首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
中国集成电路制造行业VOCs排放特征及控制对策   总被引:2,自引:0,他引:2  
中国电子信息产业发展迅速,集成电路等电子器件产量不断增加.在集成电路制造的过程中,大量有机溶剂的使用导致VOCs的产生和排放,从而对大气环境造成影响.为掌握集成电路制造行业VOCs的排放特征,系统分析了其工艺流程和产排污环节,分析了行业废气收集和治理现状,通过对典型企业VOCs的排放监测,获得VOCs排放水平;采用排放因子法核算行业VOCs历史排放量,并基于行业排放特征及减排潜力分析,提出了相应的污染防治对策.结果表明:在集成电路制造中,VOCs排放环节主要集中在光刻、清洗、去胶等过程,1 m2集成电路产量约使用87 g有机溶剂,VOCs产生量较大;通过采取高效的VOCs治理技术,集成电路制造行业有组织排放水平较低,平均浓度为2.1 mg·m-3,但厂界无组织排放浓度相对较高,平均浓度为0.78 mg·m-3,接近国家标准的排放限值.根据排放量核算结果,2011—2016年中国集成电路制造行业VOCs排放量呈逐年上升的趋势,主要受产量增加而相应污染控制技术水平提升有限的影响,无组织排放量比重大,占排放总量的38.1%~45.1%.  相似文献   

2.
船舶运输业蓬勃发展的同时,也向大气中排放了大量有害气体.为此我国制定了分阶段实施的船舶排放控制区政策,以期通过限制燃油含硫量控制船舶大气污染问题.本研究于2016年和2018年在排放控制区政策实施前后,连续对A船和B船2艘万吨级航海船进行登船实测,使用"碳平衡法"计算了船舶尾气中各类污染物基于燃油消耗量的排放因子.结果表明,A船、B船由使用含硫量为2.20%和2.10%的燃油转为使用含硫量为0.470%和0.003%的燃油后,SO2排放因子分别由44.00 g·kg-1和42.00 g·kg-1下降到9.40 g·kg-1和0.80 g·kg-1,PM2.5排放因子分别由2.44 g·kg-1和1.02 g·kg-1下降到0.870 g·kg-1和0.003 g·kg-1,TVOC排放因子则分别由0.061 g·kg-1和0.106 g·kg-1升高到0.292 g·kg-1和0.706 g·kg-1.对比使用不同含硫量燃油时船舶PM2.5的减排情况发现,现阶段以燃油含硫量≤ 0.5%为限值的排放控制区政策,以及即将推行的以燃油含硫量≤ 0.1%为限值的排放控制区政策都能有效地降低船舶颗粒物排放.在成分特征方面,转用含硫量更低的燃油后,A船、B船PM2.5中硫酸盐在水溶性离子中的占比分别由58.6%和44.3%下降到18.1%和7.9%;PM2.5中钒元素含量分别降低了82.5%和98.9%,镍元素含量分别降低了20.8%和98.5%;VOCs中烯烃占比分别提高了11.9%和19.3%,而芳香烃占比则分别下降了32.0%和4.5%.由于排放控制区政策实施以后,船舶排放的颗粒物中钒元素的含量大幅减少,钒元素将不再适合作为船舶大气污染示踪物.  相似文献   

3.
沥青生产是重要的石化行业子行业之一,目前尚缺乏针对该行业VOCs排放的相关研究.为探明沥青生产行业VOCs的排放特征,选取以重质稠油为原料生产沥青的某典型企业,主要采集有组织和无组织排放工序环节的样品,通过GC-MS定量检测了65种VOCs.结果表明,该企业沥青生产的VOCs排放浓度为37.28~7528.00 μg·m-3,无组织排放和有组织排放VOCs均以烷烃为主,浓度占比超过50%,而有组织排放废气经末端治理设施处理后芳香烃贡献增加.乙烷、丙烷、正丁烷、异丁烷、正戊烷、异戊烷、环戊烷、正己烷、甲基环戊烷、环己烷、甲基环己烷、乙烯、1-丁烯、苯、甲苯、间二甲苯、邻二甲苯为该企业沥青生产过程的特征VOCs组分.沥青生产行业VOCs排放主要来自无组织排放,其中,95%的VOCs无组织排放来源于储罐区的呼吸损耗,为161.65 t·a-1,其次为装卸平台,挥发量为9.42 t·a-1.对无组织排放环节的管控应该成为沥青生产行业的管控重点.  相似文献   

4.
德州市夏季臭氧敏感性特征及减排方案   总被引:9,自引:9,他引:0  
严茹莎 《环境科学》2020,41(9):3961-3968
近年来德州市臭氧污染频发,2018年夏季(6~8月),德州市发生了严重臭氧污染事件,臭氧日最大8 h浓度值超标天数达60 d,超标率65%,3个月平均值为176 μg ·m-3,最高达262 μg ·m-3.本研究利用WRF-CAMx耦合的HDDM模块,分析期间德州臭氧敏感性特征及减排方案.结果表明,在空间上,德州市中心城区为VOCs控制区,而郊区为NOx与VOCs协同控制区.在时间上,VOCs敏感值每日为正值,但dO3_V50在6月(城区18.7 μg ·m-3,郊区19.7 μg ·m-3)和8月(城区15.3 μg ·m-3,郊区16.4 μg ·m-3)高于7月(城区13.0 μg ·m-3,郊区11.8 μg ·m-3),NOx敏感值城区呈正负交错,郊区大部分为正值,并与VOCs敏感值接近.对于城区减排方案应考虑以仅VOCs削减为优先,而郊区由于NOx和VOCs对臭氧减排效果相当,建议以NOx:VOCs=1:1为优.  相似文献   

