首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Following their exposure to anthracene, the roots of Populus nigra L. Loenen showed traces of 9 substances classed as products of biodegradation. The main substances detected were phthalic acid and 9,10-anthraquinone, followed by hydroxyanthracene and methoxyanthracene and five other compounds which could not be identified. Due to the relatively low concentration of degradation products found in the roots, further degradation to lower molecular compounds are discussed. The presence of 9,10-anthraquinone as the main product of the degradation of anthracene was also evident in the control tests with unplanted sandy substrate, although the content was higher in the planted series of tests. As a non-sterile approach was chosen, it may be assumed that a microbial degradation for 9,10-anthraquinone took place in the control series. However, it is difficult to differentiate clearly between a microbial degradation of anthracene in the substrate and metabolization in the roots due in part to the absence of specific degradation products in the various reaction areas.  相似文献   

2.
The influence of PAH chemical structure and concentration, added in either single (75 or 300 mg kg−1) or multiple (2 × 75, 2 × 150 or 4 × 75 mg kg−1) applications as single- or multiple-contaminant systems, on the development of PAH biodegradation in a pristine soil was investigated. Development in microbial catabolic ability was assessed at 0, 28, 56 and 84 d by monitoring 14C-naphthalene, 14C-phenanthrene and 14C-pyrene mineralisation over 14 d in respirometric assays. The presence of other contaminants influenced the ability of the indigenous microflora to mineralise structurally different contaminants over time. 14C-Naphthalene mineralisation was inhibited by the presence of other contaminants; whereas the presence of naphthalene significantly enhanced rates of mineralisation in multiple-contaminant systems containing 14C-phenanthrene and 14C-pyrene. Generally, increasing the number of contaminant applications has implications for catabolic activity of soil microbes. It is suggested the toxic nature of PAHs retarded mineralisation at increased contaminant concentrations.  相似文献   

3.
Biodegradation of endosulfan by a soil bacterium   总被引:1,自引:0,他引:1  
A bacterium capable of metabolizing endosulfan (6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-2,4,3-benzodioxathiepine3-oxide) was isolated from cotton-growing soil and effectively shown to degrade endosulfan into endosulfan sulfate. The bacterium degraded 50% of the compound within 3 days of incubation. Endosulfan sulfate was the only terminal product and no other metabolites were formed during the incubation. Endosulfan and its metabolites were analyzed by gas chromatography. The metabolites formed indicated that the organism follows an oxidative pathway for metabolism of this pesticide. Therefore, the present study, microbial degradation of endosulfan by a soil bacterium, may provide a basis for the development of bioremediation strategies to remediate the pollutants in the environment.  相似文献   

4.

A bacterium capable of metabolizing endosulfan (6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-2,4,3-benzodioxathiepine3-oxide) was isolated from cotton-growing soil and effectively shown to degrade endosulfan into endosulfan sulfate. The bacterium degraded 50% of the compound within 3 days of incubation. Endosulfan sulfate was the only terminal product and no other metabolites were formed during the incubation. Endosulfan and its metabolites were analyzed by gas chromatography. The metabolites formed indicated that the organism follows an oxidative pathway for metabolism of this pesticide. Therefore, the present study, microbial degradation of endosulfan by a soil bacterium, may provide a basis for the development of bioremediation strategies to remediate the pollutants in the environment.  相似文献   

5.
The biodegradation of 3,4, 2,4, 2,3, 2,6 and 3,5-di-methylphenol in combination with phenol andp-cresol by axenic and mixed cultures of bacteria was investigated. The strains, which degrade phenol andp-cresol through different catabolic pathways, were isolated from river water continuously polluted with phenolic compounds of leachate of oil shale semicoke ash heaps. The proper research of degradation of 2,4 and 3,4-di-methylphenol in multinutrient environments was performed. The degradation of phenolic compounds from mixtures indicated a flux of substrates into different catabolic pathways. Catechol 2,3-dioxygenase activity was induced by dimethylphenols inPseudomonas mendocina PC1, wheremeta cleavage pathway was functional during the degradation ofp-cresol. In the case of strains PC18 and PC24 ofP. fluorescens, the degradation ofp-cresol occurred via the protocatechuateortho pathway and the key enzyme of this pathway,p-cresol methylhydroxylase, was also induced by dimethylphenols. 2,4 and 3,4-dimethylphenols were converted into the dead-end products 4-hydroxy-3-methylbenzoic acid and 4-hydroxy-2-methylbenzoic acid. In the degradation of 3,4-dimethylphenol, the transient accumulation of 4-hydroxy-2-methylbenzaldehyde repressed the consumption of phenol from substrate mixtures. A mixed culture of strains with different catabolic types made it possible to overcome the incompatibilities at degradation of studied substrate mixtures.  相似文献   

