共查询到20条相似文献,搜索用时 15 毫秒
1.
我国《土壤环境质量标准》现存问题与建议 总被引:26,自引:3,他引:26
环境立法是环境保护的基础,<土壤环境质量标准>的制定,对于保护我国的土壤资源起到积极的促进作用,但其也存在一些不足之处.文章从实际工作出发,探讨了本标准的现存问题,并对<土壤环境质量标准>的制定原则和污染物一、二级指标的确立及监测提出了一些建议. 相似文献
2.
Assessment of biological and biochemical indicators in soil under transgenic Bt and non-Bt cotton crop in a sub-tropical environment 总被引:1,自引:0,他引:1
Sarkar B Patra AK Purakayastha TJ Megharaj M 《Environmental monitoring and assessment》2009,156(1-4):595-604
There is concern that transgenic Bt-crops carry genes that could have undesirable effects on natural and agro-ecosystem functions. We investigated the effect of Bt-cotton (expressing the Cry 1Ac protein) on several microbial and biochemical indicators in a sandy loam soil. Bt-cotton (MRC-6301Bt) and its non-transgenic near-isoline (MRC-6301) were grown in a net-house on a sandy clay loam soil. Soil and root samples were collected 60, 90, and 120 days after sowing. Soil from a control (no-crop) treatment was also included. Samples were analysed for microbial biomass C, N and P (MBC, MBN, MBP), total organic carbon (TOC), and several soil enzyme activities. The microbial quotient (MQ) was calculated as the ratio of MBC-to-TOC. The average of the three sampling events revealed a significant increase in MBC, MBN, MBP and MQ in the soil under Bt-cotton over the non-Bt isoline. The TOC was similar in Bt and non-Bt systems. Potential N mineralization, nitrification, nitrate reductase, and acid and alkaline phosphatase activities were all higher in the soil under Bt-cotton. Root dry weights were not different (P > 0.05), but root volume of Bt-cotton was higher on 90 and 120 days than that of non-Bt cotton. The time of sampling strongly affected the above parameters, with most being highest on 90 days after sowing. We concluded from the data that there were some positive or no negative effects of Bt-cotton on the studied indicators, and therefore cultivation of Bt-cotton appears to be no risk to soil ecosystem functions. 相似文献
3.
Leaching of nitrogen from calcareous soils in western Iran: a soil leaching column study 总被引:5,自引:0,他引:5
Nitrogen (N) leaching has become a matter of worldwide concern. The objectives of this study were: (1) to use soil columns to investigate the leaching of nitrate ( $ {\text{NO}}_3^{ - } $ ), ammonium ( $ {\text{NH}}_4^{ + } $ ), and nitrite ( $ {\text{NO}}_2^{ - } $ ) from calcareous soils that had received an average of 200?kg?1 N?ha?1?year?1 for the previous 30?years and (2) to determine the relationship between soil properties and $ {\text{NO}}_3^{ - } $ , $ {\text{NH}}_4^{ + } $ , and $ {\text{NO}}_2^{ - } $ leaching. The soils used in this study ranged in texture from clay to sandy loam. Leaching experiments were conducted under saturation conditions and consisted of the collection of 1,047–2,524?mL of leachate (12 pore volumes (PVs)), which was equivalent to 534–1,286?mm from rainfall or irrigation. Losses of $ {\text{NO}}_3^{ - } $ ranged from 62 to 437?kg?ha?1, while losses of $ {\text{NH}}_4^{ + } $ and $ {\text{NO}}_2^{ - } $ ranged from 2.5 to 19.3?kg?ha?1 and 0.1 to 10.6?kg?ha?1, respectively. Leaching rates differed between soil samples. The initial and secondary rate of $ {\text{NO}}_3^{ - } $ leaching was determined using an exponential model, and it ranged from 2.8 to 14.7?mg?kg?1 PV?1 and 0.11 to 0.32?mg?kg?1 PV?1. Greater leaching rates in the initial period could be due to leaching of $ {\text{NO}}_3^{ - } $ in solution, while the secondary leaching might be attributable to the diffusion-controlled transfer of $ {\text{NO}}_3^{ - } $ between mobile and immobile liquid phases. Analysis of variance indicated that the effects of soil type on total $ {\text{NO}}_3^{ - } $ leaching were highly significant (p?