首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Populations of bivalve filter feeders are distributed throughout the oligohaline waters of the Chesapeake Bay system and, to a lesser extent, in tidal fresh waters as well. Previous studies indicate these bivalves significantly diminish phytoplankton concentrations in one major tributary, the Potomac River, and observed chlorophyll concentrations suggest bivalve influence on phytoplankton in other oligohaline reaches. We incorporated a model of these bivalves into an existing eutrophication model of the system. The model indicated that bivalves may reduce phytoplankton concentrations in oligohaline and tidal fresh waters throughout the system but the most significant effects were noted in the Potomac and Patuxent tributaries. Bivalve impacts were related to hydraulic residence time. The greatest phytoplankton reductions occurred in the regions with the longest residence time. Model carbon and nutrient budgets indicated bivalves removed 14% to 40% of the carbon load, 11% to 23% of the nitrogen load, and 37% to 84% of the phosphorus load to the regions where their impact on computed chlorophyll was greatest.  相似文献   

2.
A multistate mark-recapture (MSMR) model of the adult salmonid migration through the lower Columbia River and into the Snake River was developed, designed for radiotelemetry detections at dams and tributary mouths. The model focuses on upstream-directed travel, with states determined from observed fish movement patterns indicating directed upstream travel, downstream travel (fallback), and use of non-natal tributaries. The model was used to analyze telemetry data from 846 migrating adult spring-summer Chinook salmon (Oncorhynchus tshawytscha) tagged in 1996 at Bonneville Dam on the Columbia River. We used the model to test competing hypotheses regarding delayed effects of fallback at dams and visits to tributaries, and to define and estimate migration summary measures. Tagged fish had an average probability of 0.755 () of ending migration at a tributary or upstream of Lower Granite Dam on the Snake River, and a probability of 0.245 () of unaccountable loss (i.e., mortality or mainstem spawning) between the release site downstream of Bonneville Dam and Lower Granite Dam. The highest probability of unaccountable loss (0.092; ) was in the reach between Bonneville Dam and The Dalles Dam. Study fish used the tributaries primarily as exits from the hydrosystem, and visits to non-natal tributaries had no significant effect on subsequent movement upriver (P = 0.4245). However, fallback behavior had a small effect on subsequent tributary entry and exit (P = 0.0530), with fish using tributaries as resting areas after reascending Bonneville Dam after fallback. The spatial MSMR model developed here can be adapted to address additional questions about the interaction of migrating organisms with their environment, or for the study of migrations in other river systems.  相似文献   

3.
 Stocks of eastern oysters, Crassostrea virginica (Gmelin), in mesohaline Chesapeake Bay, USA, exhibit a high degree of inter-annual and spatial variability in recruitment. We found that cumulative oyster spatfall on off-bottom collector plates, measured throughout the summer in 14 years over a span of three decades, was highly positively correlated (r 2 = 0.8) with juvenile oyster recruitment on adjacent oyster bars. Total abundances of juvenile oysters on these bars were, however, generally 99.7% lower than predicted from cumulative seasonal larval settlement on collector plates. We propose that although the number of larvae metamorphosing was the key factor in determining the gross annual pattern of recruitment to these mesohaline oyster bars, the actual magnitude of recruitment was governed by post-settlement processes, such as competition for limited resources and predation. We tested the hypothesis that predation may be partly responsible for high post-settlement juvenile oyster mortality. We performed a series of 3-d field investigations over two summers (1989, 1990) at a mesohaline site, employing cages of various mesh sizes (400, 800, 1500 μm) to protect hatchery-reared spat of 0.5 to 4.0 mm shell height. Mortality rates for spat held for 3 d in the estuary (17.8%) were significantly higher (P = 0.0001) for the smallest spat (0.5 to 2.0 mm) compared with those of 2.01 to 4.0 mm (4.2%). In 1990, but not in 1989, enclosure within 400 and 800 μm mesh cages significantly (P = 0.004) increased survival during 3-d deployments (9.4 and 10.1%, respectively) compared with spat unprotected by mesh cages (21.9%). In a series of laboratory predation studies that used the entire community of invertebrates that could penetrate the cages, microscopic juvenile polyclad flatworms, Stylochus ellipticus, were the only organisms that we observed crawling into living oysters and feeding on oyster tissue. Large flatworms (50 to 200 mm2) are known to be important predators on oysters, but this ability of flatworms that were so small (<ca. 5 mm2) and translucent as to be almost invisible without magnification to feed on immediate post-metamorphic oysters has not been documented previously. Our results suggest that the rate of mortality due to predation in mesohaline Chesapeake Bay is much reduced once spat survive for 2 to 3 weeks post-metamorphosis. Thus, it is likely that predation in the 1 to 2 week period immediately after settlement may be a crucial factor in the structuring of eastern oyster populations. Received: 21 December 1998 / Accepted: 2 December 1999  相似文献   

