首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Through two-choice gustatory experiments, a␣preference hierarchy was established␣for␣the␣herbivorous gastropod Norrisianorrisi Sowerby, with laminarialean kelps preferred over all other seaweeds. Among the kelps, laminae of Macrocystispyrifera were slightly preferred over Egregiamenziesii, and both were strongly preferred over sporophylls of Eiseniaarborea. E.arborea, the least preferred kelp, was consistently chosen over other algae common in the snail's habitat (Halidrysdioica, Dictyotaflabellata, and Pterocladiacapillacea) and over seaweeds believed to be edible and palatable based on their morphology, structure, and secondary chemistry (Endarachnebinghamiae, Mazzaellaflaccida, and Ulvalobata). The morphologies and structural toughness of tested seaweeds varied significantly as did their nutritional (% carbon, % nitrogen, C:N ratio, and % ash) contents and phlorotannin concentrations; however, snails preferred to feed on kelps regardless of nutritional content, toughness or phlorotannin concentration; and among kelps preferred to feed on the least tough species (based on penetrometer measurements), which also were those containing the lowest phlorotannin concentrations. Preference for kelp was not upheld in experiments using agarose thalli to which freeze-dried powder, of either the kelp Eiseniaarborea or non-kelp Endarachnebinghamiae was added, suggesting the destruction of attractant chemicals during the making of the artificial foods. Our data suggest that the preference of N. norrisi for kelps over other potentially edible and palatable seaweeds may not be related to nutritional content, but instead may have evolved in response to factors such as availability, habitat provision, or refuge from predation. Received: 27 September 1996 / Accepted: 7 October 1997  相似文献   

2.
3.
Assimilation efficiencies (AEs) and physiological turnover-rate constants (k) of six trace elements (Ag, Am, Cd, Co, Se, Zn) in four marine bivalves (Crassostrea virginica Gmelin, Macoma balthica Linnaeus, Mercenaria mercenaria Linnaeus, and Mytilus edulis Linnaeus) were measured in radiotracer-depuration experiments. Egestion rates of unassimilated elements were highest during the first 24 h of depuration and declined thereafter. Significant egestion of unassimilated Co, however, continued for up to 5 d in Macoma balthica, Mercenaria mercenaria and Mytilus edulis. With the exception of the extremely low values for 110 mAg, 109Cd, and 65Zn in C. virginica, physiological turnover-rate constants (k) showed no general pattern of variation among elements, bivalve species or food types, and were relatively invariant. Values from  ≤0.001 to 0.1 d−1 were observed, but excluding those for Co, most values were  ≤0.04 d−1. In all four species, the AEs of Ag, Am, and Co were generally lower than those of Cd, Se, and Zn. The AEs of Ag, Cd, Se, and Zn in these bivalves are directly related to the proportion of each element in the cytoplasmic fraction of ingested phytoplankton, indicating that >80% of elements in a prey alga's cytoplasm was assimilated. C. virginica, Macoma balthica, and Mercenaria mercenaria assimilated ∼36% of the Ag and Cd associated with the non-cytoplasmic (membrane/organelle) fraction of ingested cells in addition to the cytoplasmic fraction. The ratio of AE:k, which is proportional to the consumer–prey trace-element bioaccumulation factor (concentration in consumer:concentration in prey) was generally greater for Cd, Se, and Zn than for Ag, Am, and Co. This ratio was lowest in Mytilus edulis, suggesting that this bivalve, the most widely employed organism in global biomonitoring, is relatively inefficient at accumulating important elements such as Ag, Cd, and Zn from ingested phytoplankton. Received: 7 February 1997 / Accepted: 24 February 1997  相似文献   

