首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Abstract

Wine and Arak, the national alcoholic drink in Lebanon, were prepared from grape juice fortified with fenitrothion to a concentration of 20ppm. Samples of the 11 fractions produced by the fermentation and distillation steps were analyzed for fenitrothion residues using gas chromatography (GC) and enzyme‐linked immunosorbent assay (ELISA). Results of residue analyses showed that the two techniques were highly correlated (r = 0.978) and indicated that fenitrothion was stable during the fermentation steps but not during distillation. The clarified wine 35 days later contained about 85% (15.3 ppm) of the fenitrothion concentration found in the juice as determined by GC analysis. Arak was prepared by a two‐steps distillation of the clarified wine. The alcohol distillate and undistilled fraction from the first distillation contained 2.5 ppm and 5.8 ppm of fenitrothion, respectively. No fenitrothion residues were detected by both techniques in the four fractions collected from the second distillation step.  相似文献   

2.
Abstract

Arak, the national alcoholic drink in Lebanon, was prepared from grapes to which either DDT or parathion had been added. Samples of the nine fractions produced from the fermentation and distillation steps were analyzed for DDT and parathion and their respective metabolites.

DDT degraded to DDD during the fermentation step resulting in a sharp decrease in DDT level. The two distillation steps contributed to a further decrease in the DDT level so that the final product contained less than 2% of the amount found in the fresh grape juice. Although the concentration of DDD increased sharply during fermentation, it also decreased to a negligible level during the subsequent distillation procedure.

Parathion was more stable than DDT during the fermentation and first distillation steps. However, the second distillation process caused a share decline in its level and the Arak contained only about 6% of the residues present in the fresh juice, paranitrophenol being the only metabolite detected.  相似文献   

3.
"Semellon" grape juice fortified with a high level of 25 ppm parathion was fermented using Saccharomyces cerevisiae var. ellipsoideus. After 12 days inte parathion levels in the wine and lees were 10.3 and 156 ppm, respectively; the paraoxon, aminoparathion, and p-nitrophenol levels in the wine were 0.16, 0.20, and 4.5 ppm, respectively, and in the lees were 0.04, 3.1 and 10 ppm, respectively. Thus, hydrolysis of parathion to p-nitrophenol and parathion sorption to sedimented particulate matter were important pathways for parathion residue reduction in the wine. The 56-day-old finished wine just prior to bottling contained 8.8 ppm parathion, 0.04 ppm paraoxon, 0.21 ppm aminoparathion, and 3.0 ppm p-nitrophenol. Two months storage at 24 degrees, 12 degrees, 4 degrees, and -20 degrees C had no effect on paraoxon and aminoparathion residue levels in the wine; parathion residues in wine decreased at all storage temperatures.  相似文献   

4.
Abstract

Persistence characteristics of operationally sprayed fenitrothion were investigated in various substrates sampled from neighbouring unsprayed areas in New Brunswick. Air, water, sediment, aquatic plants, fish, balsam fir [Abies balsamea (L.) Mill] foliage, forest soil and litter samples were collected from random sampling locations selected within 200 m from the operational spray blocks. The same substrates were resampled from the same plots and from the same locations about a year later just prior to the commencement of the operational spraying. Control samples were collected from an unsprayed site, near Sault Ste. Marie, Ontario. All samples were analysed for fenitrothion, by gas‐liquid chromatography. Except the fish samples all the substrates collected during the time of operational spraying contained low but detectable levels of fenitrothion. When collected a year later prior to the operational spray program, only balsam fir showed any detectable levels (detection limit, 0.01 ppm) of the chemical. All other samples showed no fenitrothion residues (detection limit for air, 10 ng/m3; for water, 0.01 ppb; and for other samples, 0.01 ppm). The findings confirmed that fenitrothion does not persist for an extended period of time in the aquatic substrates. The conifer foliage, however, showed persistent residues at a level of about 0.55 ppm even after the winter months, although there was no indication of accumulation of the chemical as a result of repeated exposure. The study demonstrated that the conifer needles acted as a micro sink for the chemical which showed a tendency to persist in the leaf tissues for a considerable length of time.  相似文献   