4.
Arsenic uptake from water and from phytoplankton was followed in the copepod Eurytemora affinis and the barnacle Balanus improvisus collected from the Patuxent River estuary, Chesapeake Bay, eastern coast of the USA in 1987, and in the oyster Crassostrea virginica obtained from a hatchery on the shore of Chesapeake Bay in 1987. Dissolved arsenic was readily taken up by phytoplankton and by shell material of B. improvisus and C. virginica; however, no dissolved arsenic was incorporated into the invertebrate tissues. When E. affinis, B. improvisus and C. virginica were fed phytoplankton containing elevated arsenic contents, significant arsenic incorporation occurred. Juvenile B. improvisus incorporated relatively more arsenic than adults of all three species. Compared to the 100 to 200% increase in arsenic content by phytoplankton exposed to dissolved arsenic, the 25 to 50% increase in these invertebrate species via trophic transfer is relatively small. Even though the trophic pathway for arsenic transfer is the major one for higher trophic levels within an ecosystem, the potential for direct arsenic impact to trophic levels other than phytoplankton appears to be minimal.  相似文献   

5.
Setting of larvae of the oyster Crassostrea virginica was monitored in the James River, Virginia, USA from 1963 to 1980. Setting patterns were similar in two ways to those described prior to 1960 (before the onset of the oyster pathogen Haplosporidium nelsoni (MSX) in Chesapeake Bay): (1) setting intensity (average number of spat per shell) was greater at stations in the lower than upper estuary, and (2) on the average, 60 to 80% of the total annual set at each station occurred during a 6-week period from mid-August through September. However, annual setting intensity from 1963–1980 was lower than previously recorded, and annual sets occurred as a series of discrete pulses rather than continuously throughout the season. Pulses were each approximately 1 to 2 weeks in duration and separated by a period of diminished or no setting. Cross-correlation analysis of annual setting patterns among stations revealed three zones in the James River: the upper estuary and entire southwest side, the lower estuary, and a mid-estuary transition zone. Setting pulses tended to be synchronous at stations within each zone, but occurred 1 to 2 weeks later at stations in downriver than in upriver zones. The location of zones is related to known aspects of water circulation in the James River estuary. Moreover, pulse setting itself may be related to the absence of strong vertical salinity gradients accompanying the fortnightly stratification-destratification process.Contribution No. 1213 from the Virginia Institute of Marine Science, School of Marine Science, The College of William and Mary  相似文献   

6.
Three species of phytoplankton grown at high (HL) or low light (LL) were fed as saturating rations to laboratory-reared larval Crassostrea gigas. Larval C. gigas fed diets of HL grown Chaetoceros gracilis and HL grown Isochrysis aff. galbana grew faster than those fed LL grown cells of the same phytoplankton species. Faster growth of C. gigas larvae was consistently associated with increases in the percent composition of short chain saturated fatty acids (FA) 14:0+16:0 in the HL grown cells. There were no consistent and significant differences between HL and LL grown phytoplankton cells in their content of carbon, nitrogen, protein, lipid or carbohydrate. Intraspecific increases in percent composition of essential fatty acids (EFAs), 20:53 and 22:63, in the phytoplankton were not associated with improvements in the growth or survival of the oyster larvae. Oyster larvae fed diets of Phaeodactylum tricornutum with a relatively high proportion of EFAs grew more slowly than those fed C. gracilis. In this experiment the proportion of dietary EFA 20:53 was negatively correlated with oyster growth rates. The faster growing oyster larvae contained relatively more of the FAs 14:0+16:0 which may be useful as measures of larval oyster condition. After a diet of one phytoplankton species for ca. 10 d, oyster larvae acquired distinctive FA profiles resembling that of their phytoplankton prey.  相似文献   