4.
Migrating feeding aggregations (or fronts) of sea urchins can dramatically alter subtidal seascapes by destructively grazing macrophytes. While direct effects of urchin fronts on macrophytes (particularly kelps) are well documented, indirect effects on associated fauna are largely unknown. Secondary aggregations of predators and scavengers form around fronts of Strongylocentrotus droebachiensis in Nova Scotia. We recorded mean densities of the sea stars Asterias spp. (mainly A. rubens) and Henricia sanguinolenta of up to 11.6 and 1.7 individuals 0.25 m−2 along an urchin front over 1 year. For Asterias, mean density at the front was 7 and 15 times greater than in the kelp bed and adjacent barrens, respectively. There was strong concordance between locations of peak density of urchins and sea stars (Asterias r = 0.98; H. sanguinolenta r = 0.97) along transects across the kelp–barrens interface, indicating that sea star aggregations migrated along with the urchin front at rates of up to 2.5 m per month. Size–frequency distributions suggest that Asterias at the front were drawn from both the barrens (smaller individuals) and the kelp bed (larger individuals). These sea stars fed intensively on mussels on kelp holdfasts and in adjacent patches. Urchin grazing may precipitate aggregations of sea stars and other predators or scavengers by incidentally consuming or damaging mussels and other small invertebrates, and thereby releasing a strong odor cue. Consumption of protective holdfasts and turf algae by urchins could facilitate feeding by these consumers, which may obtain a substantial energy subsidy during destructive grazing events.  相似文献   

5.
Carbon consumption and nitrogen requirements were estimated for populations of the sandy beach bivalve Donax serra on nine beaches of the west coast of South Africa. Subtidal populations composed mainly of adult clams were responsible for the bulk of standing stock (3538 g C m−1), annual carbon consumption (13 444 g C m−1 yr−1), faeces production (6478 g C m−1 yr−1 ) and nitrogen regeneration (2525 g N m−1 yr−1). Kelp detritus, bacteria and kelp consumers' faeces available in the water column surpass several times the carbon and nitrogen requirements of intertidal and subtidal clam populations. Individual Donax serra pop ulations, in turn, may regenerate up to 3.2% of the total nitrogen requirements of all primary producers from kelp beds and 14% of the requirements of phytoplankton. These high standing stocks of clams are presumably supported mainly by organic matter originating from kelp which, in contrast to phytoplankton, is in constant supply and comprises the largest proportion of the annual production of particulate organic matter on this coast. Wide and shallow continental shelves with gentle slopes probably limit the penetration of upwelled waters to the nearshore waters, decreasing the influence of external inputs and increasing the importance of internal flows of nutrients and carbon within the nearshore zone. In this context, sandy beaches, rocky shores and kelp beds may be more closely interlinked compartments of a larger ecosystem encompassing the whole nearshore than traditionally thought. Received: 28 August 1996 / Accepted: 7 October 1996  相似文献   

6.
Many small marine herbivores utilize specific algal hosts, but the ultimate factors that shape host selection are not well understood. For example, the use of particular microhabitats within algal hosts and the functional role of these microhabitats have received little attention, especially in large algae such as kelps. We studied microhabitat use of the herbivorous amphipod Peramphithoe femorata that inhabits nest-like domiciles on the blades of giant kelp Macrocystis pyrifera. The vertical position of nest-bearing blades along the stipe of the algal thallus and the position of the nests within the lateral blades of M. pyrifera were surveyed in two kelp forests in northern-central Chile. Additionally, we conducted laboratory and field experiments to unravel the mechanisms driving the observed distributions. Peramphithoe femorata nests were predominantly built on the distal blade tips in apical sections of the stipes. Within-blade and within-stipe feeding preferences of P. femorata did not explain the amphipod distribution. Amphipods did not consistently select distal over proximal blade sections in habitat choice experiments. Mortality of tethered amphipods without nests was higher at the seafloor than at the sea surface in the field. Nests mitigated mortality of tethered amphipods, especially at the seafloor. Thus, protective microhabitats within thalli of large kelp species can substantially enhance survival of small marine herbivores. Our results suggest that differential survival from predation might be more important than food preferences in determining the microhabitat distribution of these herbivores.  相似文献   

