首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
焦化废水中含有大量的有机污染物,通过实验发现,采用常规活性污泥法处理,进水COD为2000mg/L左右时,出水COD在350—700mg/L之间,COD的去除率仅为60%-70%,难以达到国家排放标准。根据共代谢机理,向焦化废水生化处理系统中投加共代谢初级基质,促进难降解有机物被微生物降解,从而使COD的去除率提高到75%~85%。  相似文献   

2.
IC反应器处理制药废水的颗粒污泥驯化和快速启动   总被引:4,自引:0,他引:4       下载免费PDF全文
试验研究了厌氧内循环(IC)反应器处理化工合成制药废水时,颗粒污泥的驯化培养启动过程.IC反应器控制在中温条件运行,接种颗粒污泥取自处理味精废水的厌氧上升流式污泥床反应器,驯化开始采用葡萄糖基质与制药废水混合废水,然后很快转化为全部是生物难降解的合成制药废水.结果表明,采用高负荷、高进水浓度的启动控制条件,经历23d的启动运行,IC反应器的容积负荷达到5 kgCOD/(m3·d), COD去除率达到70%~80%.在容积负荷达到7.4kgCOD/(m3·d)时,COD的去除率仍可稳定在70%左右.IC反应器中的成熟颗粒污泥形状规则、密实、粒径大.扫描电镜观察发现,颗粒污泥中古细菌产甲烷鬓毛菌(Methanosaetaceae)占优势. IC反应器处理难降解废水在高负荷、高进水浓度条件下可实现快速培养驯化和启动.  相似文献   

3.
姜丽娜  佘宗莲  金春姬  王磊  于静 《环境科学》2007,28(10):2230-2235
用实验室规模的2个UASB反应器,分别研究了以葡萄糖和乙酸钠为共基质条件下3-硝基酚(3-NP)和2,6-二硝基酚(2,6-DNP)的降解效果.结果表明,对3-NP的降解,用葡萄糖作共基质的效果明显好于以乙酸钠为共基质;而对2,6-DNP的降解,乙酸钠作共基质效果更好.在含3-NP废水厌氧降解实验中,保持进水COD浓度为2 500 mg/L左右,HRT为26 h,以葡萄糖为共基质时,进水3-NP浓度可提高到254.6 mg/L,3-NP的去除率保持在99.0%以上;以乙酸钠为共基质时,保持HRT为30 h,3-NP浓度可提高到71.6 mg/L,3-NP去除率在90.0%以上.在含2,6-DNP废水厌氧降解实验中,保持进水COD浓度在2 500 mg/L左右,HRT为35 h,以葡萄糖为共基质时,2,6-DNP浓度可提高到170.0 mg/L,2,6-DNP的去除率保持在98.0%以上;以乙酸钠为共基质时,保持HRT为30 h,2,6-DNP最大浓度可提高到189.5 mg/L,2,6-DNP的去除率在99.2%以上.  相似文献   

4.
探讨了生物接触氧化法处理制药废水的工艺,研究了停留时间、进水负荷、气水比、温度和pH值等对处理效果的影响,并观察了微生物的生长和发展规律。试验表明,本法能有效地处理制药废水,COD、BOD_5,和色度去除率分别可达71%、97%和30~40%。COD和BOD5容积负衙分别为1.97kg/m~3·d和0.96kg/m~3·d。  相似文献   

5.
在9L、4格室的厌氧折流反应器(ABR)中,处理以葡萄糖为共基质的含硝基苯废水,温度为5~10℃,进水COD浓度为200-400mg/L,HRT为3h。结果表明ABR对有毒废水浓度变化的适应能力强,当进水硝基苯的浓度为0.48mg/L时,出水COD在21天恢复正常,运行稳定,反应器经硝基苯连续3天冲击(0.48mg/L)后,经历了原有微生物死亡、新微生物生长直到最终项级群落和稳定发酵类型的形成的过程。  相似文献   

6.
UASB处理阿维菌素废水的研究   总被引:8,自引:0,他引:8  
利用 UASB反应器处理阿维菌素废水试验运行结果表明 :通过控制进水中 AVM浓度和对厌氧污泥有效的培养驯化 ,AVM的基质抑制影响基本消除 ;当进水 COD为 6 0 0 0~ 6 5 0 0 mg/ L时 ,出水 COD为 82 0~ 90 0 mg/ L ,反应器水力停留时间 9.5~ 10 .5 h,容积负荷达到 14~ 15 kg COD/ (m3· d) ,COD去除率达以 86 .1%  相似文献   

7.
应用加压生化与生物滤池相串联的生物处理工艺处理合成制药废水的试验表明:该工艺不但能够适应成份复杂多变以及污染物浓度较高、生物降解难度大的制药废水的处理,且效果显著。出水COD<50mg/L,去除率为95%;BOD5<10mg/L,去除率为97%;挥发酚的浓度<0.1mg/L,去除率为99.9%;石油类的去除率为91%,各项水质指标均达到国家排放标准。  相似文献   