7.
Age-0 walleye pollock (Theragra chalcogramma) caught in September in the Gulf of Alaska display habitat-associated differences in standard length (SL). Age-0 fish collected in the region around Sutwik Island and 375?km farther downstream near the Shumagin Islands most likely originate from the Shelikof Strait spawning aggregation. However, age-0 fish resulting from the same spawning aggregation differ in mean size up to 20?mm between areas by September. We examined the otoliths of the larval and age-0 stages of walleye pollock from these two areas in 2000 and 2001 to determine whether growth rate, hatch date, and/or temperature influenced fish size. Circulation models were used to determine whether transport of larvae from an upstream spawning group into the study areas could have occurred. Mean in situ temperature during sampling periods was not defined as a significant factor in altering growth rates. Overlapping hatch date distributions of the larval and age-0 fish in the Shumagin Island area confirmed that the fish were from the Shelikof Strait spawning group. Comparison of hatch date distributions in the upstream Sutwik Island area revealed larger/older larvae from an upstream spawning group mixed with larvae from the Shelikof Strait spawning group. Our results suggest that the offset of 20?mm SL between the groups of age-0 pollock was the result of a combination of enhanced survivorship of early-hatched larvae in the Sutwik area and the introduction and retention of the progeny of another spawning group originating upstream of Shelikof Strait.  相似文献   

8.
We analyzed a data set collected over 15 yr, containing growth data from strains of eastern oysters, Crassostrea virginica (Gmelin, 1791), initiated from parent populations in Long Island Sound, Delaware Bay, and lower Chesapeake Bay. The long-term growth data proved to be a powerful tool for examining patterns of growth differentiation among separated populations of C. virginica. The oyster strains had been grown in a common environment in lower Delaware Bay for up to seven generations. We found that the oyster strains with origins in Long Island Sound were significantly larger over several generations than oyster strains from Delaware Bay and Chesapeake Bay. Chesapeake Bay oyster strains were larger than Delaware Bay oyster strains at 1.5 yr old, but Delaware Bay oysters were larger at 2.5 yr. Year-to-year variation in environmental conditions had a strong significant effect on absolute oyster size and the relative sizes of the oyster strains. Persistent differences between oyster strains from different origins over several generations support a hypothesis that these estuarine populations have experienced long-term genetically-based population differentiation. This result is consistent with hypotheses of population differentiation of oysters based on observations of local reproductive timing. Received: 12 August 1997 / Accepted: 26 May 1998  相似文献   

9.
The ability of the oyster Crassostrea virginica (Gmelin) to filter, ingest and assimilate 14C-labeled Spartina alterniflora as a carbon source was investigated under laboratory conditions. The oyster assimilated crude-fiber carbon extracted from S. alterniflora with an efficiency of approximately 3%. Enteric bacteria did not enhance this process. The annual average (April 1984 to November 1985) of crude fiber in the Choptank River sub-estuary of the Chesapeake Bay, Maryland, USA, from which the oysters were collected, was 15.7 g l-1 (range 4.3 to 34.3 g l-1). The potential food value of crude fiber to oysters in this system was estimated to be less than 1% of their carbon demand. However, the potential contribution of crude fiber to the carbon requirements of other oyster populations, such as those in southeastern USA, may be as great as 20%, due to higher crudefiber concentrations in the seston.  相似文献   