7.
Young green turtles (Chelonia mydas) spend their early lives as oceanic omnivores with a prevalence of animal prey. Once they settle into neritic habitats (recruitment), they are thought to shift rapidly to an herbivorous diet, as revealed by studies in the Greater Caribbean. However, the precise timing of the ontogenic dietary shift and the actual relevance of animal prey in the diet of neritic green turtles are poorly known elsewhere. Stable isotopes of carbon, sulfur and nitrogen in the carapace scutes of 19 green turtles from Mauritania (NW Africa), ranging from 26 to 102 cm in curved carapace length (CCLmin), were analyzed to test the hypothesis of a rapid dietary shift after recruitment. Although the length of residence time in neritic habitats increased with turtle length, as revealed by a significant correlation between turtle length and the δ13C and the δ34S of the scutes, comparison of the δ15N of the innermost and outermost layers of carapace scutes demonstrated that consumption of macrophytes did not always start immediately after recruitment, and turtles often resumed an animal-based diet after starting to graze on seagrasses. As a consequence, seagrass consumption did not increase gradually with turtle size and animal prey largely contributed to the diet of turtles within the range 29–59 cm CCLmin (76–99% of assimilated nutrients). Seagrass consumption by turtles larger than 59 cm CCLmin was higher, but they still relied largely on animal prey (53–76% of assimilated nutrients). Thus, throughout most of their neritic juvenile life, green turtles from NW Africa would be better classified as omnivores rather than herbivores. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Kelp and other seaweeds are traditionally used in many parts of the world as a soil amendment on arable fields. Seaweeds contain biochemical compounds that can act as plant growth regulators in terrestrial plants. In a low-intensity arable grassland in northwest Scotland an organic fertilizer, kelp (Laminaria digitata) has been used for hundreds of years, due to its anticipated positive effect as a soil conditioner and provider of plant nutrients. In this study the effects of kelp on germination and rooting of crops and native plants from this area were investigated in soil-free media. Germination was studied by incubation in the presence of kelp solutions. Rooting of plant cuttings was assessed after a pulse treatment with kelp solutions, and indole-3 acetic acid (IAA) as a reference plant growth regulator. Germination percentage of Plantago lanceolata, Trifolium repens and Avena strigosa seeds increased significantly when incubated with 0.05% kelp solutions. Total root weight and the individual weight of roots produced in cuttings of Vigna radiata and P. lanceolata were significantly increased when exposed to a 0.5% solution of kelp. Plant vigour, assessed visually, decreased significantly for P. lanceolata exposed to kelp at concentrations of 0.5 and 5.0% indicating the presence of a threshold level for an inhibitory effect of kelp at these concentrations, which may be due to high salinity. The results confirmed the presence of plant growth regulators in kelp, and indicates that amendment with kelp may potentially affect plant community composition. The threshold levels where some plants responded negatively to kelp amendment were close to or lower than the theoretical concentrations of kelp in soil water at field conditions with the current doses used on the machair, indicating that care should be taken in either administering kelp at the appropriate dose or leaching out salt before application.  相似文献   

9.
Population energy budgets estimated on the assumption of steady state conditions for Nerita tessellata Gmelin, N. versicolor Gmelin, and N. peloronta L. on Barbados, W. Indies, are presented. Large differences in population structure, and hence energetics, occurred at different localities along the beach. Relatively high proportions (81 to 88%) of the assimilated energy were lost via metabolism. Assimilation efficiencies ranged from 39 to 43%, net growth efficiencies from 5 to 13%, and ecological efficiencies from 3 to 7%. For each species, production (P), energy flow (A) and total energy consumption (C) were expressed as functions of animal size, in order to facilitate gross estimations of the energy components for other populations for which data on size-frequency and density are available. Respiration studies of all three species in the laboratory failed to detect differences between respiration rates in air or under seawater.  相似文献   