5.
Abstract

Samples of blueberry foliage and fruits were collected from spray blocks in Ontario after aerial application of fenitrothion and aminocarb at dosage rates of 210 g active ingredient (AI)/ha and 70 g AI/ha respectively. Residues were extracted from the samples by homogenizing with ethyl acetate, cleaned up by microcolumn chromatography using alumina as adsorbent, and analyzed by GLC‐AFID with a glass column packed with 1.5% OV‐17 and 1.95% OV‐210 on 80–100 mesh Chromosorb W‐HP. Average recoveries for fenitrothion and aminocarb from foliage at three fortification levels (1.0, 0.10 and 0.01 ppm) were respectively 99 and 96%. The corresponding values for the fruits were 99 and 95%. Foliage samples collected 1 h post‐spray contained on average 1.13 ppm of fe‐nitrothion and 1.14 ppm of aminocarb. However, residue levels reached below the detection limit (<0.01 ppm) in foliage collected 15 d after treatment. In addition, the fruit samples collected after 15 d post‐spray contained extremely low levels (0.03 ppm for fenitrothion and 0.02 ppm for aminocarb) of residues, and were barely above the detection limit.  相似文献   

6.
Dialifor and methidathion were added to diluted "Zinfandel" grape concentrate at 25 ppm and dimethoate at 1.0 and 25 ppm prior to fermentation with Saccharomyces cerevisiae. The finished wine 56 days later contained 10% (2.5 ppm) of the dialifor, 46% (12 ppm) of the methidathion and 85% (21 and 0.98 ppm) of the dimethoate added to the grape must. Residues in wine stored at 24 degrees C dissipated by hydrolysis; half-lives in wine were 7 days for dialifor and methidathion and 30 days for dimethoate. Residues were unchanged in wine in frozen storage for one year. Analysis of seven commercial wines for dimethoate indicated less than 0.03 ppm dimethoate was present; identity could not be confirmed by thin-layer chromatography at this level.  相似文献   

7.
Abstract

Dialifor and methidathion were added to diluted “Zinfandel”; grape concentrate at 25 ppm and dimethoate at 1.0 and 25 ppm prior to fermentation with Saccharomyces cerevisiae. The finished wine 56 days later contained 10% (2.5 ppm) of the dialifor, 46% (12 ppm) of the methidathion and 85% (21 and 0.98 ppm) of the dimethoate added to the grape must. Residues in wine stored at 24°C dissipated by hydrolysis; half‐lives in wine were 7 days for dialifor and methidathion and 30 days for dimethoate. Residues were unchanged in wine in frozen storage for one year. Analysis of seven commercial wines for dimethoate indicated less than 0.03 ppm dimethoate was present; identity could not be confirmed by thin‐layer chromatography at this level.  相似文献   

8.
Fresh tomatoes were cut, fortified with 25 ppm (micrograms/g) of parathion (0,0-diethyl 0-4-nitrophenylphosphorothioate) and processed into either juice or ketchup. Tomato juice was canned, while ketchup was placed in bottles. All samples were stored at room temperature for analysis at two-monthly intervals. Parathion residues were measured quantitatively by GLC, while the two metabolites, aminoparathion (0,0-diethyl 0-4-aminophenylphosphorothioate) and 4-nitrophenol, were determined colorimetrically. The presence of the three compounds was confirmed qualitatively by TLC. Blanching of tomatoes resulted in about 50% reduction of parathion level. Pulping of fruits caused a further decrease in parathion residues in juice as a result of its sorption and concentration in the semi-solid pulp. About 85% of parathion added to tomatoes was lost during the processing steps. Storage of juice resulted in a gradual decrease in parathion levels, whereby only 1.7% of the original amount was detected after six months of storage. The compound was stable in ketchup for the first four months of storage but decreased thereafter to almost 7% of the original quantity added to fruits. Aminoparathion and 4-nitrophenol were detected in low levels.  相似文献   

