首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 301 毫秒
1.
在250 W照明金属卤化物灯(λ≥313 nm)照射下,Fe(Ⅲ)-OH配合物能同时引发水中Cr(Ⅵ)的光还原和偶氮染料甲基橙的光氧化,并且同时Cr(Ⅵ)光还原和甲基橙光氧化效率都较Fe(Ⅲ)-OH配合物单独作用下的效率有明显提高.在c(Fe(Ⅲ)),c(Cr(Ⅵ))和c(甲基橙)为25~200 μmol/L时,pH=3.0是最佳值;c(Fe(Ⅲ))的增加同时有利于Cr(Ⅵ)光还原和甲基橙光氧化;c(Cr(Ⅵ))为25 μmol/L时,其自身光还原的初始速率最大,甲基橙光氧化反应初始速率则随c(Cr(Ⅵ))和c(甲基橙)的增大而减小.   相似文献   

2.
Cr(Ⅵ)在Fe(Ⅲ)-柠檬酸盐体系中紫外光还原研究   总被引:2,自引:1,他引:1  
研究了在紫外光照射下,Fe(Ⅲ)-柠檬酸盐溶液对Cr(Ⅵ)的光还原反应.同时,考察了溶液pH值、Fe(Ⅲ)浓度、柠檬酸盐浓度、Cr(Ⅵ)初始浓度对光还原效率的影响,并分析了光还原反应的动力学.研究结果表明,Fe(Ⅲ)-柠檬酸盐体系能光还原Cr(Ⅵ),在pH为2.0~6.0的范围内,Cr(Ⅵ)的还原率随着溶液初始pH值的降低而增大.当pH值为2.0、Fe(Ⅲ)浓度为10μmol·L-1、柠檬酸盐浓度为250μmol·L-1及Cr(Ⅵ)初始浓度为19.2μmol·L-1时,光照反应8min后Cr(Ⅵ)的最大还原率达到100%,但当pH值增加到6.0时,Cr(Ⅵ)的最大还原率下降到19%;当Cr(Ⅵ)的初始浓度在9.6~96.0μmol·L-1的范围内时,Cr(Ⅵ)光还原反应的初始速率随着Fe(Ⅲ)、柠檬酸盐(cit3)、Cr(Ⅵ)初始-浓度的增加而增加.表观动力学方程为:-dCCr(Ⅵ)/dt=0.1019[Cr(Ⅵ)]0.[Fe(Ⅲ)]0.[cit3]0..536-25  相似文献   

3.
δ-MnO_2对Cr(Ⅲ)氧化动力学特征   总被引:1,自引:0,他引:1  
董长勋  戴儒南  熊建军 《环境科学》2010,31(5):1395-1401
采用分步离心法研究了δ-MnO2对Cr(Ⅲ)的氧化动力学.结果表明,δ-MnO2对Cr(Ⅲ)的氧化反应可以用一级动力学方程分段拟合.氧化反应是由2个速率不同的一级反应组成,Cr(Ⅲ)溶液在高浓度(400μmol/L)条件下,也可以用扩散方程和Elovich方程分段拟合.温度升高显著增加快反应阶段速率常数.随着反应的进行,MnO2表面吸附的Cr(Ⅵ)/Mn(Ⅱ)逐渐减小并远小于理论值(0.667),MnO2表面吸附的Cr(Ⅲ)、Cr(Ⅵ)和Mn(Ⅱ)只占总量的0.1%~3%.溶液中的Cr(Ⅵ)/Mn(Ⅱ)逐渐减小并接近理论值.所以Mn(Ⅱ)向溶液中的扩散滞后于Cr(Ⅵ).Cr(Ⅲ)的氧化反应的速率控制步骤,在低浓度条件下是Cr(Ⅲ)的扩散和吸附,在高浓度条件下是Mn(Ⅱ)向溶液中的扩散.  相似文献   

