from existing restoration projects. We used the spatial optimization tool MARXAN to develop hypothetical offset networks that met either the equivalent‐vegetation or conservation‐priority targets. Networks that required offsetting equivalent vegetation cost 2–17 times more than priority‐focused networks. This finding calls into question the prudence of equivalency‐based systems, particularly in relatively undeveloped jurisdictions, where conservation focuses on limiting and directing future losses. Priority‐focused offsets may offer benefits to industry and environmental stakeholders by allowing for lower‐cost conservation of valued ecological features and may invite discussion on what land‐use trade‐offs are acceptable when trading biodiversity via offsets. Resultados Económicos y Ecológicos de Sistemas de Compensación de Biodiversidad Flexible Habib et al.  相似文献   

16.
Abstract: The U.S. Endangered Species Act (ESA) defines an endangered species as one “at risk of extinction throughout all or a significant portion of its range.” The prevailing interpretation of this phrase, which focuses exclusively on the overall viability of listed species without regard to their geographic distribution, has led to development of listing and recovery criteria with fundamental conceptual, legal, and practical shortcomings. The ESA's concept of endangerment is broader than the biological concept of extinction risk in that the “esthetic, ecological, educational, historical, recreational, and scientific” values provided by species are not necessarily furthered by a species mere existence, but rather by a species presence across much of its former range. The concept of “significant portion of range” thus implies an additional geographic component to recovery that may enhance viability, but also offers independent benefits that Congress intended the act to achieve. Although the ESA differs from other major endangered‐species protection laws because it acknowledges the distinct contribution of geography to recovery, it resembles the “representation, resiliency, and redundancy” conservation‐planning framework commonly referenced in recovery plans. To address representation, listing and recovery standards should consider not only what proportion of its former range a species inhabits, but the types of habitats a species occupies and the ecological role it plays there. Recovery planning for formerly widely distributed species (e.g., the gray wolf [Canis lupus]) exemplifies how the geographic component implicit in the ESA's definition of endangerment should be considered in determining recovery goals through identification of ecologically significant types or niche variation within the extent of listed species, subspecies, or “distinct population segments.” By linking listing and recovery standards to niche and ecosystem concepts, the concept of ecologically significant type offers a scientific framework that promotes more coherent dialogue concerning the societal decisions surrounding recovery of endangered species.  相似文献   

17.
A nearly neutral model of biodiversity   总被引:3,自引:0,他引:3  
Zhou SR  Zhang DY 《Ecology》2008,89(1):248-258
S. P. Hubbell's unified neutral theory of biodiversity has stimulated much new thinking about biodiversity. However, empirical support for the neutral theory is limited, and several observations are inconsistent with the predictions of the theory, including positive correlations between traits associated with competitive ability and species abundance and correlations between species diversity and ecosystem functioning. The neutral theory can be extended to explain these observations by allowing species to differ slightly in their competitive ability (fitness). Here, we show that even slight differences in fecundity can greatly reduce the time to extinction of competitors even when the community size is large and dispersal is spatially limited. In this case, species richness is dramatically reduced, and a markedly different species abundance distribution is predicted than under pure neutrality. In the nearly neutral model, species co-occur in the same community not because of, but in spite of, ecological differences. The more competitive species with higher fecundity tend to have higher abundance both in the metacommunity and in local communities. The nearly neutral perspective provides a theoretical framework that unites the sampling model of the neutral theory with theory of biodiversity affecting ecosystem function.  相似文献   

18.
Conservation biologists increasingly rely on spatial predictive models of biodiversity to support decision-making. Therefore, highly accurate and ecologically meaningful models are required at relatively broad spatial scales. While statistical techniques have been optimized to improve model accuracy, less focus has been given to the question: How does the autecology of a single species affect model quality? We compare a direct modelling approach versus a cumulative modelling approach for predicting plant species richness, where the latter gives more weight to the ecology of functional species groups. In the direct modelling approach, species richness is predicted by a single model calibrated for all species. In the cumulative modelling approach, the species were partitioned into functional groups, with each group calibrated separately and species richness of each group was cumulated to predict total species richness. We hypothesized that model accuracy depends on the ecology of individual species and that the cumulative modelling approach would predict species richness more accurately. The predictors explained plant species richness by ca. 25%. However, depending on the functional group the deviance explained varied from 3 to 67%. While both modelling approaches performed equally well, the models of the different functional groups highly varied in their quality and their spatial richness pattern. This variability helps to improve our understanding on how plant functional groups respond to ecological gradients.  相似文献   

19.
Biodiversity offsets aim to counterbalance the residual impacts of development on species and ecosystems. Guidance documents explicitly recommend that biodiversity offset actions be located close to the location of impact because of higher potential for similar ecological conditions, but allowing greater spatial flexibility has been proposed. We examined the circumstances under which offsets distant from the impact location could be more likely to achieve no net loss or provide better ecological outcomes than offsets close to the impact area. We applied a graphical model for migratory shorebirds in the East Asian–Australasian Flyway as a case study to explore the problems that arise when incorporating spatial flexibility into offset planning. Spatially flexible offsets may alleviate impacts more effectively than local offsets; however, the risks involved can be substantial. For our case study, there were inadequate data to make robust conclusions about the effectiveness and equivalence of distant habitat-based offsets for migratory shorebirds. Decisions around offset placement should be driven by the potential to achieve equivalent ecological outcomes; however, when considering more distant offsets, there is a need to evaluate the likely increased risks alongside the potential benefits. Although spatially flexible offsets have the potential to provide more cost-effective biodiversity outcomes and more cobenefits, our case study showed the difficulty of demonstrating these benefits in practice and the potential risks that need to be considered to ensure effective offset placement.  相似文献   

20.
Abstract:  Ecological research and biodiversity management often raise ethical questions in areas that include responsibilities and duties to the scientific community, public welfare, research animals, species, and ecosystems. Answering these questions is challenging because ecologists and biodiversity managers do not have the equivalent of bioethics, an established field with a support network focused mainly on biomedicine, to guide them in making decisions. Environmental ethics provides some insight into environmental values and the duties these may impose on humans. But for the most part those in the field have not considered many of the common responsibilities and obligations that ecologists and managers have to the scientific profession or to public welfare. There is a need to bring ethicists, scientists, and biodiversity managers together in a collaborative effort to study and inform the methods of ethical analysis and problem solving in ecological research and biodiversity management. We present a series of cases that illustrate the kinds of ethical questions faced by researchers and biodiversity managers in practice. We argue for the creation of an extensive case database and a pluralistic and integrated ethical framework, one that draws from the theoretical (normative), research, animal, and environmental ethics traditions. These tools form the foundations of a new area of inquiry and practical ethical problem solving, that we call "ecological ethics."  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号