首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
通过X-射线衍射仪(XRD)、扫描电镜(SEM)、透射电镜(TEM)和紫外可见光漫反射谱(UV-vis)对碳纳米管/二氧化钛/壳聚糖复合薄膜的晶体结构和形貌进行表征,以室内空气典型污染物气相苯为模型反应物,研究碳纳米管/二氧化钛/壳聚糖催化薄膜的光催化活性及其对苯的光降解机理。结果表明,制备的碳纳米管/二氧化钛/壳聚糖催化薄膜所具有的良好催化活性归功于碳纳米管、二氧化钛和壳聚糖三者的协调效应;气相苯光降解产生的主要中间产物是乙酸乙酯和十一烷,以及少量的丙烯醛、4-羰基-甲基-苯乙酮、十二烷烃、2,4,-二叔丁基苯酚、二十一烷烃。根据红外光谱分析与GC/MS分析结果,进一步提出了气相苯的降解机理过程。  相似文献   

2.

A number of methods have been reported for determining hydrophobic organic compound adsorption to dispersed carbon nanotubes (CNTs), but their accuracy and reliability remain uncertain. We have evaluated three methods to investigate the adsorption of phenanthrene (a model polycyclic aromatic hydrocarbon, PAH) to CNTs with different physicochemical properties: dialysis tube (DT) protected negligible depletion solid phase microextraction (DT-nd-SPME), ultracentrifugation, and filtration using various types of filters. Dispersed CNTs adhered to the unprotected polydimethylsiloxane (PDMS)-coated fibers used in nd-SPME. Protection of the fibers from CNT adherence was investigated with hydrophilic DT, but high PAH sorption to the DT was observed. The efficiency of ultracentrifugation and filtration to separate CNTs from the water phase depended on CNT physicochemical properties. While non-functionalized CNTs were efficiently separated from the water phase using ultracentrifugation, incomplete separation of carboxyl functionalized CNTs was observed. Filtration efficiency varied with different filter types (composition and pore size), and non-functionalized CNTs were more easily separated from the water phase than functionalized CNTs. Sorption of phenanthrene was high (< 70%) for three of the filters tested, making them unsuitable for the assessment of phenanthrene adsorption to CNTs. Filtration using a hydrophilic polytetrafluoroethylene (PTFE) filter membrane (0.1 μm) was found to be a simple and precise technique for the determination of phenanthrene adsorption to a range of CNTs, efficiently separating all types of CNTs and exhibiting a good and highly reproducible recovery of phenanthrene (82%) over the concentration range tested (70–735 μg/L).

  相似文献   

3.
The colloidal stability of dry and suspended carbon nanotubes (CNTs) in the presence of amphiphilic compounds (i.e. natural organic matter or surfactants) at environmentally realistic concentrations was investigated over several days. The suspensions were analyzed for CNT concentration (UV-vis spectroscopy), particle size (nanoparticle tracking analysis), and CNT length and dispersion quality (TEM). When added in dry form, around 1% of the added CNTs remained suspended. Pre-dispersion in organic solvent or anionic detergent stabilized up to 65% of the added CNTs after 20 days of mild shaking and 5 days of settling. The initial state of the CNTs (dry vs. suspended) and the medium composition hence are critical determinants for the partitioning of CNTs between sediment and the water column. TEM analysis revealed that single suspended CNTs were present in all suspensions and that shaking and settling resulted in a fractionation of the CNTs with shorter CNTs remaining predominantly in suspension.  相似文献   

4.
The objective of this study is to obtain information on the behaviour of carbon nanotubes (CNTs) as potential carriers of pollutants in the case of accidental CNT release to the environment and on the properties of CNTs as a potential adsorbent material in water purification. The effects of acid treatment of CNTs on (i) the surface properties, (ii) the colloidal stability and (iii) heavy metal sorption are investigated, the latter being exemplified by uranium(VI) sorption. There is a pronounced influence of surface treatment on the behaviour of the CNTs in aqueous suspension. Results showed that acid treatment increases the amount of acidic surface groups on the CNTs. Therefore, acid treatment has an increasing effect on the colloidal stability of the CNTs and on their adsorption capacity for U(VI). Another way to stabilise colloids of pristine CNTs in aqueous suspension is the addition of humic acid.  相似文献   