10.
The bloom-forming dinoflagellates Prorocentrum minimum and Karlodinium veneficum can have detrimental effects on some marine life, including shellfish, but little is known about their effects on early life history stages of bivalves. In the Chesapeake Bay region, blooms of these dinoflagellates overlap with the spawning season of the eastern oyster, Crassostrea virginica. In laboratory experiments, we compared the effects of P. minimum and K. veneficum on the survival and development of embryos and larvae of the eastern oyster. At 104 cells ml−1, P. minimum did not have a negative effect on embryos and larvae in 2-day exposures. The yield of D-hinge larvae was equal to or greater than in control treatments. At 2 × 104 cells ml−1 (approximately equal biomass to the P. minimum treatment) K. veneficum caused significant mortality to oyster embryos within 1 day and almost no embryos developed into D-hinge larvae. This effect was not alleviated by the provision of an alternate food source (Isochrysis sp.). Significant mortality was observed when larvae were exposed to K. veneficum at concentrations of 104 cells ml−1 (approximately 5 ng ml−1 of karlotoxin). The K. veneficum cultures used in these experiments were relatively low in toxin content, more toxic strains could be expected to cause mortality at lower cell concentrations. Survival and maturation of embryos and larvae may be reduced when spawns of the eastern oyster coincide with high bloom densities of K. veneficum.  相似文献   

11.
分别于2017年和2018年的5—7月在三峡库区支流小江渠口断面开展鱼类早期资源监测,以了解小江变动回水区鱼类早期资源现状。监测结果表明:共采集到7种产漂流性卵鱼类的鱼卵以及7种仔鱼;采集的鱼卵以似鳊(Pseudobrama simoni)、银(Squalidus argentatus)、翘嘴鲌(Culter alburnus)和蒙古鲌(Culter mongolicus)为主,而仔鱼则以子陵吻虎鱼(Rhinogobius giurinus)为主;不同年份主要产卵活动发生的时间存在差异;小江渠口镇铺溪村至汉丰湖调节坝之间江段共分布集中产卵场3处。小江变动回水区江段是产漂流性卵鱼类产卵场的分布区域,建议加强该江段生境和鱼类资源保护管理。  相似文献   

12.
Phytoplankton patchiness and frontal regions   总被引:1,自引:0,他引:1  
In the Chesapeake Bay estuary there are persistent seasonal frontal and interfrontal regions that serve to deliver and retain different phytoplankton populations. The patchiness of phytoplankton, both in total chlorophyll a concentrations and in species compositions and abundances, is shown to be causally related to density flow forcing which results in these frontal and interfrontal regions. The delineation of these regions by on-line, two-dimensional profiling of density isopleths serves to identify stations within these regions for biological and chemical sampling as opposed to sampling on an arbitrary geographical grid. It is possible, by superposition of nutrient and organism concentration isopleths upon salinity isopleths, to infer conservative and non-conservative features of the system.Contribution 1059 from the McCollum-Pratt Institute and Department of Biology. Research support by DOE contract DEASO2-76-EVO3278. The data in this paper have been presented at the Winter Meeting of the American Society of Limnology and Oceanography in Corpus Christi, Texas January 2–5, 1979 and the 42nd Annual Meeting of ASLO in Stony Brook, NY, USA June 18–21, 1979  相似文献   

13.
A 1.8 ha brackish (5 to 15 S) embayment (Osborn Cove) on the Western Shore of Chesapeake Bay (USA) was studied during 1976 to examine some hydrologic and climatic influences on its phytoplankton, bacteria, intertidal benthos, a peripheral salt marsh (equivalent to 20% of the cove surface area), and the surrounding 48 ha forest watershed. Comparisons with 1975 and 1977 for temperature, salinity, rainfall and tidal extremes, show 1976 to have had normal rainfall but a cooler autumn. Sediment moves alongshore into the cove after rainfall, and erosion causes soil breakdowns from nearby cliffs. This movement, ice damage and predators appear to mediate distribution of the intertidal benthos. Phytoplankton density, chlorophyll and photosynthesis are compared with other portions of the Chesapeake Estuary sampled in parallel programs. Phytoplankton chlorophyll oscillations observed in the Bay and Potomac River were not seen in the cove. Cove gross and net photosynthesis averaged about the same as the bay, but the cove had higher rates in spring, a result of significantly higher net assimilation ratios rather than higher biomass. River-contributed nutrients may have produced this stimulation when used by tidally inoculated phytoplankton. Large numbers of small flagellates were not seen after heavy rainfall fluishing. Net phytoplankton production in the cove was estimated at 97.6 g C m-2 yr-1. A portion of the cove having restricted circulation apparently contributed 48% of this production in months when its phytoplankton was dominated by small flagellates. Total estimated net production by cove phytoplankton was 1.75x103 kg C yr-1, compared to 0.75x103 kg C yr-1 for a narrow peripheral zone of Spartina alterniflora growth occupying only 13% as much area. This ratio and circumstantial evidence suggests that leaf litter from the surrounding forest dominated particulate input to the cove. Bacterial plate counts showed increases in total numbers as a function of water temperature, with surface counts exceeding bottom counts. Indigenous bird and mammal waste are suggested as important bacterial inputs. Rainfall pulses resulted in rapid increases of fecal coliform and fecal streptococcus counts.  相似文献   