<?0.001). The results showed that soil $ {\text{NO}}_3^{ - } $ concentration was positively correlated with the peak concentration of $ {\text{NO}}_3^{ - } $ (r?=?0.86; p?<?0.01) and the total $ {\text{NO}}_3^{ - } $ leached (r?=?0.93; p?<?0.01). In addition, the total $ {\text{NH}}_4^{ + } $ leached was positively correlated with silt (r?=?0.67; p?<?0.05), clay (r?=?0.61; p?<?0.05), and pH (r?=?0.77; p?<?0.01), which suggests that soil parameters might be useful indicators of $ {\text{NO}}_3^{ - } $ and $ {\text{NH}}_4^{ + } $ leaching from calcareous soils. Nitrate leaching from soils could threaten groundwater supplies, so possible strategies for minimizing $ {\text{NO}}_3^{ - } $ leaching losses may need to be considered. 相似文献
4.
5.
6.
Edyta Boros-Lajszner Jadwiga Wyszkowska Jan Kucharski 《Environmental monitoring and assessment》2018,190(1):54
Nickel is a heavy metal which is a stable soil pollutant which is difficult to remediate. An attempt to reduce its impact on the environment can be made by changing its solubility. The right level of hydrogen ions and the content of mineral and organic colloids are crucial in this regard. Therefore, methods to neutralise heavy metals in soil are sought. There are no reports in the literature on the possibility of using minerals in the detoxication of a soil environment contaminated with metals. It is important to fill the gap in research on the effect of zeolites on the microbiological, biochemical and physicochemical properties of soils under pressure from heavy metals. Therefore, a pot experiment was conducted on two soils which examined the effect of various levels of contamination of soil with nickel on the activity of soil enzymes, physical and chemical properties and growth and development of plants. An alleviating effect of zeolite Bio.Zeo.S.01 on the negative impact of nickel on the soil and a plant (oats) was examined. The enzyme activity and the oat yield were found to be significantly and negatively affected by an excess of nickel in the soil, regardless of the soil type. The metal was accumulated more in the oat roots than in the above-ground parts. An addition of zeolite decreased the level of accumulation of nickel in oats grown only on sandy-silty loam. Zeolite Bio.Zeo.S.01 used in the study only slightly alleviated the negative effect of nickel on the biochemical properties of soil. Therefore, its usability in the remediation of soil contaminated with nickel is small. 相似文献
7.
This study was conducted to evaluate, using soil columns, the mobilization and redistribution of heavy metals (Zn, Cd, and
Pb) among different soil fractions by soluble organic ligands within poultry litter. Uncontaminated soil was amended with
Zn, Cd, and Pb to achieve concentration levels of 400, 8, and 200 mg kg−1 soil, respectively. Columns repacked with this amended soil were leached with distilled water, 0.01 M EDTA, 0.01 M CaCl2, or poultry litter extract (PLE) solutions. After leaching, the soil samples in the columns were sequentially extracted for
exchangeable (EXC), carbonate (CARB) organic matter (OM), Mn oxide (MNO), Fe oxide (FEO), and residual (RES) fractions. Considerable
mobilization of Zn, Cd, and Pb occurred in soil during EDTA leaching. Leaching with PLE and CaCl2 solutions significantly decreased Zn and Cd concentrations in the EXC, CARB, and OM fractions. These solutions significantly
decreased Pb concentration in the EXC fraction, while PLE solubilized more Pb from EXC fraction than CaCl2. Thus, the applied poultry litter may change Zn, Cd, and Pb fractions in metal-amended soil and possibly enhance metal mobility. 相似文献
8.
