首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
On 100 occasions over a 3-y period ( June 1975 to July 1978 inclusive), precipitation collected at the Hubbard Brook Experimental Forest was analyzed for its chemical constituents. The present paper is a meteorological examination of the data, using back trajectories based on a quasi-geostrophic method.Some of the trajectories are complex and difficult to interpret. When these are excluded, the remaining 69 events show the influence of meteorology on wet deposition at Hubbard Brook. Highest values of H+, SO4 and NO3 are associated with winds from the SSE through SSW, and with looping trajectories over New England. In contrast, air that has come from the NNW-NE-ESE sector is relatively clean. These results are confirmed using a crossing-trajectory analysis.A method of trend analysis for SO4 concentrations is suggested, using crossing-trajectory statistics and a simple linear chemistry model. The sample period (3 y) is too short to provide a fair test of the method. Nevertheless, the results obtained are not unreasonable, namely a downward trend of 7% in SO4 concentrations, when the data are normalized for meteorological factors, as compared with a decrease of 5 % in regional emissions of SO2 over the same period.  相似文献   

2.
The dry deposition of PAN to grass, soil and water surfaces has been studied in a wind tunnel. Grass and soil were found to remove PAN with deposition velocity (vg) around 0.25 cm s−1, but seawater and deionised water surfaces did not remove PAN at appreciable rates (vg < 0.02 cm s−1). The diurnal variation of PAN concentration at ground level can be explained in terms of photochemical production during daylight hours and deposition continuing during the night.  相似文献   

3.
The catchments of East and West Bear Brooks, Maine, USA, have been hydrologically and chemically monitored for 3.5 years. Stream chemistries and hydrographs are similar. These clear water streams are low in ANC (0-70 microeq litre(-1)), with variations caused by changing concentrations of base cations, SO4, NO3 and Cl. The latter range between 90-120, 0-40 and 65-75 microeq litre(-1), respectively. The West Bear catchment is being treated with six applications per year of dry (NH4)2SO4 at 1800 eq ha(-1) year(-1). After one year of treatment, the response of the stream chemistry and the response modelled by MAGIC are similar. Retentions of NH4 and SO4 are nearly 100% and greater than 80%, respectively. The additional flux of SO4 is compensated principally by an increased Ca concentration. Episodes of high discharge in the treated catchment are now characterized by lower ANC and pH, and higher Al than prior to the manipulation. Concentrations of NO3 have increased about 10 microeq litre(-1) during the dormant season, presumably due to additional nitrification of N from NH4. Discharge-chemistry relationships indicate that changes in stream chemistry, except for NO3, are dominated by ion exchange reactions in the upper part of the soil profile.  相似文献   

4.
Atmospheric ozone: formation and effects on vegetation   总被引:20,自引:0,他引:20  
Ozone (O(3)) is present both in the troposphere and the stratosphere. Troposphere O(3) is predominantly produced by photochemical reactions involving precursors generated by natural processes and to a much larger extent by man's activities. There is evidence for a trend towards increasing tropospheric O(3) concentrations. However, tropospheric O(3) is known to account for only 10% of the vertical O(3) column above the earth's surface. The stratosphere accounts for an additional 90% of the O(3) column. There is evidence to suggest that there are losses in the stratospheric O(3) due to the updraft of O(3) destroying pollutants generated by both natural processes and by human activity. Such a loss in stratospheric O(3) can result in alterations of incidence in the ultraviolet (UV) radiation to the earth's surface. Tropospheric O(3) is known to be highly phytotoxic. Appropriate exposures to O(3) can result in both acute (symptomatic) and chronic (changes in growth, yield or productivity and quality) effects. Chronic effects are of great concern in terms of both crops and forests. A number of experimental techniques are available to evaluate the chronic effects of O(3) on plants. There are limitations attached to the use of these techniques. However, results obtained, with such techniques are valuable if interpreted in the appropriate context. Among all field evaluation techniques, open-top chambers are the most frequently used method for evaluating the chronic effects of O(3) on crops. The National Crop Loss Assessment Program (NCLAN) of the United States is the largest such effort. However, given the limitations of the open-top chambers and the experimental aspects of NCLAN, its results must be interpreted with caution. On the other hand, acute effects can be evaluated with less complexity through the use of biological indicator plants. The numerical modelling of such effects are also far less complicated than establishing numerical cause and effects relationships for chronic effects. Confounding the acute or chronic responses of plants to O(3), is the presence of other kinds and forms of pollutants in the ambient atmosphere and the incidence of pathogens and pests. The resulting complex interactions and joint effects on plants are poorly understood. Future research must address these issues. In the final analysis we have re-emphasized the fact that plant health is the product of its interaction with the physical and chemical climatology and pathogens and pests. What we have described in this context is the importance of tropospheric O(3) within the chemical climatology of our environment and its effects on vegetation.  相似文献   