14.
Adult sea lampreys (Petromyzon marinus) migrating upstream to spawn follow a pheromone released by instream larvae. The size (i.e. flow) of a tributary dilutes the concentration of this pheromone, such that the downstream propagation pattern of larval pheromone must be influenced by patterns in the relative sizes and numbers of confluent tributaries. We developed an individual-based model to explicitly test the resulting hypothesis that river network structure influences the migration decisions of adult lampreys following the larval pheromone, and in turn the distribution of larvae. First, we initialized the model using randomly generated river networks, and found a strong positive relationship between network diameter and larval aggregation. Larvae aggregated over time, and the degree and rate of this aggregation depended on network diameter. Second, we initialized the model using a river network based on the Muskegon River, Michigan, and compared model-generated larval distribution to available field survey data. We found a significant correlation between model-generated larval abundance and field-measured larval densities (r2 = 0.54; p < 0.0001). We also found an inverse relationship between subwatershed area and the degree to which path-dependent effects influenced larval abundance in that subwatershed. Our results overall suggest that larval distribution across a watershed results from a system of context-dependent interannual feedbacks shaped by network structure and the past migratory and spawning behavior of adults.  相似文献   

15.
To understand how thermal stratification and food abundance affects the vertical distribution of giant scallop larvae Placopecten magellanicus (Gmelin), a mesocosm study was conducted in January and February 1992. The position of larvae was followed over 55 d in replicated 9-m deep tanks in relation to a sharp thermocline and the presence or absence of phytoplankton. Growth and vertical position of larvae were monitored in separate treatments which included phytoplankton added above the thermocline, below the thermocline, throughout the mesocosm, or absent from the mesocosm. Changes in the vertical position of larvae over time were quantified with a new, profiling, video-optical instrument capable of semi-automatically identifying, counting and sizing larvae. The strong diurnal migration of scallop larvae resulted in aggregations at two interfaces: the air/water interface during the night, and at the thermocline during the day. At times, the concentration of larvae within cm of the surface was > 100 times that in the remaining water column. The formation of bioconvective cells of swimming larvae at the air/water interface allowed larval aggregations to persist throughout the period of darkness. Regardless of the distribution of food, larvae remained above the thermocline during most of the experiment. Therefore, only in those treatments where food was also present above the thermocline was larval growth relatively high. Larger larvae penetrated the thermocline only after reaching a shell length of about 200 m; thus larval size, rather than chronological age, was more important in describing their vertical distribution. The rapid increase in kinematic viscosity with decreasing water temperature at the thermocline may retard the movement of larvae and contribute to aggregation at this interface. The influence of larval size on their vertical distribution, and the resulting potential for horizontal transport to settlement sites, points to the importance of persistent hydrographic features as critical factors contributing to settlement variance in scallops.  相似文献   

16.
The size distributions (2 to 160 m equivalent spherical diameter) of suspended particulate material sampled on two cruises along a transect in the Irish Sea in 1988 are described in relation to hydrographic conditions, chlorophylla concentration and carbon to nitrogen ratios. Particulates were more abundant and larger size modes in the distribution were more evident, in the upper mixed layer of stratified water than in areas where the water column was fully mixed. The detrital content was estimated at 52% of total particulate matter above the thermocline in stratified regions and at around 97% at mixed water sites. In stratified regions the predominance of larger sized phytoplankton and lower levels of detritus is argued to support a more direct and efficient transfer of energy to fish larvae via larger sizes of copepods. Conversely, in mixed areas of high detrital loading the smaller size spectrum of particulates incorporates a less efficient transfer of energy through bacterial cycling and smaller copepods.  相似文献   