9.
Anabaena and Aulosira fertilissima showed a marked ability to accumulate DDT, fenitrothion and chlorpyrifos. Although the maximum accumulation of DDT was almost the same in both organisms, there were significant differences in their abilities to accumulate fenitrothion and chlorpyrifos. Patterns of uptake of DDT under different treatments were also similar in both Anabaena and Aulosira, but there were significant differences in the patterns of accumulation of fenitrothion between these two organisms. In Aulosira the maximum accumulation of fenitrothion was observed on the second day, whereas, in Anabaena, maximum accumulation was noticed on the first day. A completely different pattern of accumulation of chlorpyrifos was observed in Aulosira, which continued to accumulate chlorpyrifos throughout the experimental period. Bioconcentration of DDT in Anabaena and Aulosira ranged from 3 to 1568 ppm (microg g(-1)) and 6 to 1429 ppm, respectively. Bioconcentration of fenitrothion and chlorpyrifos in Anabaena varied from 53 to 3467 ppm and 7 to 6779 ppm, respectively. In Aulosira the bioconcentration varied from 100 to 6651 ppm and 53 to 3971 ppm for fenitrothion and chlorpyrifos, respectively. Anabaena and Aulosira metabolised DDT to DDD and DDE. Amounts of these DDT metabolites detected in the organisms were dependent on the concentration of treatment. DDD was the major, and DDE the minor, metabolite. These organisms were not able to metabolise the organophosphorus insecticides, fenitrothion and chlorpyrifos.  相似文献   

10.
The effects of six clarification agents [egg albumin, blood albumin, bentonite + gelatine, charcoal, polyvinylpolypyrrolidine (PVPP) and silica gel] on the removal of residues of three fungicides (famoxadone, fluquinconazole and trifloxystrobin) applied directly to a racked red wine, elaborated from Monastrell variety grapes from the D.O. Region of Jumilla (Murcia, Spain) were studied. The clarified wines were filtered with 0.45 μ m nylon filters to determine the influence of this winemaking process in the disappearance of fungicide residues. Analytical determination of fluquinconazole and trifloxystrobin was performed by gas chromatography with electron captor detector (ECD), while that of famoxadone using an HPLC equipped with a diode array detector (DAD). Generally, trifloxystrobin is the fungicide that is the lowest persistent one in wines, except in the egg albumin study whereas, the most persistent one is fluquinconazole. The elimination depends on the nature of the active ingredient, though the water stability in the presence of light within it has more influence than the solubility and polarity of the product itself. The most effective clarifying agents were the charcoal and PVPP. The silica gel and bentonite plus gelatine were not enough to reduce considerably the residual contents in the wine clarified with them. In general terms, filtration is not an effective step in the elimination of wine residues. The greatest removal after filtration is obtained in wines clarified with egg albumine and bentonite plus gelatine, and the lowest in those clarified with PVPP.  相似文献   

11.
The effects of six clarification agents [egg albumin, blood albumin, bentonite + gelatine, charcoal, polyvinylpolypyrrolidine (PVPP) and silica gel] on the removal of residues of three fungicides (famoxadone, fluquinconazole and trifloxystrobin) applied directly to a racked red wine, elaborated from Monastrell variety grapes from the D.O. Region of Jumilla (Murcia, Spain) were studied. The clarified wines were filtered with 0.45 microm nylon filters to determine the influence of this winemaking process in the disappearance of fungicide residues. Analytical determination of fluquinconazole and trifloxystrobin was performed by gas chromatography with electron captor detector (ECD), while that of famoxadone using an HPLC equipped with a diode array detector (DAD). Generally, trifloxystrobin is the fungicide that is the lowest persistent one in wines, except in the egg albumin study whereas, the most persistent one is fluquinconazole. The elimination depends on the nature of the active ingredient, though the water stability in the presence of light within it has more influence than the solubility and polarity of the product itself. The most effective clarifying agents were the charcoal and PVPP. The silica gel and bentonite plus gelatine were not enough to reduce considerably the residual contents in the wine clarified with them. In general terms, filtration is not an effective step in the elimination of wine residues. The greatest removal after filtration is obtained in wines clarified with egg albumine and bentonite plus gelatine, and the lowest in those clarified with PVPP.  相似文献   