5.
Quantification of natural and engineered carbon nanotubes (CNT) in the environment is urgently needed to study their occurrence and fate and to enable a proper risk assessment. Currently, such methods are lacking. Here, we tested the resistance of 15 structurally different CNTs to chemothermal oxidation at 375 °C (CTO-375), a method used to isolate soots from environmental samples. Depending on their structure, CNTs survived CTO-375 in proportions ranging from 26 to 93%. Standard addition of CNTs to soil and sediment yielded recoveries between 66 and 171%, demonstrating the capability of CTO-375 to isolate CNTs from complex environmental matrices. These data of pure and added CNTs correspond to recoveries obtained with “ordinary” soots under similar experimental conditions. Hence, soot fractions commonly isolated with CTO-375 from environmental matrices most probably encompass CNTs. Future work should attempt to enhance the method's selectivity, i.e., its capability to separate CNTs from other forms of soot.  相似文献   

6.
During three separate studies involving characterization of diesel particulate matter, carbon nanotubes (CNTs) were found among diesel exhaust particles sampled onto transmission electron microscopy (TEM) grids. During these studies, samples were collected from three different diesel engines at normal operating conditions with or without an iron catalyst (introduced as ferrocene) in the fuel. This paper is to report the authors’ observation of CNTs among diesel exhaust particles, with the intent to stimulate awareness and further discussion regarding the formation mechanisms of CNTs during diesel combustion.

Implications: Increased attention is being given to CNTs and other nanomaterials and a recent review paper showed that CNTs are capable of inflammation in the lung when inhaled. For this reason and because diesel engines are so common, it is important to acknowledge the existence of CNTs among diesel particles and possible regulation and online measurement method development.  相似文献   

7.
Adsorption of microcystins by carbon nanotubes   总被引:4,自引:0,他引:4  
Yan H  Gong A  He H  Zhou J  Wei Y  Lv L 《Chemosphere》2006,62(1):142-148
The production of cyanobacterial toxins microcystins (MCs) by cyanobacterial bloom which may promote the growth of tumor in human liver is a growing environmental problem worldwide. In this paper, the adsorption of MC-RR and LR, which were extracted from cyanobacterial cells in Dianchi Lake in China, by carbon nanotubes (CNTs), wood-based activated carbon (ACs) and clays were investigated. Compared with ACs and clay materials of sepiolite, kaolinite and talc tested, CNTs were found to have a strong ability in the adsorption of MCs. At the concentrations of 21.5 mg l(-1) MC-RR and 9.6 mg l(-1) MC-LR in 50 mmol phosphate buffer solution (pH 7.0), the adsorption amounts of MCs by CNTs with the range of outside diameter from 2 to 10nm were 14.8 and 5.9 mg g(-1), which were about four times higher than those by other adsorbents tested. It was shown that with the decrease of CNTs outside diameters from 60 to 2 nm, the adsorption amount of MCs was apparently increased, however the size of CNTs particles formed in solution declined. This result implies that the size of CNTs tube pore that is fit for the molecular dimension of MCs plays a dominant role. Furthermore the specific surface area of CNTs was also found to be a factor in the adsorption of MCs. The results suggested that the selection of suitable size of CNTs as a kind of adsorbent is very important in the efficient eliminating MCs from drinking water in future.  相似文献   

8.
Desorption behavior of pyrene, phenanthrene and naphthalene from fullerene, single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) was examined. Available adsorption space of carbon nanotubes (CNTs) was found to be the cylindrical external surface, neither the inner cavities nor inter-wall spaces due to impurities in the CNTs and restricted spaces (0.335nm) of the MWCNTs, respectively. Desorption hysteresis was observed for fullerene but not for CNTs. Deformation-rearrangement was proposed to explain the hysteresis of polycyclic aromatic hydrocarbons (PAHs) for fullerene, due to the formation of closed interstitial spaces in spherical fullerene aggregates. However, long, cylindrical carbon nanotubes could not form such closed interstitial spaces in their aggregates due to their length, thus showing no significant hysteresis. High adsorption capacity and reversible adsorption of PAHs on CNTs imply the potential release of PAHs if PAH-adsorbed CNTs are inhaled by animals and humans, leading to a high environmental and public health risk.  相似文献   

9.
10.
碳纳米管对嗜酸氧化亚铁硫杆菌的毒性效应及其作用机制   总被引:1,自引:1,他引:0  
以嗜酸氧化亚铁硫杆菌(Acidithiobacillus ferrooxidans)为实验菌株,探讨不同条件下碳纳米管(CNTs)对其生长的影响,并采用SEM、EDS和FT-IR等手段分析CNTs对嗜酸氧化亚铁硫杆菌的毒性机制。实验结果表明,CNTs对Acidithiobacillus ferrooxidans生长有抑制作用,并随着CNTs剂量的增加,毒性增大。在CNTs投加量为500 mg/L时,培养40 h后菌株的生长量OD420达到最大值0.117,低于空白组的0.163。培养温度和培养基的pH对CNTs的细胞毒性效应有较大影响,在菌体生长的适宜条件下(pH 3.0,温度为30℃),CNTs对菌体的毒性最强。SEM、EDS和FT-IR分析结果显示,CNTs附着在细胞表面,与细胞表面的羟基、氨基等基团相互作用,并可能诱发菌体细胞产生活性氧自由基(ROS),从而导致细胞死亡。  相似文献   