17.
Distribution of the cladoceran Podon polyphemoides in the Chesapeake Bay   总被引:1,自引:0,他引:1  
The distribution of the cladoceran Podon polyphemoides (Leuckart) in the Chesapeake Bay (USA) estuarine system was determined by a quantitative pump sampling method, and the patterns of abundance were correlated with temperature and salinity distributions. The species was seasonally recurrent, with distinct population maxima in the central portion of the bay. Population densities in excess of 60,000 podonids/m3 have been recorded. The podonids first appeared in the spring in the shallow tributaries, when water temperatures near the bottom reached 6°C. The vernal populations disappeared when summer temperatures exceeded 27°C, but reappeared in the fall as the water cooled. The species was euryhaline and eurythermal in its distribution, but the greatest concentrations were attained within relatively narrow zones of temperatures between 11o and 26°C, and salinities between 8 and 18. The production of males, sexual females and sexual eggs occurred both in the spring and the fall between the thermal limits of 11o and 17°C.  相似文献   

18.
The heritability of oyster (Crassostrea virginica) larval growth rate was estimated to be in the range of 0.25 to 0.50 and a significant part of this genetic variation is of the additive type. Larval growth rate and spat growth rate were found to be highly correlated. These results suggest that a selection program for faster growing larvae and spat would be successful.  相似文献   

19.
Crassostrea virginica (Gmelin) collected in 1989 from several sites within the Chesapeake Bay have narrower salinity tolerances than conspecific oysters collected in 1989 from several Atlantic coast sites (Georgia to Cape Cod). The basis of this physiological difference appears to be the biochemical mechanisms that control cellular osmolality following salinity stress. When adapted to the same salinity, the amino acid pools of both gill and adductor muscles of Atlantic oysters are larger than those of Bay oysters and different in composition. The Atlantic oyster tissues rely primarily on taurine for salinity tolerance, while the Bay oyster tissues have relatively less taurine, depending instead upon alanine, glycine and proline to adapt to high salinity. In addition, Atlantic oyster gill and adductor have 10 to 25 times the glycine betaine concentrations of these tissues from Bay oysters, depending upor the salinity of acclimation. The betaine concentration varies with salinity in Atlantic oysters, but does not change in Bay oysters. The results suggest that these biochemical differences are the basis of the narrower salinity tolerance in Bay oysters. The biochemical differences may reflect genetic differences between Bay and Atlantic oysters.  相似文献   

20.
I investigated selective particle ingestion by oyster larvae (Crassostrea virginica) feeding on natural seston from Chesapeake Bay and laboratory-cultured algae of different sizes or chemical content. In 15 of 16 experiments with complex natural suspensions as food, small(<150 m) and large (>150 m) larvae selected most strongly for small (2 to 4 m) food particles, but in the presence of a large (>10 m)-cell dinoflagellate bloom, large larvae strongly selected much larger (22 to 30 m) food material (presumably dinoflagellates). When fed simplified mixtures of four cultured algal species (Synechococcus bacillaris, Isochrysis sp., Dunaliella tertiolecta, and Prorocentrum minimum) ranging in size from 1 to 11 m, small larvae preferred 1 m algae while large larvae preferred 11 m algae. In experiments with algal mixtures, and with suspensions of natural particles and added algae, large larvae preferred algal species harvested from exponential-phase cultures over other species from stationary-phase cultures. Larval ingestion rates of the cultured alga Thalassiosira pseudonana were about three times higher for cells with a low carbon:nitrogen ratio (7.2:1) than for high C:N ratio (16.2:1) cells when these cells were offered separately in suspensions of equal concentration. As a result, more algal cells, algal C, and algal N was ingested by larvae fed low C:N cells. However, larvae did not show a significant preference for either type of cell when they were offered in a 1:1 cell mixture. Feeding patterns of C. virginica larvae in natural food suspensions can vary with the composition of these complex suspensions, and ingestion seems dependent not only on the size, but on the growth rate and chemical quality of food particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号