10.
Five species of unicellular algae of the same age, cultured bacteria-free under standard growth conditions, were analyzed for chemical composition and fed to different size classes of Artemia salina. The green algae Chlamydomonas sphagnicolo, Dunaliella viridis, Platymonas elliptica and Chlorella conductrix had significantly higher percentages of protein and lipid than did the diatom Nitzschia closterium. Total ash value was highest in populations of N. closterium. Shrimp fed Chlamydomonas sphagnicolo cells assimilated highest percentages of organic matter, while those fed Chlorella conductrix had lowest assimilation rate. Respiration rates were inversely proportional to animal size (weight) and algal cell volume. Growth, survival, rate of sexual maturtion, and sex ratio were dependent on the growth and assimilation efficiencies obtained from each respective algal food. Shrimp fed Chlamydomonas sphagnicolo, D. viridis, or P. elliptica cells displayed highest growth and assimilation efficiencies.  相似文献   

11.
A. Martel  F. S. Chia 《Marine Biology》1991,110(2):237-247
We investigated recruitment of the herbivorous gastropodLacuna vincta (Montagu, 1803) in the canopies ofMacrocystis integrifolia andNereocystis luetkeana beds in Barkley Sound, Vancouver Island (British Colombia), from 1987 to 1989. Four factors influencing intensity and patterns of recruitment were studied: (1) seasonality of oviposition, (2) larval abundance, (3) growth of larvae in the field and (4) larval settlement. Egg masses were abundant on low intertidal algae but were scarce in kelp canopies. Although egg masses could be found almost year-round, a distinct and intense period of oviposition occurred during winter and spring. Intracapsular development lasted 2.5 to 3.5 wk before planktotrophic veligers emerged. The duration of the planktonic period, 7 to 9 wk, was determined through an in situ study of cohorts ofLacuna spp. larvae present in the plankton between January and June 1988. The general timing of the onset of the spring peak recruitment period was predicted from these cohorts. Primary periods of recruitment ofL. vincta in the canopy occurred in April–May (average density up to 383.9 juveniles m–2 blades), with a second period of lower intensity in the late summer—fall period. We observed similar trends between abundance of advanced larvae (> 500µm) in the plankton and recruitment rates in kelp canopies. Although adults were occasionally observed in the canopy, newly metamorphosed juveniles consistently dominated the habitat. The persistance of small juveniles (0.7 to 1.5 mm), rapid declines in density shortly after recruitment, and SCUBA observations of drifting individuals suggest that juveniles migrate to the under-canopy or low intertidal area after a brief period of growth on kelp blades.  相似文献   

12.
The food sources of benthic deposit feeders were investigated at three stations in an estuarine mudflat (Idoura Lagoon, Sendai Bay, Japan) during July and August 2005, using δ13C and δ15N ratios. Sediment at the stations was characterized by low chlorophyll (chl) a content (0–1 cm depth, <4 μg cm−2) and the dominance of riverine–terrestrial materials (RTM) in the sediment organic matter (SOM) pool. Surface-deposit feeders (Macoma contabulata, Macrophthalmus japonicus, and Cyathura muromiensis) exhibited much higher δ13C values (−18.4 to −12.4‰) than did the SOM pool (<−25‰). A δ13C-based isotopic mixing model estimated that benthic diatoms comprised 45–100% (on average) of their assimilated diet, whereas RTM comprised a lesser fraction (29% maximum). The major diet of the deep-deposit feeding polychaetes Notomastus sp. and Heteromastus sp. was benthic diatoms and/or marine particulate organic matter (POM), with little RTM assimilated (39% maximum). The consumers appeared to lack specific digestive enzymes and to use detritus-derived carbon only after its transfer to the microbial biomass. The isotopic mixing model also showed that the dietary contribution of RTM increased slightly (15% maximum) in the vicinity of freshwater input, suggesting that spatial changes in RTM supply affect the dietary composition of deposit feeders. These results clearly demonstrate that deposit feeders selectively ingest and/or assimilate the more nutritious microalgal fractions in the SOM pool. Such adaptations may allow enhanced energy gain in estuarine mudflats that are rich in vascular plant detritus with low nutritive value.  相似文献   