5.
The United States Environmental Protection Agency issues periodic reports that describe air quality trends in the US. For some pollutants, such as ozone, both observed and meteorologically adjusted trends are displayed. This paper describes an improved statistical methodology for meteorologically adjusting ozone trends as well as characterizes the relationships between individual meteorological parameters and ozone. A generalized linear model that accommodates the nonlinear effects of the meteorological variables was fit to data collected for 39 major eastern US urban areas. Overall, the model performs very well, yielding R2 statistics as high as 0.80. The analysis confirms that ozone is generally increasing with increasing temperature and decreasing with increasing relative humidity. Examination of the spatial gradients of these responses show that the effect of temperature on ozone is most pronounced in the north while the opposite is true of relative humidity. By including HYSPLIT-derived transport wind direction and distance in the model, it is shown that the largest incremental impact of wind direction on ozone occurs along the periphery of the study domain, which encompasses major NOx emission sources.  相似文献   

6.
Critical levels for ozone effects on vegetation in Europe   总被引:36,自引:0,他引:36  
The evidence of detrimental effects of ozone on vegetation in Europe, and the need to develop international control policies to reduce ozone exposures which are based on the effects of the pollutant, has led to attempts to define so-called critical levels of ozone above which adverse effects on trees, crops and natural vegetation may occur. This review is a critical assessment of the scientific basis of the concepts used to define critical levels for ozone and identifies the key limitations and uncertainties involved. The review focuses on the Level I critical level approach, which provides an environmental standard or threshold to minimise the effects of ozone on sensitive receptors, but does not seek to quantify the impacts of exceeding the critical level under field conditions. The concept of using the AOT (accumulated exposure over a threshold) to define long-term ozone exposure is demonstrated to be appropriate for several economically important species. The use of 40 ppb (giving the AOT40 index) as a threshold concentration gives a good linear fit to experimental data from open-top chambers for arable crops, but it is less certain that it provides the best fit to data for trees or semi-natural communities. Major uncertainties in defining critical level values relate to the choice of response parameter and species; the absence of data for many receptors, especially those of Mediterranean areas; and extrapolation to field conditions from relatively short-term open-top chamber experiments. The derivation of critical levels for long-lived organisms, such as forest trees, may require the use of modelling techniques based on physiological data from experimental studies. The exposure-response data which have been applied to derive critical levels should not be used to estimate the impacts of ozone over large areas, because of the uncertainties associated with extrapolation from the open-top chamber method, especially for forest trees, and because of spatial variation in atmospheric and environmental conditions, which may alter ozone uptake.  相似文献   

7.
Modeling the effects of ozone on soybean growth and yield   总被引:1,自引:0,他引:1  
A simple mechanistic model was developed based on an existing growth model in order to address the mechanisms of the effects of ozone on growth and yield of soybean [Glycine max. (L.) Merr. 'Davis'] and interacting effects of other environmental stresses. The model simulates daily growth of soybean plants using environmental data including shortwave radiation, temperature, precipitation, irrigation and ozone concentration. Leaf growth, dry matter accumulation, water budget, nitrogen input and seed growth linked to senescence and abscission of leaves are described in the model. The effects of ozone are modeled as reduced photosynthate production and accelerated senescence. The model was applied to the open-top chamber experiments in which soybean plants were exposed to ozone under two levels of soil moisture regimes. After calibrating the model to the growth data and seed yield, goodness-of-fit of the model was tested. The model fitted well for top dry weight in the vegetative growth phase and also at maturity. The effect of ozone on seen yield was also described satisfactorily by the model. The simulation showed apparent interaction between the effect of ozone and soil moisture stress on the seed yield. The model revealed that further work is needed concerning the effect of ozone on the senescence process and the consequences of alteration of canopy microclimate by the open-top chambers.  相似文献   