4.
本文详细地研究了影响石墨炉原子吸收分光光度法测定Cr(Ⅲ)和Cr(Ⅵ)时使用的APCD—MIBK萃取体系的溶液状态参数及其它参数。这些参数包括萃取前水相的pH值,APCD浓度,邻苯二酸氢钾缓冲液浓度、完成萃取所需时间和有机相中螯合物的瞬时稳定性。在此基础上,制定了单独测定Cr(Ⅵ)以及在无需把Cr(Ⅲ)转换为Cr(Ⅵ)情况下一次同时测定[Cr(Ⅲ)+Cr(Ⅵ)的操作程序。用差减法可求得Cr(Ⅲ)的浓度。该方法已用于测定一些天然水和饮用水试样中的Cr(Ⅲ)、Cr(Ⅵ)和总铬。Cr(Ⅲ)和Cr(Ⅵ)在MIBK相中的检测限(空白标准偏差的3倍)均为0.3ng/ml。本文对该方法的精密度、准确度和干扰因素做了介绍。  相似文献   

5.
应用离子交换法分离、富集和准确测定水中ppb数量级的Cr(Ⅲ)与Cr(Ⅵ)。水样以逆流方式连续通过阴(717~#,SO_4~-型)、阳(732~#H~+型)树脂柱,使Cr(Ⅵ)及Cr(Ⅵ)分别交换在阴、阳柱体的最下层,然后分开淋洗。阴柱上加入小体积还原 性酸液将CrO_4~=还原为Cr(Ⅵ)迅速洗脱,阳柱上只加少量酸液即可将Cr(Ⅲ)完全洗脱,回收液中的铬含量用DPC比色法测定。本文通过官厅水样中Cr(Ⅲ)与Cr(Ⅵ)的回收实验证明此方法适用于环境样品中不同价态铬的分离与测定。  相似文献   

6.
冠醚交联壳聚糖在Cr(Ⅲ、Ⅵ)分析中的应用   总被引:5,自引:0,他引:5  
研究冠醚交联壳聚糖(DCTS)对铬的吸附行为,建立了DCTS富集分离测定环境水样中痕量铬Cr(Ⅲ、Ⅵ)的新方法。在pH=7.5的溶液中,DCTS对铬的吸附率为100%,富集倍数可达50倍以上,用0.20g/L酒石酸2mL溶液可定量解吸总铬,用0.20g/L柠檬酸溶液2mL可定量解吸Cr(Ⅲ)。本法用于配置的南极水样中超痕量Cr(Ⅲ、Ⅵ)的测定,回收率98%-112%,变异系数1.8%,检出限0.004μg/L。  相似文献   

7.
该实验研究了针铁矿(α-Fe OOH)对废水中Cr(Ⅵ)吸附的影响因素、吸附等温线和吸附动力学。探讨在不同初始浓度、p H、吸附剂的量、离子强度条件下针铁矿对Cr(Ⅵ)的吸附特性。结果表明,针铁矿的吸附平衡时间为30 min;p H为3时,针铁矿对Cr(Ⅵ)的吸附效率最高;Cr(Ⅵ)浓度为15 mg/L时,最佳针铁矿投加量为2 g/L;Cr(Ⅵ)的吸附量随离子强度的升高而降低;温度升高,Cr(Ⅵ)的吸附量随之升高。分别用Langmuir、Freundlich和Temkin等温模型对不同条件下针铁矿吸附Cr(Ⅵ)的实验结果进行模拟,结果表明用Freundlich方程的拟合效果最佳,在35℃时相关性达到了0.995 2。针铁矿吸附Cr(Ⅵ)的吸附动力学满足准二级动力学方程,吸附表观活化能Ea=31.306 k J/mol。实验结果表明,针铁矿在废水除铬(Ⅵ)领域有实际应用的潜力。  相似文献   