12.
Residues of EBDC (ethylenebisdithiocarbamate) fungicides and ETU (ethylenethiourea; 2-imidazolidinethione) were monitored in beers and wines from different locations. No EBDC residues were detected in any of the samples examined. Concerning the ETU residues, the residue levels higher than the limit of method detection (0.01 ppm) were 22.6% and 7.3% in the commercial beer and wine samples respectively, but the number of samples containing more than 0.1 ppm of ETU was practically negligeable.  相似文献   

13.
The persistence of several common herbicides from grapes to wine has been studied. Shiraz, Tarrango and Doradillo grapes were separately sprayed with either norflurazon, oxyfluorfen, oxadiazon or trifluralin-persistent herbicides commonly used for weed control in vineyards. The dissipation of the herbicides from the grapes was followed for 28 days following treatment. Results showed that norflurazon was the most persist herbicide although there were detectable residues of all the herbicides on both red and white grapes at the end of the study period. The penetration of herbicides into the flesh of the grapes was found to be significantly greater for white grapes than for red grapes. Small-lot winemaking experiments showed that norflurazon persisted at levels close to the initial concentration through vinification and into the finished wine. The other herbicides degraded, essentially via first-order kinetics, within the period of "first fermentation" and had largely disappeared after 28 days. The use of charcoal together with filter pads, or with diatomaceous earth was shown to be very effective in removing herbicide residues from the wine. A 5% charcoal filter removed more than 96% of the norflurazon persisting in the treated wine.  相似文献   

14.
Chlorinated and brominated diphenyl ether compounds (DPEs) have been detected by gas Chromatography/ mass spectrometry (GC/MS) in eggs and carcasses of fish-eating birds from Louisiana, Michigan, Ohio, Rhode Island, Texas, Virginia, and Ontario, Canada. Three of these compounds were quantified; the highest concentration of 0.90 ppm tetrachloro DPE was found in a common tern carcass ( ) from Rhode Island. This is the first time that the halogenated DPEs have been reported in avian tissues. The significance of these residues is unknown.  相似文献   

15.
Residues of Bromopropylate were determine in artichokes, strawberries and beans after foliar spray of acaricide at two rates. The rates used were 1 g/l formulated product (normal recommended) and 1.5 g/l. The residue levels of bromopropylate in the three crops after 14 days were lower than 0.7 ppm and did not exceed the Maximum Residual Level (MRL) recommended by FAO. In the artichokes and strawberries, the total concentration of residues decreased by 50% of the initial level after 2-3 days. Only trace levels of the bromopropylate residues (less than 0.01 ppm) were detected in the "hearts" of the artichokes. Bromopropylate residues in the green beans were also less than 0.8 ppm after the first day of foliar spraying. The kinetic of degradation occurred in two different steps. In the first step (4-6 days) the dissipation of bromopropylate was faster whereas in the second step (7-14 days) the loss of residues was much slower.  相似文献   

16.
Abstract

The persistence of several common herbicides from grapes to wine has been studied. Shiraz, Tarrango and Doradillo grapes were separately sprayed with either norflurazon, oxyfluorfen, oxadiazon or trifluralin ‐ persistent herbicides commonly used for weed control in vineyards. The dissipation of the herbicides from the grapes was followed for 28 days following treatment. Results showed that norflurazon was the most persist herbicide although there were detectable residues of all the herbicides on both red and white grapes at the end of the study period. The penetration of herbicides into the flesh of the grapes was found to be significantly greater for white grapes than for red grapes. Small‐lot winemaking experiments showed that norflurazon persisted at levels close to the initial concentration through vinification and into the finished wine. The other herbicides degraded, essentially via first‐order kinetics, within the period of “ first fermentation”; and had largely disappeared after 28 days. The use of charcoal together with filter pads, or with diatomaceous earth was shown to be very effective in removing herbicide residues from the wine. A 5% charcoal filter removed more than 96% of the norflurazon persisting in the treated wine.  相似文献   