8.
9.
Seven species from two contrasting wetlands, an upland bog and a lowland rich fen in North Wales, UK, were exposed to elevated ozone (150 ppb for 5 days and 20 ppb for 2 days per week) or low ozone (20 ppb) for four weeks in solardomes. The rich fen species were: Molinia caerulea, Juncus subnodulosus, Potentilla erecta and Hydrocotyle vulgaris and the bog species were: Carex echinata, Potentilla erecta and Festuca rubra. Senescence significantly increased under elevated ozone in all seven species but only Molinia caerulea showed a reduction in biomass under elevated ozone. Decomposition rates of plants exposed to elevated ozone, as measured by carbon dioxide efflux from dried plant material inoculated with peat slurry, increased for Potentilla erecta with higher hydrolytic enzyme activities. In contrast, a decrease in enzyme activities and a non-significant decrease in carbon dioxide efflux occurred in the grasses, sedge and rush species.  相似文献   

10.
Although ozone has been shown to reduce the growth of individual species and to alter the composition of simple species mixtures, there is little understanding of its long-term effects on species dynamics and composition in real communities. Intact turfs of calcareous grassland were exposed to four different ozone regimes in open-top chambers over three consecutive summers. Treatments provided a mean seasonal AOT40 ranging from approximately zero to 15 ppm h. Cumulative ozone exposure was a significant factor in compositional change, but only explained 4.6% of the variation. The dominant grass species (Festuca rubra) showed a consistent decline in cover in the high ozone treatment over time and the forb Campanula rotundifolia was lost from all three ozone treatments. The frequency of some species (Galium verum and Plantago lanceolata) increased with ozone exposure. Long-term effects of ozone on species composition in chalk grassland may be a function of both the sensitivity of individual species and the response of the dominant species.  相似文献   

11.
This paper presents the temporal variation in surface-level ozone (O3) measured at Gummidipoondi near Chennai, Tamilnadu. The site chosen for the present study has high potential for ozone generation sources, such as vehicular traffic and industrial activities. The site is also located near a hazardous waste management facility. The key sources of nitrogen oxides (NOx), which are considered to be an important precursor of O3, include hazardous waste incineration, trucks bringing the hazardous wastes, and vehicles plying on the nearby National Highway 16 (NH 16). The measurements clearly showed diurnal variation, with maximum values observed during the noon hours and minimum values observed when solar radiation was less. The data showed a marked seasonal variation in O3, with the highest hourly average O3 concentration (497.2 µg/m3) in the summer season. Consequently, in order to identify the long-range transport sources adding to the increased O3 levels, backward trajectories were computed using the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model. It was found that the polluted air mass originated from the Southeast Asian region and the Indo-Gangetic Plain. The polluted air mass, which advected large amounts of carbon monoxide (CO) plumes, was analyzed using the Measurement of Pollution in the Troposphere (MOPITT) retrievals. The correlations of O3 with temperature (r = 0.746; P < 0.01) and solar radiation (r = 0.751; P < 0.01) were strongly positive, and that with NOx was found to be negative. Stronger correlation of O3 with NOx was observed during pre-monsoon months (r = 0.627; P < 0.01) and following hours of photochemical reactions. There were substantial differences in concentrations between weekdays and weekends, with higher nitric oxide (NO) and nitrogen dioxide (NO2), but lower O3, concentrations on weekdays. A substantial weekday-weekend difference in O3, which was higher on weekends, appears to be attributable to lower daytime traffic activity and hence reduced emissions of NOx to a “NOx-saturated” atmosphere.

Implications: The assessment of ground-level ozone in an industrial area with hazardous waste management facility is very important, as there is high possibility for more generation of tropospheric ozone. Since the location of the study area is coastal, wind plays a major role in O3 transportation; hence, the effects of wind speed and wind direction have been studied in different seasons. When compared with the other studies carried out in different places across India, the present study area has recorded much greater O3 mixing ratio. This study can be useful for setting up control strategies in such industrial areas.  相似文献   