8.
为了有效提高水中Cr(Ⅵ)和Cr(Ⅲ)去除效果,将高分子絮凝剂二硫代羧基化羟甲基聚丙烯酰胺(DTMPAM)和三氯化铁(FeCl3)进行复配应用到含铬废水的处理中,通过絮凝实验法分别考查了DTMPAM复配FeCl3前后对含Cr(Ⅵ)水样和含Cr(Ⅲ)水样的去除性能.结果表明,DTMPAM在pH值分别为3.0、4.0、5.0时,单独投加DTMPAM对含Cr(Ⅲ)水样中Cr(Ⅲ)的去除效果均不太理想,Cr(Ⅲ)的最高去除率分别为23.80%、41.11%、42.38%;FeCl3的投药顺序和浓度对DTMPAM复配FeCl3去除水样中Cr(Ⅲ)具有较大影响,按照先投加FeCl3后调节pH值再投加DTMPAM进行絮凝的投药顺序,且FeCl3浓度为60 mg·L-1时,含Cr(Ⅲ)水样中Cr(Ⅲ)的最高去除率可达到99.55%.单独投加DTMPAM对含Cr(Ⅵ)水样中Cr(Ⅵ)具有良好的去除效果,而对总Cr的去除效果较差,当pH值为3.0、DTM...  相似文献   

9.
将野生水华微藻生物质作为吸附材料去除水中Cr(Ⅵ)离子。实验发现温度对去除效率没有显著影响,而pH值和Cr(Ⅵ)离子去除率呈严格负相关。在微藻吸附剂浓度为5.0 g/L、温度25℃、pH值5.0和初始Cr(Ⅵ)离子浓度30.0 mg/L条件下,经过2次吸附可以将水中Cr(Ⅵ)离子降低到0.45 mg/L,去除率达到98.5%。进一步分析表明,溶液中Cr(Ⅵ)浓度随着吸附时间逐步下降,Cr(Ⅲ)浓度会随着吸附时间逐步上升,逐渐接近总Cr浓度,这表明吸附过程中微藻生物质会将部分Cr(Ⅵ)还原成Cr(Ⅲ)。本研究表明,野生水华微藻生物质是一种低成本的吸附材料,可以用于去除废水中Cr(Ⅵ)离子。  相似文献   

10.
铁屑-微生物协同还原去除水体中Cr(Ⅵ)研究   总被引:11,自引:7,他引:4  
汤洁  王卓行  徐新华 《环境科学》2013,34(7):2650-2657
考察了铁屑和微生物对受污染水体中Cr(Ⅵ)的还原去除能力以及Cr(Ⅵ)去除效率的影响因素,分析了反应后铁屑表面的组成以及Cr(Ⅵ)还原产物的形态特征.结果表明,铁屑-微生物协同处理对水体Cr(Ⅵ)的去除具有促进作用,在18 h内Cr(Ⅵ)去除率就可达到100%.在25~42℃范围内,温度升高有利于Cr(Ⅵ)的去除;Cr(Ⅵ)还原去除的最适宜初始pH为5.8.Cr(Ⅵ)去除效率随着铁屑投加量和微生物接种量的增大而增大,随着Cr(Ⅵ)初始浓度的增大而减小.Mn2+、Zn2+、Co2+、Cu2+和Ni2+离子对Cr(Ⅵ)的还原去除都有一定的抑制作用,其中Mn2+的影响最小,Ni2+的抑制作用最为明显.XPS分析结果显示,铁屑表面吸附和沉积了Cr元素,且有Cr(Ⅲ)和Cr(Ⅵ)两种价态;Cr2p3/2轨道处的出峰由Cr(Ⅲ)在(576.8±0.1)eV处的峰和Cr(Ⅵ)在(578.1±0.1)eV处的峰叠加而成,还原产物Cr(Ⅲ)极有可能以Cr(OH)3以及铁铬氧化水合物[FexCr1-x(OH)3]形式存在.  相似文献   