13.
To determine the effects food ration and feeding regime on growth and reproduction of Strongylocentrotus droebachiensis (Müller), sea urchins in laboratory aquaria were fed kelp (Laminaria longicruris) supplied at either a high (H, ad libidum daily) or a low (L, ad libidum 1 d wk−1) ration in two successive 12-wk intervals during the reproductive period. After 24 wk, urchins fed the high ration continuously (HH) or for the last 12 wk only (LH) had a significantly greater mean gonad index [(gonad weight/total body weight) × 100] and body weight than urchins fed the low ration continuously (LL) or for the last 12 wk only (HL). Urchins in the HL treatment had a significantly greater gonad index than those in the LL treatment; there was no significant difference in gonad index between the LH and HH treatments. Females had a greater gonad index than males in the low ration (LL and HL) treatments at the end of the experiment; there was no significant difference between sexes in the high ration (LH, HH) treatments. Gametogenesis proceeded to maturation in all treatments and some individuals spawned at the end of the experiment. Females in the high ration (HH and LH) treatments had a greater proportion of nutritive phagocytes in their ovaries than females in the low ration treatments, but there was no effect of feeding treatment on oocyte or ovum size. Feeding treatment had no effect on the relative abundance of nutritive phagocytes in the testes, although the proportion of spermatocytes was higher (and that of spermatozoa lower) in the high ration than in the low ration treatments. Urchins in the high ration treatments had a lower mean jaw height index [(jaw height/test diameter) × 100] and greater mean test diameter than those in the low ration treatments at the end of the experiment, although these differences were not statistically significant. Feeding rate on kelp at the end of the experiment was significantly greater for urchins in the low ration than in the high ration treatments. Our experimental results show that even relatively low rations of kelp support somatic and gonadal growth in S. droebachiensis. Increasing the supply of kelp, particularly during the period of active gametogenesis, results in maximal rates of growth and reproduction. These results suggest that populations of S. droebachiensis in barrens may derive a substantial proportion of their nutrition from drift kelp, which may contribute to their persistence in these habitats. They also explain the large body size, high reproductive effort and fecundity of urchins grazing on kelp beds. These findings have important implications for understanding the dynamics of natural populations of S. droebachiensis and for development of effective aquacultural practices. Received: 17 February 1997 / Accepted: 5 March 1997  相似文献   

14.
The study was carried out in the Skagerrak during late summer when population development in the pelagic cycle culminated in the yearly maximum in zooplankton biomass. The cyclonic circulation of surface water masses created the characteristic dome-shaped pycnocline across the Skagerrak. The large dinoflagellate Ceratium furca dominated the phytoplankton biomass. Ciliates and heterotrophic dinoflagellates were the major grazers and, potentially, consumed 43–166% of daily primary production. The grazing impact of copepods was estimated from specific egg production rates and grazing experiments. The degree of herbivory differed between species (14–85%), but coprophagy (e.g. feeding on fecal pellets) and ingestion of microzooplankton were also important. The appendicularian Oikopleura dioica was present in lower numbers than copepods, but cleared a large volume of water. The grazing impact of copepods and O. dioica was estimated to 57±24% and 12±12% of daily primary production, respectively. Sedimentation of organic material (30 m) varied between 169 and 708 mg C m–2 day–1, and the contribution from the mesozooplankton (copepod fecal pellets and mucus houses with attached phytodetritus of O. dioica) was 5–33% of this sedimentation. Recycling of fecal pellets and mucus houses in the euphotic zone was 59% and 36%, respectively. However, there was a high respiration of organic material by microorganisms in the mid-water column, and 34% of the sedimenting material actually reached the benthic community in the deep, central part of the Skagerrak.  相似文献   