6.
Due to the numerous biotechnological applications of laccase enzyme, it is essential to know the influence of different agents usually present in the natural environment on its enzymatic action, especially for in situ treatment technologies. In the present work, a simple and rapid method to determine the inhibitory or inducer effect of different compounds on laccase activity was developed. The compounds tested were copper-chelating agents and heavy metals. It was found that using syringaldazine as a substrate, all copper-chelating agents (except EDTA) highly inhibited laccase activity (around 100%) at an inhibitor concentration lower than 20 mM. Moreover, 40% of inhibition, which was detected at a concentration of 20 mM for both Cd(2+) and Cu(2+) increased with concentration until nearly complete inhibition at 80 mM.  相似文献   

7.
Dibromoneopentyl glycol (DBNPG) is a brominated flame retardant that is used as an additive during the manufacture of plastic polymers and as a chemical intermediate for other flame retardants. It is classified as not readily biodegradable and based on experimental studies in animals is believed to be a carcinogen. We have demonstrated, to the best of our knowledge for the first time, the complete biodegradation of DBNPG under aerobic conditions. Total organic carbon (TOC) analysis indicates the complete mineralization of DBNPG. DBNPG biodegradation was accompanied by the release of bromide into the medium, probably due to a biological debromination reaction by bacterial consortia. A denaturing gradient gel electrophoresis (DGGE) analysis of PCR amplified 16S rRNA gene was used, to characterize the bacterial consortia involved in DBNPG biodegradation. At least seven bacterial species were found to be involved in this process, among them species with similarity to strains that are known for their dehalogenating ability.  相似文献   

8.
Zhuang L  Gui L  Gillham RW 《Chemosphere》2012,89(7):810-816
This study examined the role of denitrifying and sulfate-reducing bacteria in biodegradation of pentaerythritol tetranitrate (PETN). Microbial inocula were obtained from a PETN-contaminated soil. PETN degradation was evaluated using nitrate and/or sulfate as electron acceptors and acetate as a carbon source. Results showed that under different electron acceptor conditions tested, PETN was sequentially reduced to pentaerythritol via the intermediary formation of tri-, di- and mononitrate pentaerythritol (PETriN, PEDN and PEMN). The addition of nitrate enhanced the degradation rate of PETN by stimulating greater microbial activity and growth of nitrite reducing bacteria that were responsible for degrading PETN. However, a high concentration of nitrite (350 mg L−1) accumulated from nitrate reduction, consequently caused self-inhibition and temporarily delayed PETN biodegradation. In contrast, PETN degraded at very similar rates in the presence and absence of sulfate, while PETN inhibited sulfate reduction. It is apparent that denitrifying bacteria possessing nitrite reductase were capable of using PETN and its intermediates as terminal electron acceptors in a preferential utilization sequence of PETN, PETriN, PEDN and PEMN, while sulfate-reducing bacteria were not involved in PETN biodegradation. This study demonstrated that under anaerobic conditions and with sufficient carbon source, PETN can be effectively biotransformed by indigenous denitrifying bacteria, providing a viable means of treatment for PETN-containing wastewaters and PETN-contaminated soils.  相似文献   