11.
孙杰  曾沛  张晗 《环境科学学报》2014,34(12):3017-3021
将易生物降解的天然螯合剂乙二胺-N,N'-二琥珀酸(EDDS)与Fe(Ⅲ)结合形成Fe(Ⅲ)-EDDS体系并用于处理水中Cr(Ⅵ).在紫外光照射下利用该体系对Cr(Ⅵ)进行光还原,考察了溶液p H值、Fe(Ⅲ)-EDDS和Cr(Ⅵ)的初始浓度对Cr(Ⅵ)去除率的影响.结果表明,UV/Fe(Ⅲ)-EDDS体系对Cr(Ⅵ)有光还原作用,且紫外光是反应进行的必要条件.在p H为3.0~8.0的范围内,反应顺利进行,且溶液的p H值越小,Cr(Ⅵ)的还原效果越好,去除率越高.Fe(Ⅲ)-EDDS浓度的增加对Cr(Ⅵ)还原有促进作用,Fe(Ⅲ)-EDDS浓度在0.10~0.30 mmol·L-1之间时,随着Fe(Ⅲ)-EDDS浓度的增大,Cr(Ⅵ)的还原率增大;当溶液中Fe(Ⅲ)-EDDS浓度不变,Cr(Ⅵ)浓度在5~20 mg·L-1之间时,Cr(Ⅵ)的去除率随其浓度的增加而降低.  相似文献   

12.
Cr(Ⅵ)不同于Cr(Ⅲ),它具有明显的毒性、致癌性、致突变性,且在水体和土壤中迁移性强,因此,将Cr(Ⅵ)还原为Cr(Ⅲ)继而以Cr(OH)3沉淀形式去除,是治理Cr(Ⅵ)污染的重要措施之一.本文研究了生物制备β-Fe OOH光催化酒石酸还原Cr(Ⅵ)的效率及影响因素.结果表明:在生物合成的β-Fe OOH存在条件下,光催化酒石酸还原Cr(Ⅵ)的效率大幅提高,是没有β-Fe OOH对照处理的4.35倍.β-Fe OOH存在下光催化酒石酸还原Cr(Ⅵ)受p H、β-Fe OOH浓度和酒石酸浓度的影响.在p H 2.0~5.0实验范围内,p H越低,还原率越高.当p H=5.0时,Cr(Ⅵ)还原率只有45%,p H=2.0时,Cr(Ⅵ)还原率可达到90%.β-Fe OOH浓度为0.6 g·L-1时,Cr(Ⅵ)还原率达到最高.酒石酸浓度的增加有利于Cr(Ⅵ)的光催化还原.在β-Fe OOH浓度为0.6 g·L-1,酒石酸浓度为200μmol·L-1,溶液p H=2.0的最佳条件下,溶液中Cr(Ⅵ)可在80min内100%光催化还原成Cr(Ⅲ).本研究为生物制备β-Fe OOH的应用和Cr(Ⅵ)污染治理提供了新的选择.  相似文献   

13.
Oxidation of Cr(Ⅲ) by manganese oxides may pose a potential threat to environments due to the formation of toxic Cr(Ⅵ) species. At present, it was still unclear whether the extent of Cr(Ⅲ) oxidation and fate of Cr(Ⅵ) would be changed when manganese oxides co-exist with other minerals, the case commonly occurring in soils. This study investigated the influence of goethite and kaolinite on Cr(Ⅲ) oxidation by birnessite under acidic p H condition(p H 3.5)and background electrolyte of 0.01 mol/L Na Cl. Goethite was found not to affect Cr(Ⅲ)oxidation, which was interpreted as the result of overwhelming adsorption of cationic Cr(Ⅲ) onto the negatively-charged birnessite(point of zero charge(PZC) 3.0) rather than the positively-charged goethite(PZC = 8.8). However, more Cr(Ⅵ) would be retained by the surface with the increase in addition of goethite because of its strong ability on adsorption of Cr(Ⅵ) at low p H. Moreover, either Cr(Ⅲ) oxidation or distribution of the generated Cr(Ⅵ)between the solid and solution phases was not affected by kaolinite(PZC 3.0), indicating its low affinity for Cr species. Reactions occurring in the present mixed systems were suggested, which could be partly representative of those in the soils and further indicates that the mobility and risk of Cr(Ⅵ) would be decreased if goethite was present.  相似文献   