Yuanyuan Li Shikui Dong Lu Wen Xuexia Wang Yu Wu 《Environmental monitoring and assessment》2013,185(10):8011-8022
Soil degradation has caused various problems on the planet. Human disturbance and land use changes always negatively affect soil quality. In this study, we used a modified soil quality index (SQI) to assess soil quality under differing degrees of human disturbance and land use. The alpine grasslands were studied at different levels of degradation [i.e., severely degraded grassland, heavily degraded grassland, moderately degraded grassland, and non-degraded grassland (NDG)] in a case study conducted in Qinghai-Tibetan Plateau (QTP) to test the feasibility of using the SQI. Fifteen chemical, physical, and biological soil parameters were measured in each type of grassland. Significant variations in SQI were found across the different types of grasslands according to severity of human disturbance and changes in land use. Urease, the ratio of microbial biomass nitrogen to total nitrogen, proteinase, and soil organic carbon were found to be the most important indicators for assessing soil quality. NDG had a higher SQI than the other three types of grasslands. It was concluded that SQI is effective for assessing the soil quality of alpine grasslands in the QTP. The intensity of human disturbance had a negative effect on soil quality in the QTP. 相似文献
9.
Almeida C Quintar S González P Mallea M 《Environmental monitoring and assessment》2008,142(1-3):149-152
Water quality indices provide a simple and understandable tool for managers on the quality and possible uses for irrigation water, however an individual quality factor alone is not enough to evaluate the irrigation water quality because it could be restrictive and sometime it could give an unfavorable qualification. The aim of this paper was propose a quality profile of irrigation water using the preexisting water quality indices to be applied to arid and semi-arid regions. As a case studied, the water of the Del Molle River (Nogolí, San Luis, Argentina) was researched. Samples were collected during the period October 2005-May 2006. Conductivity, pH, total hardness, sulphate, nitrate, nitrite, alkalinity, chloride, sodium, potassium, TDS, DO and phosphate were analyzed. The irrigation water quality, according to Riverside Norm, belongs to C(2)-S(1) class, according to Wilcox Norm as excellent to good, according to Scott quality factor it is good and according to SAR < 10 and according to RCS it is recommendable. From the obtained data, it can be concluded that the water quality profile was good, so it is useful for normal irrigation agriculture. 相似文献
10.
Ruggiero P Terzano R Spagnuolo M Cavalca L Colombo M Andreoni V Rao MA Perucci P Monaci E 《Journal of environmental monitoring : JEM》2011,13(1):145-156
Different soil samples characterised by a long-term Hg-pollution were studied for Hg total content, fractionation, phytotoxicity and influence on the bacterial community. Hg pollution ranged from 1 to 50 mg kg(-1) and most of it was speciated in scarcely soluble forms. In agreement with this, the biochemical quality indexes were investigated (biomass, enzyme activities) and the bacterial community (viable heterotrophic (VH) bacteria, functional diversity) apparently was not influenced by the degree of Hg pollution. In particular, the investigated soils exhibited a low percentage of Hg-resistant (Hg(R)) bacteria ranging from less than 0.001% to 0.25% of the VH and the addition of available Hg in the form of HgCl(2) induced an enrichment of resistant Hg(R) populations. The general biodiversity of the bacterial community was evaluated by denaturing gradient gel electrophoresis of DNA of Hg spiked soil microcosms and of control soils. Hg(R) bacteria capable to grow in a minimal medium containing HgCl(2) were also isolated and identified. MerA and merB gene PCR fragments were obtained from different Hg(R) strains and the range of similarities at the DNA level and at the deduced amino acid level showed that they carried mercuric reductase and lyase. Differently from bacteria, some influence of soil Hg content on seeds' germination and root elongation was observed for Lepidium sativum L. and Solanum lycopersicum L. In conclusion, most of the Hg in these long-term polluted soils was scarcely mobile and available and did not significantly influence the soil bacterial community. The risk of potential Hg remobilization over time, that could be naturally favoured by the activity of plant roots or other inorganic processes occurring in soil, can be extenuated since bacterial community was resistant and resilient to subsequent Hg stress. 相似文献
11.