9.
Mechichi T  Mhiri N  Sayadi S 《Chemosphere》2006,64(6):998-1005
The decolourization of the recalcitrant dye RBBR by the culture filtrate of Trametes trogii and its isolated laccase was investigated. Both filtrates from Cu-induced cultures as well as purified laccase decolourized the dye RBBR. The purified laccase decolourized the dye down to 97% of 100 mg l(-1) initial concentration of RBBR when only 0.2U ml(-1) of laccase was used in the reaction mixture. The effects of different physicochemical parameters were tested and optimal decolourization rates occurred at pH 5 and at a temperature of 50 degrees C. Decolourization of RBBR occurred in the presence of metal ions which could be found in textile industry effluents. Of all the metal ions tested, FeCl2 was the most inhibiting for the decolourization. HBT was shown to have no effect on the decolourization of RBBR at low concentration, while at a concentration of 5 mM it slightly inhibited decolourization. The presence of aromatic compounds was found to be inhibiting for the decolourization at a concentration of 10 mM, but not at 0.1 mM, while at 1 mM only ortho-diphenols were inhibiting. Probing the effect of methanol it was found that higher concentrations caused a decrease in the decolourization rate of RBBR. The effect of laccase inhibitors on the decolourization of RBBR was tested with L-cysteine, SDS and EDTA. It was demonstrated that L-cysteine was the most inhibiting substrate for the decolourization while SDS was only inhibiting at 10 mM concentration and ETDA was not inhibiting at all tested concentrations.  相似文献   

10.
A laboratory pot experiment was conducted to study the effect of amending soil with four different sources of organic matter on the degradation rate of alpha and beta endosulfan isomers. Poultry by-product meal, poultry manure, dairy manure, and municipal solid waste compost were cured, dried, ground (<1 mm) and thoroughly mixed with a calcareous soil at a rate of 2% and placed in plastic pots. Endosulfan was added at the rate of 20 mg kg(-1). The moisture level was kept near field capacity and the pots were kept at room temperature. Soil sub-samples, 100 g each, were collected from every pot at days 1, 8, 15, 22, 29, 43, and 57 for the measurement of endosulfan isomers. Endosulfan residues were extracted from the soil samples with acetone. The supernatant was filtered through anhydrous sodium sulphate, 5 mL aliquot was diluted to 25 mL with hexane, mixed well, and then two sub-samples from the filtrates were analyzed for alpha and beta endosulfan isomers by gas chromatography. The results indicated that the half-life (T(1/2)) of alpha-endosulfan in the poultry by-product meal treatment was 15 days compared to about 22 days in the other treatments. The T(1/2) of beta-endosulfan was 22 days in the poultry by-product meal treatment and followed a bi-phasic pattern, 57 days in the municipal solid waste compost treatment and the extrapolated T(1/2) was about 115 days for the other three treatments.  相似文献   

11.
Two synthetic superabsorbent crosslinked acrylic polymers were mineralized by the white-rot fungusPhanerochaete chrysosporium. The amount of polymer converted to CO2 increased as the amount of polymer added to the cultures increased. In the presence of sufficiently large amounts of the superabsorbents, such that all of the culture fluid was absorbed and a gelatinous matrix was formed, the fungus still grew and mineralization was observed. Neither the polymers, nor their degradation products were toxic to the fungus. While the rates of mineralization were low, all of the polymers incubated in the liquid fungal cultures were completely depolymerized to water soluble products within 15–18 days. The depolymerization of the polymers was observed only in nitrogen limited cultures of the fungus which secrete the lignin degradation system, however, the water soluble products of depolymerization were mineralized in both nutrient limited and sufficient cultures of the fungus. The rate of mineralization of the depolymerized metabolites was more than two times greater in nutrient sufficient cultures. Following longer incubation periods, most (> 80 %) of the radioactivity was recovered in the fungal mycelial mat suggesting that carbon of the polymer had been converted to fungal metabolites.  相似文献   