14.
该文通过沉淀法制备了FeS,并利用SEM及XRD对其表征,通过批实验进行了FeS去除水中Cr(Ⅵ)的研究,主要考察了温度、pH、FeS投加量及初始Cr(Ⅵ)浓度对Cr(Ⅵ)去除效率的影响。结果表明:Cr(Ⅵ)的去除效率随着温度的升高以及溶液pH值的降低而升高;当Cr(Ⅵ)为30mg/L时,FeS的最佳投加量为0.2g/L。FeS与Cr(Ⅵ)的反应符合假一级反应动力学模型,表观活化能为21.78kJ/mol。  相似文献   

15.
工厂排放的含Cr(Ⅵ)废水注入河口之后,受水体中溶解有机物的还原,转化为低毒的Cr(Ⅲ).在天然水体中Cr(Ⅵ)被溶解有机物还原的反应动力学表明:该过程对Cr(Ⅵ)和H~ 均为一级反应.还原过程由两个反应组成,反应Ⅰ是Cr(Ⅵ)对酚羟基(φ—OH)的氧化,反应速度常数k_1~(18℃)=0.036min~(-1).反应Ⅱ是Cr(Ⅵ)对醇羟基(R—OH)的氧化,反应速度常数k_1~('18℃=1.5×10~(-3)min~(-1)。反应的活化能E_1=26kcal/mol,E_1~'=40kcal/mol(18—28℃).利用正交设计实验测定该还原反应热力学的有关参数得出:溶解有机物对Cr(Ⅵ)的还原作用体系的反应物浓度和pH对反应平衡点有显著影响河口水域的水化学条件有利于Cr(Ⅵ)的还原.在反应平衡时六价铬的浓度(C_(Cr)~(eq)_(VI))与溶解有机物含量(DOC)之间的相关关系的基础上,外推得出不同环境功能水质要求的排放标准的计算通式:C_(Cr)~d_(VI)=α(Q/q)C_(Cr)~8_(VI) kDOC  相似文献   

16.
利用复合反应动力学探讨天然Cr(Ⅵ)生物吸附材料的Cr(Ⅵ)-TCr联合动力学建模问题,以蚕沙为例,用拟合参数定量化评价蚕沙除Cr(Ⅵ)和TCr的能力,并推导建立Cr(Ⅵ)和TCr共参数动力学方程组模型。通过动力学批量实验,探究不同初始pH下蚕沙-Cr(Ⅵ)体系中溶液pH、Cr(Ⅵ)、TCr随时间的变化规律,并确定去除Cr(Ⅵ)与TCr的最佳工作pH。结果显示:最佳工作pH为2.0,此时总铬的平衡吸附量为2.37 mg/g;共参方程组拟合偏差小于Cr(Ⅵ)与TCr一级动力学方程的和;不同初始pH下拟合参数提示Cr(Ⅲ)的解吸导致其残留,且残留量随pH的升高而减小;Cr(Ⅵ)去除速率常数的对数与溶液氢离子的变化量存在线性关系。  相似文献   