15.
The effect of bryozoan colonization on inorganic nitrogen acquisition by Agarum fimbriatum Harv. and Macrocystis integrifolia Bory., collected from the west coast of Vancouver Island, British Columbia, Canada, was examined in laboratory experiments during June and July 1992. Pieces of kelp blades that were completely covered on one side by the bryozoans Lichenopora novae-zelandiae Busk or Membranipora membranacea, L., or uncolonized (clean treatment), were used to estimate the rate at which nitrate and ammonium were removed from the surrounding seawater. In addition, the rate of ammonium excretion by bryozoans isolated from their associated kelp was measured and also estimated from the results of the uptake experiments. Values obtained were used to estimate the contribution of ammonium excreted by bryozoans to the total amount of inorganic nitrogen available to the associated kelp. Both bryozoan species reduced the ability of the associated kelp to remove nitrate and ammonium from seawater but provided a source of ammonium to the kelp through excretion. The nitrogen status of colonized and clean kelp disks was determined from the ratio of total particulate carbon to total particulate nitrogen (C:N ratio). The C:N ratios for A. fimbriatum colonized with either L. novae-zelandiae or M. membranacea were similar (C:N=12 to 14), and differences between colonized and clean treatments were not significant. For A. fimbriatum, therefore, the C:N ratio indicates that this species was not nitrogen limited at the time of the present study. In contrast, both colonized and clean disks of M. integrifolia were nitrogen limited, but colonized disks (C:N=19) were significantly less limited by nitrogen than clean disks (C:N=29). Results are discussed in relation to the different environments inhabited by both kelp species and are consistent with the hypothesis that ammonium excreted by bryozoans was an important source of inorganic nitrogen to M. integrifolia, but not to A. fimbriatum, at the time of the study.  相似文献   

16.
The sea urchin Lytechinus variegatus is capable of surviving chronic exposure to sodium phosphate (inorganic phosphate) concentrations as high as 3.2 mg l−1, and triethyl phosphate (organic phosphate) concentrations of 1,000 mg l−1. However, chronic exposure to low (0.8 mg l−1 inorganic and 10 mg l−1 organic phosphate), medium (1.6 mg l−1 inorganic and 100 mg l−1 organic phosphate) or high (3.2 mg l−1 inorganic and 1,000 mg l−1 organic phosphate) sublethal concentrations of these phosphates inhibits feeding, fecal production, nutrient absorption and allocation, growth and righting behavior. Food consumption and fecal production declined significantly in individuals exposed to medium and high concentrations of inorganic phosphates and all levels of organic phosphates. Feeding absorption efficiencies for total organics and carbohydrates decreased significantly in individuals held in the highest concentration of organic phosphate. Feeding absorption efficiencies for lipids were significantly reduced in the highest inorganic phosphate concentration only, while they decreased significantly for protein with increasing phosphate exposure. Carbohydrate and lipid levels in gonad and gut tissues decreased significantly with exposure to increasing phosphate concentrations, potentially impairing both gametogenesis and nutrient storage in the gut. Moreover, gonad indices significantly decreased in individuals exposed to the highest concentrations of either phosphate. Growth rates decreased significantly under the influence of all phosphate concentrations, while increasing in seawater alone. Individuals exposed to increasing phosphate concentrations showed reduced righting responses (a measure of stress) and no acclimation in righting times during chronic exposure to phosphates over a 4 week period. These findings indicate that shallow-water populations of L. variegatus subjected to inorganic and organic phosphate pollutants will exhibit stress and be inhibited in their growth and performance due to reductions in feeding, nutrient absorption and allocation of nutrients to key somatic and reproductive tissues. Received: 10 April 2000 / Accepted: 2 October 2000  相似文献   