12.
Ground-level ozone in China: distribution and effects on crop yields   总被引:10,自引:0,他引:10  
Rapid economic development and an increasing demand for food in China have drawn attention to the role of ozone at pollution levels on crop yields. Some assessments of ozone effects on crop yields have been carried out in China. Determination of ozone distribution by geographical location and resulting crop loss estimations have been made by Chinese investigators and others from abroad. It is evident that surface level ozone levels in China exceed critical levels for occurrence of crop losses. Current levels of information from ozone dose/response studies are limited. Given the size of China, existing ozone monitoring sites are too few to provide enough data to scale ozone distribution to a national level. There are large uncertainties in the database for ozone effects on crop loss and for ozone distribution. Considerable research needs to be done to allow accurate estimation of crop losses caused by ozone in China.  相似文献   

13.
An indoor air quality model was used to predict dynamic particle mass concentrations based on homogeneous chemical mechanisms and partitioning of semi-volatile products to particles. The ozone–limonene reaction mechanism was combined with gas-phase chemistry of common atmospheric organic and inorganic compounds and incorporated into the indoor air quality model. Experiments were conducted in an environmental chamber to investigate secondary particle formation resulting from ozone/limonene reactions. Experimental results indicate that significant fine particle growth occurs due to the interaction of ozone and limonene and subsequent intermediate by-products. Secondary particle mass concentrations were estimated from the measured particle size distribution. Predicted particle mass concentrations were in good agreement with experimental results—generally within ∼25% at steady-state conditions. Both experimental and predicted results suggest that air exchange rate plays a significant role in determining secondary fine particle levels in indoor environments. Secondary particle mass concentrations are predicted to increase substantially with lower air exchange rates, an interesting result given a continuing trend toward more energy efficient buildings. Lower air exchange rates also shifted the particle size distribution toward larger particle diameters. Secondary particle mass concentrations are also predicted to increase with higher outdoor ozone concentrations, higher outdoor particle concentrations, higher indoor limonene emission rates, and lower indoor temperatures.  相似文献   

14.
Four-year-old, seed-grown trees of Norway spruce (Picea abies (L.) Karst.) were exposed in open-top chambers to charcoal-filtered air (8 h daily mean 54 microg O(3) m(-3)) over three consecutive summers (1986-1988). In mid-May 1988, before the third season of fumigation and more than 7 months after exposure to ozone the previous summer had terminated, daily rates of transpiration from intact shoots and water loss from excised needles were measured together with the amount of wax on the needle surface. In mid-July, 92 days after the beginning of the third year of exposure, the wettability of needles was assessed by measuring the contact angle of water droplets on the surface of needles. Exposure to 156 microg O(3) m(-3) resulted in a 16% increase in daily transpiration in current year's needles and a 28% increase in 1-year old needles. These effects were associated with slower stomatal closure in response to increasing water deficit in the needles previously exposed to 156 microg m(-3) ozone. The long-lasting nature of such ozone-induced effects could predispose trees to drought and winter desiccation. No significant effects of ozone were found on the amount of wax covering the needle surface, but a marked increase in the wettability of needles exposed to ozone was observed. The far reaching physiological consequences of these effects in the field and the possibility that similar disturbances may contribute to the decline of high-altitude forests of Norway spruce in Europe are discussed.  相似文献   

15.
粒状羟基氧化铁对废水中硝酸盐的吸附   总被引:2,自引:0,他引:2  
霍蕾  杨琦  尚海涛 《环境工程学报》2012,6(9):3058-3062
本实验研究了粒状羟基氧化铁(GFH)对人工配制含氮废水中NO3--N吸附的影响因素、吸附等温线和吸附动力学。结果表明,GFH的吸附平衡时间为80 min,增加NO3--N溶液的初始浓度,去除率下降;pH值为5时GFH对NO3--N的吸附能力最强,pH值升高和降低,吸附能力均下降;GFH对NO3--N的吸附能力随着温度的升高略有降低;在25℃下,以Langmuir方程和Freundlich方程分别对GFH吸附NO3--N的等温线进行拟合,拟合效果以Langmuir方程较好,相关性达到0.9930。GFH吸附NO3--N的过程符合拟二级动力学方程,初始时刻的吸附速率h在35℃时最大,为1.653 mg/(g.mg),吸附速率常数随温度的升高而增大;吸附反应的活化能Ea为54.72 kJ/mol。本研究结果表明,GFH在饮用水脱氮和含氮浓度较低的污水再生回用领域有实际应用的潜力。  相似文献   