17.
为获得低成本高效率的固定化微生物处理Cr(Ⅵ)废水体系,从混合微生物种类和固定化技术等方面对Cr(Ⅵ)的微生物去除效应进行了试验研究.首先筛选出对Cr(Ⅵ)具有较高去除能力的混合菌株组合,然后采用海藻酸钠(SA)固定法进行混合菌株固定化,考察混合微生物和固定化混合微生物技术对Cr(Ⅵ)的去除效应.结果表明:HB(Bacillus subtilis var.)菌株对Cr(Ⅵ)有较好的去除能力,在40 mg/L的Cr(Ⅵ)溶液中其去除率可达98%左右,其次为Ua(Bacillus atrophaeus)菌株,最后为xJ-Ⅱ(Bacillus subtilis)菌株;混合菌株组合中,HB菌与XJ-Ⅱ菌组合和HB菌与Ua菌组合对Cr(Ⅵ)的去除效应较好,在60 mg/L的Cr(Ⅵ)溶液中其去除率可达92%;混合菌株经固定化处理后,HB菌与Ua菌组合对Cr(Ⅵ)的去除率仍很高,在40 mg/L的Cr(Ⅵ)溶液中其去除率可达到98%.可见,混合微生物能有效地提高固定化微生物技术对Cr(Ⅵ)的去除效应,且固定化混合微生物技术有望在铬污染废水中得到广泛应用.  相似文献   

18.
为了提升紫色土对Cr(Ⅵ)的吸附固定效果,该文采用10%(质量比)的生物质和酵母菌粉对碱性、中性和弱酸性紫色土进行改良,批处理法研究各改良土样对Cr(Ⅵ)的等温吸附特征,并对比不同温度、pH值和离子浓度下的吸附差异。结果表明,不同改良紫色土对Cr(Ⅵ)的吸附均适合Langmuir模型描述。Cr(Ⅵ)的最大吸附量(qm)保持在99.66~283.63 mg/kg之间,qm表现为菌粉改良>菌粉和生物质复合改良>生物质改良>未改良。相同改良条件下,qm随土壤pH的升高而降低。随着pH值的升高,各改良紫色土对Cr(Ⅵ)的吸附量均呈现下降的趋势,pH=2时最佳。供试改良紫色土对Cr(Ⅵ)的吸附量均随着离子强度的增加先增大后减小,以0.05 mol/L最佳。温度升高有利于各改良紫色土对Cr(Ⅵ)的吸附。热力学参数表明各改良紫色土对Cr(Ⅵ)吸附均为自发、吸热和熵增过程。  相似文献   

19.
微生物还原Cr(Ⅵ)的机理研究进展   总被引:1,自引:1,他引:0  
含铬工业废水排放到环境中会对人体的健康和环境带来严重的危害。其中重金属铬的毒性会随着价态的变化而变化。微生物在代谢过程中可以将Cr(Ⅵ)还原为Cr(Ⅲ),从而降低Cr(Ⅵ)的毒性。从微生物还原Cr(Ⅵ)的机理类型,相关还原酶的基因特性,可还原Cr(Ⅵ)的微生物,影响还原的因素,Cr(Ⅵ)还原过程中存在的问题及发展前景等方面进行了综述。  相似文献   

20.
本研究考察了Acidithiobacillus ferrooxidans(A.ferrooxidans)联合高硫煤矸石(富含FeS2)对模拟煤矿酸性水体中Cr(Ⅵ)的去除效果.结果表明,处理Cr(Ⅵ)初始浓度为50mg/L的模拟煤矿酸性废水(pH=2.5)时,投配率为6.67~33.33g/L高硫煤矸石可使Cr(Ⅵ)去除达到良好效果.50mg/LCr(Ⅵ)在24h内即可完全被高硫煤矸石中的FeS2还原成Cr(Ⅲ),且在反应终点时(120h),6.67,13.33,33.33g/L高硫煤矸石对还原产物Cr(Ⅲ)的吸附去除率分别为7.1%、20.2%、29.1%.然而,在高硫煤矸石的还原和吸附作用下,大部分的Cr仍以Cr(Ⅲ)形式残留在酸性水体中,且高硫煤矸石的大量投加也给水体带来了Fe2+Fe3+SO42-等二次污染物.在高硫煤矸石-Cr(Ⅵ)体系中引入A.ferrooxidans和9K培养基后,A.ferrooxidans介导的Fe2+  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号