17.
The investigations carried out during 2005 by state-run Italian laboratories within the framework of controls seeking pesticide residues monitoring in foodstuffs involve quantifying the levels of such residues in fruit and vegetable produce and their processed products: oil, wine and fruit juices. The Italian Ready-Meal Residue Project, promoted by the pesticides working group of Italian Environmental Agencies, seeks to asses the quantity of pesticides in pre-prepared (ready-to-eat) lunches (comprising a first course, side dish, fruit, bread and wine), and to quantify the amounts consumed and compare with the acceptable daily intake ADIs.The data provided by 16 laboratories which analyzed 50 complete meals in 2005 (samples taken on 8 February, 26 May, 24 October, 21 December 2005) showed residues in 39 lunches, with an average number of 2.4 pesticides in each meal and a maximum of 10 pesticides. The most frequently found substances were: pirimiphos-methyl (20 times), procymidone (17), pyrimethanil (7), iprodione (7), cyprodinil (7), fenitrothion (6), diphenylamine (6), chlorpyrifos (6), metalaxyl (5) and chlorpyrifos-methyl (5).The distribution of residues among each dish of the meal was also examined, and the results showed that: 77.3% of the residues were present in the fruit, 14.9% in the wine, 3.0% in the main course, 2.8% in the bread and 2.1% in the side dish. Assuming that two meals are consumed per day, the daily intake of pesticide residues was calculated on a daily basis, in relation to normal body weight (60 kg for an adult, 40 kg for a teenager, 20 kg for a child) and compared with the ADI values established by the European Union. In the case of adults, the average daily intake of pesticides in relation to ADI was 2.6% with a maximum of 73.3%; for teenagers it was 4.9% with a maximum of 109% and for children it was 9.8% with a peak of 219%.  相似文献   

18.
The investigations carried out during 2005 by state-run Italian laboratories within the framework of controls seeking pesticide residues monitoring in foodstuffs involve quantifying the levels of such residues in fruit and vegetable produce and their processed products: oil, wine and fruit juices. The Italian Ready-Meal Residue Project, promoted by the pesticides working group of Italian Environmental Agencies, seeks to asses the quantity of pesticides in pre-prepared (ready-to-eat) lunches (comprising a first course, side dish, fruit, bread and wine), and to quantify the amounts consumed and compare with the acceptable daily intake ADIs.The data provided by 16 laboratories which analyzed 50 complete meals in 2005 (samples taken on 8 February, 26 May, 24 October, 21 December 2005) showed residues in 39 lunches, with an average number of 2.4 pesticides in each meal and a maximum of 10 pesticides. The most frequently found substances were: pirimiphos-methyl (20 times), procymidone (17), pyrimethanil (7), iprodione (7), cyprodinil (7), fenitrothion (6), diphenylamine (6), chlorpyrifos (6), metalaxyl (5) and chlorpyrifos-methyl (5).The distribution of residues among each dish of the meal was also examined, and the results showed that: 77.3% of the residues were present in the fruit, 14.9% in the wine, 3.0% in the main course, 2.8% in the bread and 2.1% in the side dish. Assuming that two meals are consumed per day, the daily intake of pesticide residues was calculated on a daily basis, in relation to normal body weight (60 kg for an adult, 40 kg for a teenager, 20 kg for a child) and compared with the ADI values established by the European Union. In the case of adults, the average daily intake of pesticides in relation to ADI was 2.6% with a maximum of 73.3%; for teenagers it was 4.9% with a maximum of 109% and for children it was 9.8% with a peak of 219%.  相似文献   