8.
采用50 m3螺旋式厌氧反应器(SPAC反应器:反应器主体直径2.4m,高11m)试验了高浓度安乃近制药废水厌氧生物处理的性能.中试结果表明,在进水COD为10000~ 14000 mg·L-和水力停留时间(HRT)为12 h的工况下,容积COD去除速率(VRR)达到(26.54 ±4.61)kg·m-3·d-1,容积产气速率(VPR)达到(9.55±1.66) m3·m-3·d-1,COD去除率达到94.8%.根据Monod方程拟合结果和负荷冲击试验结果推测,SPAC反应器的最大容积效能可分别达46.08和75.00 kg·m-3·d-1.螺旋式厌氧反应器具有很强的抗冲击能力,在基质浓度跃升到原浓度的3倍及进水流量跃升到原流量的1.5倍时,容积效能没有明显波动,COD去除率保持在95%以上;SPAC反应器处理高浓度制药废水的适宜操作条件为进水COD 30000 mg·L-1,HRT长于12h.  相似文献   

9.
SBR法处理制浆造纸废水的研究   总被引:4,自引:0,他引:4  
采用SBR法处理造纸废水 ,考察了SBR法处理造纸废水的效果 ,以及进水方式、pH值、曝气时间、沉降时间等条件对处理效果的影响 ,结果表明 pH值为 6 5~ 7 5、曝气时间为 8h、沉降时间为 2h、进水COD浓度为 4 0 0~ 14 0 0mg/L时 ,COD的去除率可达到 6 1 6~ 70 3%。色度及悬浮物的去除率分别可以达到 78 9%~ 97 5 %。  相似文献   

10.
微电解法预处理利福平制药废水的试验研究   总被引:3,自引:0,他引:3  
采用微电解法预处理利福平制药废水,并以COD去除率及色度去除率为指标考察其处理效果。试验自制了微电解柱,考察了废水pH、粒度、炭铁比、温度、反应时间等因素对废水COD和色度去除率的影响。结果表明:在常温下,进水pH为2,铁屑和焦炭的粒度均为0.6mm,铁炭比为20∶1,反应时间为120min处理效果最好。水样COD去除率达到52.0%,色度去除率达到60.0%,为后期的生化处理提供了条件。  相似文献   

11.
Fenton化学氧化法深度处理精细化工废水   总被引:14,自引:1,他引:13  
根据某精细化工厂的废水经过长时间的厌氧-好氧生化处理,难以进一步生物降解的特点,采用Fenton试剂进行高级氧化处理。通过实验探讨了不同的H2O2和Fe2+浓度、反应时间、pH等因素对二级生化出水COD去除率的影响。在H2O2投加量为18mmol/L,FeSO·47H2O投加量为12mmol/L,反应时间1.5h,废水的pH=4的条件下,二级生化出水的COD去除率达到82.61%,降到100mg/L以内,达到国家一级排放标准。  相似文献   

12.
为了实现高浓度制药废水的处理,采用微波强化Fenton氧化体系对污水进行预处理,考察了微波功率、微波辐照时间、催化剂用量和氧化剂用量对高浓度有机废水中有机物去除效果的影响。来水COD 39 760 mg/L,B/C为0.254,控制微波功率为200 W、微波辐照时间11 min,加入0.6 mol/L的Fe(NO_3)_3催化剂、30%H_2O_2 4 mL/L氧化剂,COD去除率可达62.41%,B/C由0.254升至0.619。实现有机物去除,提高污水可生化性。  相似文献   

13.
针对电镀有机废水COD浓度高、可生化性差等特点,选取广东深圳某工业园区电镀厂的除油废水(ρ(COD)为2 000~2 500 mg/L,pH=13.1~13.5),采用Fenton法进行预处理,探索了H_2O_2投加量、n(H_2O_2)/n(Fe~(2+))、pH及反应时间对COD和BOD_5的去除效果,得到的最佳Fenton工艺参数为:H_2O_2投加量=15 00 mg/L,n(H_2O_2)/n(Fe~(2+))=4∶1,pH=3,反应时间=30 min。在此条件下,COD去除率可达到89.76%,同时B/C从0.19提高到0.31,有机废水的可生化性大幅提高,能达到可生化处理的基本要求。采用Fenton法对电镀有机废水进行预处理是可行的。  相似文献   