11.
Gigault J  Grassl B  Lespes G 《Chemosphere》2012,86(2):177-182
This work focuses on the influence of humic acids (HAs) on the fate of carbon nanotubes (CNTs) in aqueous media. This influence was demonstrated by mixing CNT powder with HAs in aqueous solution in varying concentrations. The aqueous media containing HAs and CNTs were size-characterized by asymmetrical flow field-flow fractionation (AsFlFFF) coupled with multi-angle light scattering (MALS). This coupling yielded information concerning the size distribution of single- and multi-walled CNTs (SWCNTs and MWCNTs) and HAs under different physico-chemical conditions that can occur in environmental water. HAs can disperse individual CNTs in aqueous media. However, the difference in the physical structure between SWCNTs and MWCNTs leads to significant differences in the quantity of HA that can adsorb onto the nanotube surface and in the stability of the CNT/HA complex. Compared with MWCNTs, SWCNTs suspended in HAs are less affected by changing ionic strength with respect to stability and the amount suspended.  相似文献   

12.
Yang ST  Wang H  Wang Y  Wang Y  Nie H  Liu Y 《Chemosphere》2011,82(4):621-626
The potential health and environmental hazards of carbon nanotubes (CNTs) have been a concerned issue. However, in contrast to the wide recognition of the toxicity of CNTs, little attention has been paid to the decontamination/remediation of CNT pollution. In this study, we report that CNTs can be removed from aqueous environment. In the presence of Ca2+, CNTs aggregate quickly to micron size and then enable easy and effective removal via normal filtration. After filtration, CNT suspension becomes colorless with the remnant CNT concentration less than 0.5 μg mL−1, a safe dose based on the published data. The filtration approach also works well in the presence of typical surfactant and dissolved organic matter. The removal efficiency is Ca2+ concentration-dependent and regulated by the initial pH value and ionic strength. Our study is helpful for future decontamination of CNTs from aqueous environment.  相似文献   

13.
Hyperaccumulators contain tubular cellulose and heavy metals, which can be used as the sources of carbon and metals to synthesize nanomaterials. In this paper, carbon nanotubes (CNTs), Cu0.05Zn0.95O nanoparticles, and CNTs/Cu0.05Zn0.95O nanocomposites were synthesized using Brassica juncea L. plants, and the ultraviolet (UV)-light-driven photocatalytic degradations of bisphenol A (BPA) using them as photocatalysts were studied. It was found that the outer diameter of CNTs was around 50 nm and there were a few defects in the crystal lattice. The synthesized Cu0.05Zn0.95O nanocomposites had a diameter of around 40 nm. Cu0.05Zn0.95O nanocomposites have grown on the surface of the CNTs and the outer diameter of them was around 100 nm. The synthesized hybrid carbon nanotubes using B. juncea could enhance the efficiency of photocatalytic degradation on BPA. The complete equilibration time of adsorption/desorption of BPA onto the surface of CNTs, Cu0.05Zn0.95O nanoparticles, and CNTs/Cu0.05Zn0.95O nanocomposites was within 30, 20, and 30 min, and approximately 14.9, 8.7, and 17.4 % BPA was adsorbed by them, respectively. The combination of UV light irradiation (90 min) with CNTs, Cu0.05Zn0.95O nanoparticles, and CNTs/Cu0.05Zn0.95O nanocomposites could lead to 48.3, 75.7, and 92.6 % decomposition yields of BPA, respectively. These findings constitute a new insight for synthesizing nanocatalyst by reusing hyperaccumulators.  相似文献   