19.
The aim of this study was to determine the potential of seven clarifying agents to remove pesticides in red wine. The presence of pesticides in wine consists a great problem for winemakers and therefore, results on pesticide removal by clarification are very useful for taking a decision on the appropriate adsorbent. The selection of an efficient adsorbent can be based on data correlating pesticide removal in red wine to pesticides' properties, given the great number and variety of pesticides used. So, this experimental work is focused on the collection of results with regard to pesticide removal by clarification using a great number of pesticides and fining agents. A Greek red wine, fortified with single solutions and mixtures of 23 or 9 pesticides was studied. The seven fining agents, used at two concentrations, were activated carbon, bentonite, polyvinylpolypyrrolidone (PVPP), gelatin, egg albumin, isinglass-fish glue, and casein. Pesticides were selected with a wide range of properties (octanol–water partition coefficient (log Kow) 2.7–6.3 and water solubility 0.0002–142) and belong to 11 chemical groups. Solid phase extraction (SPE) followed by gas chromatography (GC) with electron capture detector (ECD) were performed to analyze pesticide residues of the clarified fortified wine. The correlation of the clarifying agents' effectiveness to pesticide's chemical structure and properties (log Kow, water solubility) was investigated. The antagonistic and/or synergistic effects, occurring among the pesticides in the mixtures, were calculated by indices. Pesticide removal effectiveness results of the red wine were compared to those obtained from a white wine under the same experimental conditions and discussed. The order of decreasing adsorbent effectiveness (mixture of 23 pesticides) was: activated carbon 40% > gelatin 23% > egg albumin 21% > PVPP 18% > casein 12% > bentonite 7%. Isinglass showed 12% removal at the highest permitted concentration. In the case of 9 pesticides mixture, the effectiveness was quite higher but the order remained the same compared to 23 pesticides mixture. The removal of each pesticide from its single solution was generally the highest (particularly for hydrophobic pesticides). Adsorption on fining agents is increased by increasing hydrophobicity and decreasing hydrophilicity of organic pesticide molecules.  相似文献   

20.
Thermal evaporation of a variety of simulated pore waters from the region of Yucca Mountain, Nevada, produced acidic liquids and gases during the final stages of evaporation. Several simulated pore waters were prepared and then thermally distilled in order to collect and analyze fractions of the evolved vapor. In some cases, distillates collected towards the end of the distillation were highly acidic; in other cases the pH of the distillate remained comparatively unchanged during the course of the distillation. The results suggest that the pH values of the later fractions are determined by the initial composition of the water. Acid production stems from the hydrolysis of magnesium ions, especially at near dryness. Near the end of the distillation, magnesium nitrate and magnesium chloride begin to lose water of hydration, greatly accelerating their thermal decomposition to form acid. Acid formation is promoted further when precipitated calcium carbonate is removed. Specifically, calcium chloride-rich pore waters containing moderate (10–20 ppm) levels of magnesium and nitrate and low levels of bicarbonate produced mixtures of nitric and hydrochloric acid, resulting in a precipitous drop in pH to values of 1 or lower after about 95% of the original volume was distilled. Waters with either low or moderate magnesium content coupled with high levels of bicarbonate produced slightly basic fractions (pH 7–9). If calcium was present in excess of bicarbonate, waters containing moderate levels of magnesium produced acid even in the presence of bicarbonate, due to the precipitation of calcium carbonate. Other salts such as halite and anhydrite promote the segregation of acidic vapors from residual basic solids. The concomitant release of wet acid gas has implications for the integrity of the alloys under consideration for containers at the Yucca Mountain nuclear waste repository. Condensed acid gases at very low pH, especially mixtures of nitric and hydrochloric acid, are capable of corroding even alloys, such as nickel-based Alloy 22, which are considered to be corrosion-resistant under milder conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号