12.
Biodegradation of polycyclic aromatic hydrocarbons by a mixed culture   总被引:39,自引:0,他引:39  
Yuan SY  Wei SH  Chang BV 《Chemosphere》2000,41(9):1463-1468
We investigated the potential biodegradation of polycyclic aromatic hydrocarbons (PAHs) by an aerobic mixed culture utilizing phenanthrene as its carbon source. Following a 3-5 h post-treatment lag phase, complete degradation of 5 mg/l phenanthrene occurred within 28 h (optimal conditions determined as 30 degrees C and pH 7.0). Phenanthrene degradation was enhanced by the individual addition of yeast extract, acetate, glucose or pyruvate. Results show that the higher the phenanthrene concentration, the slower the degradation rate. While the mixed culture was also capable of efficiently degrading pyrene and acenaphthene, it failed to degrade anthracene and fluorene. In samples containing a mixture of the five PAHs, treatment with the aerobic culture increased degradation rates for fluorene and anthracene and decreased degradation rates for acenaphthene, phenanthrene and pyrene. Finally, it was observed that when nonionic surfactants were present at levels above critical micelle concentrations (CMCs), phenanthrene degradation was completely inhibited by the addition of Brij 30 and Brij 35, and delayed by the addition of Triton X100 and Triton N101.  相似文献   

13.
Gong Z  Alef K  Wilke BM  Li P 《Chemosphere》2005,58(3):291-298
This study reports on the feasibility of remediation of polycyclic aromatic hydrocarbon (PAH) contaminated soils using sunflower oil, an environmentally-friendly solvent. Batch experiments were performed to test the influence of oil/soil ratio on the remediation of PAH contaminated soil, and to test the mass transfer behaviors of PAHs from soil to oil. An empirical model was employed to describe the kinetics of PAH dissolution and to predict equilibrium concentrations of PAHs in oil. PAH containing oil was regenerated using active carbon. Results show that dissolution of PAHs from a Manufactured Gas Plant (MGP) soil at oil/soil ratios of one or two were almost the same. Nearly all PAHs (81-100%) could be removed by sunflower oil dissolution. Mass transfer coefficients for low molecular PAHs namely fluoranthene, phenanthrene and anthracene were one or two orders of magnitude higher than those for high molecular PAHs with 4-6 rings. Ninety milliliters of PAH containing oil could be regenerated by 10 g active carbon in a batch reactor. Such a remediation procedure indicates that sunflower oil is a promising agent for the removal of PAHs from MGP soils. However, further research is required before the method can be used for in situ remediation of contaminated sites.  相似文献   

14.
污水处理厂各工艺阶段多环芳烃变化规律研究   总被引:5,自引:0,他引:5  
采用固相萃取-气相色谱/氢火焰离子化检测器联用技术(SPE-GC/FID),对西安市某污水处理厂不同工艺段水体中的16种多环芳烃(PAHs)含量进行了长期监测。结果表明,原水中有13种PAHs检出,按浓度从大到小排序分别为:萘、菲、芴、芘、艹屈、二氢苊、苊、蒽、苯并(a)蒽、荧蒽、苯并(b)荧蒽、苯并(k)荧蒽、苯并(a)芘;原水中PAHs的总量在477.1~3 067.7 ng/L之间,平均值为1 833.1 ng/L,同国内外报道的结果相比,可认为西安市生活污水中PAHs的含量处于中等水平;二级处理工艺对PAHs有较好的去除效果,平均去除率为79%,其中,生物处理单元的贡献最大,去除率达到68%。  相似文献   

15.
高效液相色谱法测定南昌市环境空气PM10中16种多环芳烃   总被引:3,自引:1,他引:3  
建立了以二极管阵列检测器和荧光检测器串联的高效液相色谱分析方法,在标样未完全分离的情况下,采用双激发波长有效地改善了色谱分离条件.在设定的色谱条件下,各种多环芳烃(PAHs)的检出限为0.11~39.83μg/L,平均回收率为76.7%~98.3%,相对标准偏差为3.6%~12.6%.在南昌市布设4个环境空气采样点,测定PM10中PAHs含量.结果表明,八一广场、南昌市区二中老校区和罗家集区苯并(a)芘日均质量浓度最大值均超过<环境空气质量标准>(GB 3095-1996)的限值,PAHs污染状况较严重.  相似文献   

16.
The nicotine-degrading bacterium HZN1 was isolated from activated sludge and identified as Shinella sp. based on its physiological characteristics and analysis of 16S rDNA gene. Strain HZN1 is capable of using nicotine as the sole carbon source in the mineral salts medium. The optimum temperature and pH for strain HZN1 growth and nicotine degradation were 30°C and 7.0, respectively. It could degrade approximately 100 % of 0.5 g L?1 of nicotine within 9 h. Three intermediate metabolites were produced by the strain HZN1 and identified as cotinine, myosmine and nicotyrine using gas chromatography-mass spectrometry. This is the first report of nicotine-degrading strain from the genus of Shinella. The results showed that strain HZN1 could be potentially employed in bioremediation of nicotine. Our findings would provide a new insight into the biodegradation of nicotine.  相似文献   