Soil quality index as affected by different cropping systems in northwestern Himalayas 总被引:1,自引:0,他引:1
J. A. Sofi A. G. Bhat N. A. Kirmai J. A. Wani Aabid H. Lone Mumtaz A. Ganie G. I. H. Dar 《Environmental monitoring and assessment》2016,188(3):161
Soil quality assessment provides a tool for evaluating the sustainability of soils under different crop cafeterias. Our objective was to develop the soil quality index for evaluating the soil quality indicators under different cropping systems in northwest Himalaya-India. Composite soil samples were taken from the study area from different cropping systems which include T1 (forest soil control), T2 (rice-oilseed, lower belts), T3 (rice-oilseed, higher belts), T4 (rice-oats), T5 (rice-fallow), T6 (maize-oats), T7 (maize-peas), T8 (apple), T9 (apple-beans), and T10 (apple-maize). Physical, chemical, and biological soil indicators were determined, and it was found that soil enzyme activities involved in nutrient cycling were significantly higher in forest soils, which were reflected in higher levels of available pool of nutrients. Carbon stocks were found significantly higher in forest soil which was translated in improved soil physical condition. Principal component analysis (PCA) was performed to reduce multidimensionality of data followed by scoring by homothetic transformation of the selected indicators. Pearson’s interclass correlation was performed to avoid redundancy, and highly correlated variables were not retained. Inclusion of legumes in the apple orchard floor recorded highest soil quality rating across the treatments. Cereal-based cropping systems were found in lower soil quality rating; however, the incorporation of peas in the system improved soil health. 相似文献
12.
Zhang Q Li Z Zeng G Li J Fang Y Yuan Q Wang Y Ye F 《Environmental monitoring and assessment》2009,152(1-4):123-131
In the study, multivariate statistical methods including factor, principal component and cluster analysis were applied to analyze surface water quality data sets obtained from Xiangjiang watershed, and generated during 7 years (1994-2000) monitoring of 12 parameters at 34 different profiles. Hierarchical cluster analysis grouped 34 sampling sites into three clusters, including relatively less polluted (LP), medium polluted (MP) and highly polluted (HP) sites, and based on the similarity of water quality characteristics, the watershed was divided into three zones. Factor analysis/principal component analysis, applied to analyze the data sets of the three different groups obtained from cluster analysis, resulted in four latent factors accounting for 71.62%, 71.77% and 72.01% of the total variance in water quality data sets of LP, MP and HP areas, respectively. The PCs obtained from factor analysis indicate that the parameters for water quality variations are mainly related to dissolve heavy metals. Thus, these methods are believed to be valuable to help water resources managers understand complex nature of water quality issues and determine the priorities to improve water quality. 相似文献
13.
14.
15.
Palma C Valença M Pestana da Silva P Biscaya JL 《Journal of environmental monitoring : JEM》2000,2(5):512-516
As part of the monitoring program from Instituto Hidrográfico, since 1981 sediment and water samples have been collected from four different estuarine areas located along the continental coast of Portugal. The concentrations of different parameters were measured in the water and sediment samples. After normalization, the concentrations of chromium, mercury, lead and zinc in the sediments from the different areas were compared. 相似文献
16.