14.
Raw kaolinite was used in the synthesis of metakaolinite/carbon nanotubes (K/CNTs) and kaolinite/starch (K/starch) nanocomposites. Raw kaolinite and the synthetic composites were characterized using XRD, SEM, and TEM techniques. The synthetic composites were used as adsorbents for Fe and Mn ions from aqueous solutions and natural underground water. The adsorption by the both composites is highly pH dependent and achieves high efficiency within the neutral pH range. The experimental adsorption data for the uptake of Fe and Mn ions by K/CNTs were found to be well represented by the pseudo-second-order kinetic model rather than the intra-particle diffusion model or Elovich model. For the adsorption using K/starch, the uptake results of Fe ions was well fitted by the second-order model, whereas the uptake of Mn ions fitted well to the Elovich model rather than pseudo-second-order and intra-particle diffusion models The equilibrium studies revealed the excellent fitting of the removal of Fe and Mn ions by K/CNTs and Fe using K/starch with the Langmuir isotherm model rather than with Freundlich and Temkin models. But the adsorption of Mn ions by K/starch is well fitted with Freundlich rather than Temkin and Langmuir isotherm models. The thermodynamic studies reflected the endothermic nature and the exothermic nature for the adsorption by K/CNTs and K/starch nanocomposites, respectively. Natural ground water contaminated by 0.4 mg/L Fe and 0.5 mg/L Mn was treated at the optimum conditions of pH 6 and 120 min contact time. Under these conditions, 92.5 and 72.5% Fe removal efficiencies were achieved using 20 mg of K/CNTs and K/starch nanocomposites, respectively. Also, K/CNTs nanocomposite shows higher efficiency in the removal of Mn ions as compared to K/starch nanocomposite.  相似文献   

15.
Ninety strains of fungi from the collection of our mycology laboratory were tested in Galzy and Slonimski (GS) synthetic liquid medium for their ability to degrade the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) and its by-product, 2,4-dichlorophenol (2,4-DCP) at 100 mg l(-1), each. Evolution of the amounts of each chemical in the culture media was monitored by HPLC. After 5 days of cultivation, the best results were obtained with Aspergillus penicilloides and Mortierella isabellina for 2,4-D and with Chrysosporium pannorum and Mucor genevensis for 2,4-DCP. The data collected seemed to prove, on one hand, that the strains responses varied with the taxonomic groups and the chemicals tested, and, on the other hand, that 2,4-D was less accessible to fungal degradation than 2,4-DCP. In each case, kinetics studies with the two most efficient strains revealed that there was a lag phase of 1 day before the onset of 2,4-D degradation, whereas there was none during 2,4-DCP degradation. Moreover, 2,4-DCP was detected transiently during 2,4-D degradation. Finally, M. isabellina improved its degradation potential in Tartaric Acid (TA) medium relative to GS and Malt Extract (ME) media.  相似文献   

16.
This study was undertaken to assess 2,4-D mineralization in an undulating cultivated field, along a sloping transect (458 m to 442 m above sea level), as a function of soil type, soil microbial communities and the sorption of 2,4-D to soil. The 2,4-D soil sorption coefficient (Kd) ranged from 1.81 to 4.28 L kg(-1), the 2,4-D first-order mineralization rate constant (k) ranged from 0.04 to 0.13 day(-1) and the total amount of 2,4-D mineralized at 130 days (M(130)) ranged from 24 to 39%. Both k and M(130) were significantly negatively associated (or correlated) with soil organic carbon content (SOC) and Kd. Both k and M(130) were significantly associated with two fatty-acid methyl esters (FAME), i17:1 and a18, but not with twenty-two other individual FAME. Imperfectly drained soils (Gleyed Dark Grey Chernozems) in lower-slopes showed significantly lesser 2,4-D mineralization relative to well-drained soils (Orthic Dark Grey Chernozems) in mid- and upper-slopes. Well-drained soils had a greater potential for 2,4-D mineralization because of greater abundance and diversity of the microbial community in these soils. However, the reduced 2,4-D mineralization in imperfectly drained soils was predominantly because of their greater SOC and increased 2,4-D sorption, limiting the bioavailability of 2,4-D for degradation. The wide range of 2,4-D sorption and mineralization in this undulating cultivated field is comparable in magnitude and extent to the variability of 2,4-D sorption and mineralization observed at a regional scale in Manitoba. As such, in-field variations in SOC and the abundance and diversity of microbial communities are determining factors that require greater attention in assessing the risk of movement of 2,4-D by runoff, eroded soil and leaching.  相似文献   