17.
灵芝漆酶对直接蓝86的催化脱色性能   总被引:1,自引:0,他引:1  
利用灵芝菌Ganoderma lucidum U-281漆酶对直接蓝86进行酶促氧化脱色,并对其降解机理进行了探讨。结果表明,染料-漆酶共反应体系在20~50℃及pH小于5.0范围内,直接蓝86均可脱色50%以上;漆酶对直接蓝86具有宽泛的浓度适应性,对300 mg/L的该染料仍具有耐受性。最优脱色工艺参数为温度40℃、pH 5.0、染料初始浓度200 mg/L、漆酶用量1 U/mL。在优化条件下,直接蓝863 h的脱色率达到54.54%,48 h脱色率达到91.54%。紫外-可见吸收光谱分析表明,漆酶的酶促氧化导致染料的分子结构产生了变化,是造成直接蓝86脱色的主要发生机制。  相似文献   

18.
Biodegradation of an amphoteric surfactant commonly used in personal care products, disodium cocoamphodiacetate (DSCADA), was evaluated. Results from respirometry experiments indicated that high levels of DSCADA (>216 mg/L) may be toxic to bacteria in wastewater treatment processes. Limited biodegradation, with 50% dissolved organic carbon (DOC) removal and 80% chemical oxygen demand removal was observed in batch assays, while complete removal of the parent compound, DSCADA, was noted. Oxygen biosensors were used to evaluate biodegradability of the metabolites present in the batch samples. Additional aerobic microbial activity was not detected in these samples, even with a residual DOC of approximately 45 mg/L. Results from this research indicate that biodegradability of DSCADA is limited and recalcitrant metabolites may be formed. Because DSCADA is a commonly used surfactant and is present in domestic and industrial wastewater, the associated risk posed by residual compounds should be carefully evaluated.  相似文献   

19.
Materials based on polystyrene and starch copolymers are used in food packaging, water pollution treatment, and textile industry, and their biodegradability is a desired characteristic. In order to examine the degradation patterns of modified, biodegradable derivates of polystyrene, which may keep its excellent technical features but be more environmentally friendly at the same time, polystyrene-graft-starch biomaterials obtained by emulsion polymerization in the presence of new type of initiator/activator pair (potassium persulfate/different amines) were subjected to 6-month biodegradation by burial method in three different types of commercially available soils: soil rich in humus and soil for cactus and orchid growing. Biodegradation was monitored by mass decrease, and the highest degradation rate was achieved in soil for cactus growing (81.30 %). Statistical analysis proved that microorganisms in different soil samples have different ability of biodegradation, and there is a significant negative correlation between the share of polystyrene in copolymer and degree of biodegradation. Grafting of polystyrene on starch on one hand prevents complete degradation of starch that is present (with maximal percentage of degraded starch ranging from 55 to 93 %), while on the other hand there is an upper limit of share of polystyrene in the copolymer (ranging from 37 to 77 %) that is preventing biodegradation of degradable part of copolymers.  相似文献   

20.
The nicotine-degrading bacterium HZN1 was isolated from activated sludge and identified as Shinella sp. based on its physiological characteristics and analysis of 16S rDNA gene. Strain HZN1 is capable of using nicotine as the sole carbon source in the mineral salts medium. The optimum temperature and pH for strain HZN1 growth and nicotine degradation were 30°C and 7.0, respectively. It could degrade approximately 100 % of 0.5 g L(-1) of nicotine within 9 h. Three intermediate metabolites were produced by the strain HZN1 and identified as cotinine, myosmine and nicotyrine using gas chromatography-mass spectrometry. This is the first report of nicotine-degrading strain from the genus of Shinella. The results showed that strain HZN1 could be potentially employed in bioremediation of nicotine. Our findings would provide a new insight into the biodegradation of nicotine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号