P. F. M. van Gaans S. P. Vriend S. Bleyerveld G. Schrage A. Vos 《Environmental monitoring and assessment》1995,34(1):73-102
A base line study into the environmental quality of soils in the rural areas of the province of Zeeland, the Netherlands, was performed. The polder-landscape in this area was developed in a complex history of floodings and land-reclamation. Samples from 67 sites, at a density of roughly one per 25 km2, were analyzed for As, Cd, Cr, Cu, Hg, Ni, Pb and Zn in addition to a physicochemical characterization by pH(KCl), dry solids, organic matter, and clay content. At about 2/3 of the sites samples were taken at more than one depth. Fluoride and pesticides were determined in partly overlapping selections of 30 samples. Four land use classes were distinguished (arable land, grass land, orchards, uncultivated), and samples were labelled by region within the province. Data evaluation was aided by a recursive statistical approach, whereby statistical tests confirm and strengthen geochemical reasoning. Single- and multivariate statistics were used both as exploratory tools and as a measure of significance and relevance of conditions and processes. In general the environmental quality of the soils is satisfactory. Exceedence of the legal standards for natural background values at more than one site occurs for Cd, Cu, Hg and the pesticides DDT/DDE, dieldrin and HCH, at most by a factor of three. High levels of Hg appear related to arable land use; enhanced levels of Cu are found in orchards. High Cd levels primarily seem to follow a regional or geological pattern; yet, a relation with arable land use and clayey soils cannot be excluded. Pesticides are not detected in grass land, incidence is highest in orchards as well as in uncultivated areas. DDT levels appear to be generally inherited from the past. Variation in soil type as described by the macro physico-chemical characteristics is essential in explaining the variation in concentration level of the potential contaminants. Variations with depth also appear largely related to concurrent variation in soil properties. For As redox conditions and hydrological regime seem of importance, in addition to the geologic history. The influence of atmospheric input is inferred for Pb. The available data do not fully resolve the causes for the regional pattern that remains when the influences of soil type, geology, and land use have been taken into account. In addition to current concentration levels, the base line study offers general insight as to what degree variations in potential contaminants are of natural or anthropogenic origin. A succession of similar studies at suitable time intervals, each with a new selection of sampling sites, may constitute an evolving, flexible monitoring system. When putting up a monitoring system, authorities should weigh the advantages and disadvantages of a network composed of fixed sites against this alternative. 相似文献
17.
Anastasis Christou Elena Eliadou Costas Michael Evroula Hapeshi Despo Fatta-Kassinos 《Environmental monitoring and assessment》2014,186(8):4857-4870
An extensive field survey was employed for assessing the impacts of long-term wastewater irrigation of forage crops and orange orchards in three suburban agricultural areas in Cyprus (areas I, II, and III), as compared to rainfed agriculture, on the soil geochemical properties and the bioaccumulation of heavy metals (Zn, Ni, Mn, Cu, Co) to the agricultural products. Both ryegrass fields and orange orchards in areas I and II were continuously wastewater irrigated for 10 years, whereas clover fields in area III for 0.5, 4, and 8 years. The results revealed that wastewater reuse for irrigation caused a slight increase in soil salinity and Cl? content in areas I and II, and a remarkable increase, having strong correlation with the period in which wastewater irrigation was practiced, in area III. Soil salinization in area III was due to the high electrical conductivity (EC) of the wastewater applied for irrigation, attributed to the influx of seawater to the sewage collection network in area III. In addition, the wastewater irrigation practice resulted in a slight decrease of the soil pH values in area III, while a subtle impact was identified regarding the CaCO3, Fe, and heavy metal content in the three areas surveyed. The heavy metal content quantified in the forage plants’ above-ground parts was below the critical levels of phytotoxicity and the maximum acceptable concentration in dairy feed, whereas heavy metals quantified in orange fruit pulp were below the maximum permissible levels (MPLs). Heavy metal phytoavailability was confined due to soil properties (high pH and clay content), as evidenced by the calculated low transfer factor (TF). 相似文献
18.