17.
Enantioselectivity in the toxicity and degradation of the herbicide dichlorprop-methyl (2,4-DCPPM) in algal cultures was studied. Enantioselectivity was clearly observed in the toxicity of racemic 2,4-DCPPM and its two enantiomers. R-2,4-DCPPM showed low toxicity to Chlorella pyrenoidosa and Chlorella vulgaris, but higher toxicity to Scenedesmus obliquus. The observed toxicity was ranked: R-2,4-DCPPM>S-2,4-DCPPM>Rac-2,4-DCPPM; the toxicity of R-2,4-DCPPM was about 8-fold higher than that of Rac-2,4-DCPPM. Additionally, 2,4-DCPPM was quickly degraded, in the initial 12 h, and different algae cultures had different enantioselectivity for the 2,4-DCPPM enantiomers. There was no significant enantioselectivity for 2,4-DCPPM in Chlorella vulgaris in the initial 7 h. However, racemic 2,4-DCPPM was degraded by Scenedesmus obliquus quickly, in the initial 4 h, much quicker, in fact, than the S- or R-enantiomers (racemate>R->S-), indicating that the herbicide 2,4-DCPPM was absorbed enantioselectively by Scenedesmus obliquus. The rapid formation of 2,4-DCPP suggested that 2,4-DCPPM adsorbed by algal cells was catalytically hydrolyzed to the free acid, a toxic metabolite. The production rates of 2,4-DCPP were as follows: Scenedesmus obliquus>Chlorella pyrenoidosa>Chlorella vulgaris, consistent with the degradability of 2,4-DCPPM. Scenedesmus obliquus had quick, but different, degradative and uptake abilities for R-, S-, and Rac-2,4-DCPPM. The R- and S- enantiomers were not hydrolyzed in the first 12 h, while both enantiomers were hydrolyzed slowly after that. These results indicate that some physical and chemical properties of compounds are of importance in determining their enantioselective toxicity and degradation. The ester and its metabolite likely played an important role in enantioselective toxicity to the three algae.  相似文献   

18.

Background and purposes

The pathways used by microorganisms for the metabolism of every xenobiotic substrate are specific. The catabolism of a xenobiotic goes through a series of intermediate steps and lower intermediates (metabolites) appear in sequence. The structure of the metabolites can be similar to the parents due to kinship. The purposes of this study were to examine if the degradation pathways that were developed for a parent xenobiotic are effective to degrade the parent??s lower metabolites, and if the reverse is true.

Materials and methods

The xenobiotic substrates, 2,4-dichlorophenoxyacetic acid (2,4-D, the parent xenobiotic) and its metabolite 2,4-dichlorophenol (2,4-DCP), were independently subjected to acclimation and degradation tests by the biomasses of mixed-culture activated sludge and a pure culture of Arthrobacter sp.

Results

Activated sludge and Arthrobacter sp. that were acclimated to 2,4-D effectively degraded 2,4-D and the lower metabolites of 2,4-D, typically 2,4-DCP. During the degradation of 2,4-D, accumulations of the lower metabolites of 2,4-D were not found. The degradation pathways acquired from acclimation to 2,4-D are effective for all the metabolites of 2,4-D. However, pathways acquired from acclimation to 2,4-DCP are not effective in the degradation of the parent 2,4-D.

Conclusions

Microorganisms acclimated to 2,4-D evolve their degradation pathways by a scheme that is different from the scheme the microorganisms employ when they are acclimated to the metabolites of 2,4-D.  相似文献   

19.
Wang SG  Liu XW  Zhang HY  Gong WX  Sun XF  Gao BY 《Chemosphere》2007,69(5):769-775
Development of aerobic granules for the biological degradation of 2,4-dichlorophenol (2,4-DCP) in a sequencing batch reactor was reported. A key strategy was involving the addition of glucose as a co-substrate and step increase in influent 2,4-DCP concentration. After operation of 39d, stable granules with a diameter range of 1-2mm and a clearly defined shape and appearance were obtained. After granulation, the effluent 2,4-DCP and chemical oxygen demand concentrations were 4.8mgl(-1) and 41mgl(-1), with high removal efficiencies of 94% and 95%, respectively. Specific 2,4-DCP biodegradation rates in the granules followed the Haldane model for substrate inhibition, and peaked at 39.6mg2,4-DCPg(-1)VSS(-1)h(-1) at a 2,4-DCP concentration of 105mgl(-1). Efficient degradation of 2,4-DCP by the aerobic granules suggests their potential application in the treatment of industrial wastewater containing chlorophenols and other inhibitory chemicals.  相似文献   

20.
Abstract

The effects of the herbicide triclopyr (3,5,6‐trichloro‐2‐pyridinyloxyacetic acid) on the mineralization of 2,4‐D (2,4‐dichlorophenoyxacetic acid) in two soils which differed in their histories of prior exposure to the two herbicides were investigated. The relative effects of triclopyr on 2,4‐D mineralization and most probable numbers of 2,4‐D degraders were dependent upon the soil. Triclopyr was shown to increase 2,4‐D mineralization rates in a soil which had been exposed to both 2,4‐D and triclopyr, but decreased the mineralization rate of 2,4‐D and inhibited the increase of most probable numbers of 2,4‐D degraders in a soil that had not been directly exposed to either herbicide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号