16.
Ozone and atmospheric nitrogen are co-occurring pollutants with adverse effects on natural grassland vegetation. Plants of the rhizomatous sedge Carex arenaria were exposed to four ozone regimes representing increasing background concentrations (background-peak): 10-30, 35-55, 60-80 and 85-105 ppb ozone at two nitrogen levels: 12 and 100 kg N ha−1 yr−1. Ozone increased the number and proportion of senesced leaves, but not overall leaf number. There was a clear nitrogen × ozone interaction with high nitrogen reducing proportional senescence in each treatment and increasing the ozone dose (AOT40) at which enhanced senescence occurred. Ozone reduced total biomass due to significant effects on root biomass. There were no interactive effects on shoot:root ratio. Rhizome tissue N content was increased by both nitrogen and ozone. Results suggest that nitrogen mediates above-ground impacts of ozone but not impacts on below-ground resource translocation. This may lead to complex interactive effects between the two pollutants on natural vegetation.  相似文献   

17.
The second UN/ECE ICP-Forests Intercalibration Course on the Assessment of Ozone Injury on European Tree Species was carried out in August 2001 at Lattecaldo (Canton Ticino, CH) and Moggio (Lombardy, I). Forty-eight experts from several European countries participated in the exercises and assessed visible symptoms of ozone injury both in open-top chambers (OTC) (Lattecaldo) and under open field (Moggio) conditions. Evaluation of the results indicated a large variability among the teams and call for adequate training of the observers prior to symptom assessment for quality assurance purposes. Highest variability was found for the species developing unclear symptoms which could be confused with senescence processes; such species should not be used in the field. The authors provide suggestions to improve the reliability of the ozone injury assessment on forest plant species.  相似文献   

18.
19.
Phosphorus and nitrogen leached from high-porosity golf greens can adversely affect surface water and groundwater quality. Greenhouse and field lysimeter experiments were carried out to determine the effects of eight fertilizer sources on P and N leaching from simulated golf greens. Phosphorus appeared in the leachate later than nitrate-N, and the highest concentrations were for the soluble 20-20-20 and the 16-25-12 starter fertilizers. The other six sources resulted in lower P concentrations. The soluble 20-20-20 and the 16-25-12 sources each resulted in 43% of the added P eluting in the leachate, whereas the others varied from 15 to 25%. For nitrate-N the lowest cumulative mass was for the controlled-release 13-13-13 and sulfur-coated urea. A higher percentage of applied P than applied N leached from both field and greenhouse lysimeters. However, the amounts of P leached for the field lysimeters were lower than for the greenhouse columns.  相似文献   

20.
Seedlings of Jeffrey pine (Pinus jeffreyi) and giant sequoia (Sequoiadendron gigantea) were more susceptible to leaf chemical changes following exposure to acid mist (pH 3.4-2.0) or acid mist/ozone combinations, than to ozone alone (0.1-0.2 microl/litre), when plants were exposed to alternating doses of these pollutants for 6-9 weeks. Under acid mist treatment, leaves exhibited higher levels of nitrogen and sulfur, two elements applied in acid mist. In addition, levels of foliar sodium, and, in the case of giant sequia, potassium, as well, increased under acid mist treatment. Iron and manganese were also mobilized, resulting in significant increases in these elements in pine, and decreases in manganese in giant sequoia foliage. The acid treatment also reduced chlorophyll b concentrations in pine, and, to a less significant extent, in giant sequoia. Calcium, magnesium, barium and strontium were differentially accumulated in giant sequoia compared to Jeffrey pine. Under acid mist treatment, all of these elements (except strontium) declined in concentration in giant sequoia, with calcium showing the most significant trend. The more extensive changes in leaf chemistry induced by acid mist are consistent with earlier observations of significant changes in spectral reflectance of these seedlings after 3 weeks of fumigation. Limited foliage samples collected from these two species in 1985 and 1986 in Sequoia/Kings Canyon National Parks in the southern Sierra Nevada do not in themselves indicate any clearcut or severe effects of ozone alone on leaf chemistry of these species, but a mild influence of nitrate-laden acid deposition, possibly in combination with ozone, is consistent with the rise in nitrogen and lignin levels in Jeffrey pine on sites observed to have moderate visible injury symptoms. No firm conclusions about effects of pollutants on leaf chemistry in these field sites is possible without further study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号