Farhad Nejadkoorki Ken Nicholson Kamal Hadad 《Environmental monitoring and assessment》2011,172(1-4):215-223
The implementation and maintenance of an air pollution monitoring program can be expensive and time consuming, especially when the aim is for long-term monitoring over a significant area. Consequently, it is essential that sites are optimized to provide the best representative cover while minimizing costs. In the past, there has been a tendency to locate sampling stations at pollution hot-spots. While this is acceptable for determining a maximum potential exposure or identifying the extent of a risk, there are limitations to this approach when assessing the potential impact of any future abatement strategies or determining the level of exposure outside the vicinity. This paper presents an approach in which representative air quality assessments can be undertaken for an urban area using the minimum number of measurement sites. A novel methodology is described that involves site selection to capture the maximum variance in measured pollutants, while minimizing spatiotemporal autocorrelation between the selected sites. A case study is presented for Yazd, Iran. Overall, the results show that the proposed methodology can be effective and enable the long-term monitoring of air pollution to be undertaken on a cost-effective basis in urban areas. In addition, there is the potential for the methodology to be utilized for other forms of pollution (e.g., water, soil, and noise). 相似文献
19.
This study was conducted to evaluate the degree of mobility and fractionation of cadmium (Cd), copper (Cu), lead (Pb), nickel (Ni), and zinc (Zn) after the addition of municipal solid sewage sludge (MSS) in a sandy calcareous soil. Treatments were (1) soil application of MSS, (2) soil application of enriched municipal solid waste compost (EMSS), and (3) control soil. The MSS application represented a dose of 200 Mg dry weight per hectare. Soil columns were incubated at room temperature for 15 days and irrigated daily with deionized water to make a total of 505 mm. At the end of leaching experiments, soil samples from each column were divided into 14 layers, each being 1 cm down to 10 and 2.5 cm below that and analyzed for diethylenetriaminepentaacetic acid (DTPA)-extractable Cd, Cu, Pb, Ni, and Zn. The fractionation of the heavy metals in the top five layers of the surface soil samples was investigated by the sequential extraction method. All soil layers of the columns receiving MSS and EMSS had significantly higher concentrations of DTPA-extractable heavy metals than control soil. The maximum concentration of heavy metals in treated soil was in the surface layer and declined significantly with depth. Sequential extraction results showed that in the treated soil, a major proportion of Cd, Pb, and Ni was associated with organic matter (OM) and exchangeable (EXCH) fractions, and a major proportion of Cu and Zn was associated with residual (RES) and OM fractions. Based on relative percent, Pb, Cd, and Ni in the EXCH fraction was higher than Cu and Zn in soil leached with MSS and EMSS, suggesting that application of this MSS to a sandy calcareous soil, at the loading rate used here, may pose a risk in terms of groundwater contamination with Pb, Cd, and Ni. 相似文献
20.
Consuelo Fernanda Macedo de Souza José Ferreira Lima Jr Maria Soraya Pereira Franco Adriano Fabíola Galbiatti de Carvalho Franklin Delano Soares Forte Rosimere de Farias Oliveira Alexandre Pessoa Silva Fábio Correia Sampaio 《Environmental monitoring and assessment》2013,185(6):4735-4743
The aim of this study was to estimate the risk for caries and fluorosis in a desertification area, applying the calcium/fluoride concentration ratio of underground water and the quality of water in a selected geographical region. This study was performed in the municipality of São João do Rio do Peixe, located in the tropical semiarid lands of Brazil. A total of 111 groundwater samples were collected. Fluoride concentration varied from 0.11 to 9.33 mg/L. Thirty percent of all samples analyzed showed values above 1.5 mg/L, while 64 % were above the ideal limit of 0.7 mg/L. Mean calcium concentration was 47.6 mg/L, and 14.4 % of all samples presented values above the WHO acceptable limits. The proportional value of calcium/fluoride in water showed that only 12 % of the samples were suitable for dental caries prevention with minimal risk for dental fluorosis. Mapping of the fluoride distribution indicated that approximately 2,465 people could be affected by dental fluorosis and 1,057 people might be affected by skeletal fluorosis. It can be concluded that, in addition to fluoride, many water parameters were not suitable for the drinking water. Mapping out calcium/fluoride ratio may indicate areas of water suitability for caries control, whereas the fluoride concentration solely can indicate the areas with the risk for fluorosis. This approach can be relevant for health authorities for identifying communities where dental caries or dental fluorosis is prevalent. 相似文献