14.
Fenton试剂预处理实际印染废水的实验研究   总被引:1,自引:0,他引:1  
通过单因素影响实验和正交实验,以COD去除率和可生化性能两个指标作为筛选依据,全面研究了Fenton试剂作为预处理工艺,在常温下对实际印染废水的处理规律和最佳操作条件。首先研究了COD去除率随H2O2投加量和投加方式、FeSO4·7H2O投加量、初始pH值、反应时间等的变化规律,最后正交实验结果确定了最佳操作条件为:30%H202投加量5mL/L,FeSO4·7H2O投加量800mg/L,pH值为3.45,此时H2O2:Fe^2+摩尔比为15.5。COD去除率为33.4%,BOD/COD值从0.139增加到0.321,可生化性能的提高为后续生物处理阶段提供了良好条件。  相似文献   

15.
UV/H2O2法处理焦化废水的试验研究   总被引:2,自引:1,他引:1  
焦化废水是一种典型的成分复杂的难降解有机废水。实验利用UV/H2O2法对焦化废水的处理进行研究,探讨了不同反应时间、H2O2投加量、pH值等因素对COD去除率及色度降解效果的影响。结果表明.废水起始COD质量浓度为1334mg几时,H2O2投加浓度为45mmol/L,pH值=11,紫外灯照射60min,COD去除率可达70%以上;随着H2O2投加量的增加以及pH值的升高,污水的色度明显降低。  相似文献   

16.
Fenton试剂处理酸性玫瑰红B的研究   总被引:7,自引:0,他引:7  
采用Fenton试剂处理酸性玫瑰红B染料废水,考察了FeSO4投加量、H2O2投加量、pH值和反应时间对处理效果的影响,研究了原水的氧化还原电位和TOC的变化规律,评价了它的可生化性。结果表明,最佳pH值为3,FeSO4的适宜投加量为8mmol/L,H2O2最佳投加量为50mmol/L,此时COD去除率和脱色率分别为77.1%和92.8%,处理后该染料废水的可生化性大大提高。  相似文献   

17.
采用O3和O3/H2O2氧化法对某制药厂的制药废水进行氧化处理,主要考察废水的pH值、O3流量、反应时间对COD去除率的影响。结果表明,O3氧化法的最佳条件为:废水的pH值为9.00,O3流量为5 g/h,反应时间为90 min。在此条件下,废水的COD和TOC的去除率分别达到64.16%和75.34%。O3/H2O2氧化法更能有效的提高废水COD和TOC的去除率,但需要合适的H2O2投加量。处理后两者去除率分别达87.45%和91.49%,且处理后的COD值(351 mg/L)符合该厂排入市政管网的要求(500 mg/L),同时废水的可生化性提高,B/C由0.12提高至0.32。对O3/H2O2处理制药废水的反应机制研究表明,COD的去除率随自由基抑制剂浓度的增加而降低,COD的去除主要是体系中.OH的贡献。另外,采用COD和TOC结合起来作为评价指标更能准确的反映出制药废水中有机物的去除规律。  相似文献   

18.
采用Fenton法对医药废水进行预处理。当原水COD约为11000mg/L时,COD去除率可达90%以上,并得到最佳操作条件为:H2O2投加量为60g/L,Fe^2+投加量为1.0g/L,反应时间为30min,pH=4.0—6.0。对比反应前后的紫外光谱说明,经Fenton反应后原水中的芳香化合物已得到了彻底的氧化分解。  相似文献   

19.
针对东北某石化企业炼油污水深度处理过程中产生的反渗透浓水的组成及特点,采用Fenton试剂对含难降解有机物的反渗透浓水进行了处理,系统地研究了VH2O2/VFe2+、反应时间、浓水初始pH、H2 O2投加量等因素对浓水中COD去除率的影响.研究结果表明,H2 O2投加量是主要影响因素,其次是浓水初始pH、反应时间以及VH2O2/VFe2+;在各因素较佳水平条件下,Fenton试剂可以有效去除反渗透浓水中的有机物,COD的去除率可以达到87.42%.大幅度降低其中难降解有机物含量,研究结果对企业废水达标排放及水资源的有效利用具有重要意义.  相似文献   

20.
太阳光Fenton氧化对含酚废水生物降解影响研究   总被引:5,自引:2,他引:3  
研究了太阳光Fenton氧化预处理对含酚废水生物降解性的影响及太阳光Fenton氧化-生化法联合工艺对煤气含酚废水的处理效果。结果表明,煤气含酚废水和模拟含酚废水的生物降解性均较差,太阳光Fenton氧化预处理可明显提高含酚废水的生物降解性,随着H2O2投加量的增加,废水的BOD5/COD比值逐渐增大,生物降解性明显增强。煤气含酚废水直接进行生化处理的COD和挥发酚去除率均较低。当太阳光Fenton氧化过程H2O2用量为22.5%理论投加量时,采用太阳光Fenton氧化-生化法联合工艺可使煤气含酚废水的COD由1357mg/L降低至104mg/L,挥发酚由198.2mg/L降低至0.47mg/L,COD和挥发酚均达到国家二级排放标准。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号