17.
We investigated the effects of food quality and quantity on reproductive maturation and growth of juveniles of Strongylocentrotus droebachiensis (Müller) in a 22 month laboratory experiment in which we fed sea urchins four diets: (1) kelp (Laminaria spp.) for 6 d wk−1 and mussel (Mytilus spp.) flesh for 1 d wk−1 (KM); (2) kelp for 7 d wk−1 (high ration, KH); (3) kelp for 1 d wk−1 (low ration, KL) and (4) no food other than encrusting coralline algae (NF). At their first and second opportunity for reproduction, all sea urchins in the KM and KH treatments, and most in the KL treatment were reproductively mature, whereas all sea urchins in the NF treatment remained immature. Gonad index differed significantly among all fed treatments at first and second reproduction, and was highest in the KM and lowest in the KL treatment. Gonad index was similar in both sexes at first reproduction, but it was higher in females than in males at second reproduction. Diet had little or no effect on the relative abundance of spermatocytes, spermatozoa, or nutritive phagocytes in testes at first and second reproduction. In ovaries, nutritive phagocytes were significantly more abundant in females in the KM and KH treatments than in the KL treatment at first reproduction, and significantly more abundant in unfed (NF) than fed (KM, KH, KL) females at second reproduction. Mean oocyte size was similar in all fed females at first reproduction, but significantly larger in fed than unfed females at second reproduction. Mean ovum size was similar in all fed females in both reproductive periods. Increase in test diameter was greatest in the KM treatment and smallest in the KL treatment; sea urchins in the NF treatment decreased slightly in size. Survival was 95 to 100% in all fed sea urchins but significantly lower in unfed ones. The feeding rate on kelp was significantly greater in the KL than the KM and KH treatments. In the KM treatment, the feeding rate on kelp increased significantly over a 6 d period after mussel flesh was provided. Our results demonstrate that a diet of high food quality and quantity accelerates reproductive maturation and growth rate, and enhances gonad production and survival in juvenile and young adult S. droebachiensis. These findings contribute to our understanding of the reproductive ecology of S. droebachiensis in habitats with differing food supplies (e.g., kelp beds and barrens). Our results also can be used to improve aquacultural practices for sea urchins. Received: 3 June 1998 / Accepted: 2 February 1999  相似文献   

18.
We studied assimilation efficiencies of the temperate-zone intertidal fish Cebidichthys violaceus (Girard, 1854) fed in the laboratory on each of the following species of macroalgae: Spongomorpha coalita (Chlorophyta), Ulva lobata (Chlorophyta), Iridaea flaccida (Rhodophyta) and Porphyra perforata (Rhodophyta). Together, these 4 algae make up over 75% of the natural summer diet of C. violaceus. Assimilation efficiency was calculated by proximate organic analysis of food and feces; the amount of ash in food and feces was used as a standard. Depending on the algal species, the fish assimilated 43 to 81% of the protein, 21 to 44% of the lipid, 45 to 62% of the carbohydrate and 31 to 52% of all three classes of organic material combined. These data are the first results showing that a temperate-zone marine fish can assimilate macroalgal constituents. Protein, carbohydrate and total organic material were absorbed more efficiently from rhodophytes than from chlorophytes. Conversely, lipid was absorbed more efficiently from chlorophytes than from rhodophytes. These results are compared with previous work showing that C. violaceus in nature eats more chlorophytes than rhodophytes, but in laboratory preference tests prefers rhodophytes to chlorophytes.  相似文献   

19.
Analyses of gut contents of freshly collected Ligia pallasii (Brandt) showed that the principal foods were encrusting diatoms, insect larvae, occasional members of the same species, and a variety of red and green seaweeds growing in the upper interiidal tidepool habitat. L. pallasii prefers to eat the green seaweed Ulva sp., and the brown alga Nereocystis luetkeana, when given a choice between several seaweeds, although neither of these forms is normally accessible to the isopods. The absorption (assimilation) of food-energy was 78% on a diet of Ulva and 55 to 76% on a diet of N. luetkeana—representative values for an algivorous invertebrate. A correlation analysis on the relationship of feeding preference of L. pallasii with calorific value of 7 potential seaweed foods suggested that feeding preference in this species is related to factors other than energy content of the food. Food preferences of invertebrates are discussed in relation to calorific value, accessibility, and to various nutritional factors.  相似文献   

20.
Accumulation rates of cadmium, the amount of food ingested and assimilated, the amount of oxygen consumed and changes in dry flesh weight have been measured in Mytilus edulis L. exposed to 0, 10 and 100 ppb cadmium for 17 d in aquaria with seawater flowing continously and at constant algal concentration. The accumulation rates were linear at 10 and 100 ppb, amounting to 0.58 and 8.89 ppm d-1, respectively. Body loads up to 150 ppm caused no effects on either clearance, ingestion, assimilation, respiration, or growth. High net growth efficiencies between 55–59% were obtained, indicating near optimal experimental conditions. It is suggested that the setup and experimental procedure provide an excellent tool in the study of accumulation and sublethal effects of environmental pollutants in suspension feeding bivalves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号