5.
我国经济快速发展区工业VOCs排放特征及管控对策   总被引:1,自引:1,他引:0  
近年来随着我国经济快速发展,挥发性有机物(VOCs)作为雾、霾和臭氧前驱物日益受到关注,经济快速发展区VOCs污染情况尤为复杂.本文对京津冀、长三角和珠三角的12种典型工业行业及垃圾、废水处理厂与综合工业园区、居民区的VOCs排放特征与分布趋势进行系统分析.解析出制药、橡胶和油漆喷涂为12种典型工业行业中VOCs平均排放浓度最高的3个行业,得到平均浓度分别为541、499和450 mg·m-3,应给予高度关注.对比分析发现长三角与京津冀地区平均排放浓度最高是制药行业,分别为112 mg·m-3和1.00×103 mg·m-3;而珠三角地区油漆喷涂行业排放最高,平均浓度为1.04×103 mg·m-3.进一步对12种典型工业行业VOCs种类分布情况进行分析,发现毒性大的芳香烃与卤代烃分别在油漆喷涂与制药行业中排放占比最高,达到55.99%和26.57%.三大经济区中长三角地区居民区与综合工业园区附近VOCs浓度最低,京津冀地区浓度最高,与各地区工业排放分布情况一致.分析2002~2018年的数据发现居民区VOCs浓度整体呈现波动性下降趋势,尤其2016年后显著降低,反映出我国VOCs防治的相关政策、法律法规和标准及技术对现阶段VOCs控制起到了显著成效.  相似文献   

6.
珠三角地区生活垃圾焚烧厂汞的排放特征   总被引:4,自引:1,他引:3  
利用OH法对珠三角8家垃圾焚烧厂(6家采用炉排炉工艺,2家采用流化床工艺)进行烟气采样,同时采集飞灰、底渣、煤炭样品进行分析.研究结果表明,珠三角炉排炉焚烧烟气平均总汞(THg)排放浓度为(51.4±28.3) μg·Nm-3,流化床为(19.5±13.6) μg·Nm-3.炉排炉飞灰THg含量为6674 μg·kg-1,流化床飞灰THg含量为2135 μg·kg-1,底渣中炉排炉THg含量为70 μg·kg-1,流化床为30 μg·kg-1.飞灰中的汞含量要远远高于底渣.垃圾焚烧过程中炉排炉70.8%的汞由烟气排放,26.3%存在飞灰中,底渣中的汞仅占2.9%.流化床工艺烟气汞排放占总汞排放的33.2%.利用质量平衡法计算珠三角垃圾中汞含量平均值为0.293 mg·kg-1,流化床工艺因添加燃煤所产生的汞排放占到垃圾焚烧总汞排放的31.6%.  相似文献   

7.
超低改造下中国火电排放清单及分布特征   总被引:2,自引:1,他引:1  
本研究基于2018年火电在线监测和环境统计等数据,自下而上编制了中国高分辨率火电行业排放清单,并核算了排放浓度、排放因子和排放量.结果表明超低排放政策效果显著:2018年火电SO2、NOx和烟尘平均排放浓度分别为37.57、56.71和7.41mg ·m-3.比2015年分别下降58.71%、43.12%和60.79%;中国燃煤机组的SO2、NOx和烟尘平均排放因子分别为0.30、0.48和0.06 g ·kg-1,比2015年分别下降55.2%、36.84%和62.5%;中国火电SO2、NOx、烟尘和PM2.5总排放量分别为72.14、118.38、14.90和13.59万t ·a-1,比2015年分别下降41.32%、19.29%、48.12%和40.39%.  相似文献   

8.
工业涂装行业是挥发性有机化合物(VOCs)综合治理的重点行业之一,涉及行业广,排放环节多,排放量大.确定不同行业的排放特点、治理现状与减排潜力是制定差异化的防治技术路线的基础.本文根据工业涂装行业排放占比,选取家具、汽车整车、汽车零部件、集装箱、机械制造、船舶、钢结构等行业开展源头替代、涂装工艺和设备、无组织排放收集以及末端治理等环节VOCs减排研究,分行业归纳总结VOCs排放特征,梳理VOCs控制技术在各行业的应用情况,评估各行业VOCs全过程控制整体水平,识别工业涂装VOCs控制的薄弱环节,计算不同减排路径下各行业的减排潜力.结果表明:(1)工业涂装行业普遍存在低VOCs含量涂料替代不足、自动化涂装方式占比低、无组织收集率偏低以及高端末端治理设施覆盖率偏低等问题,实施工业涂装行业全过程控制具有较大的减排潜力.(2)不同工业涂装行业减排重点应有所差别,木质家具、船舶和钢结构的VOCs减排潜力主要为源头替代及工艺改进,其减排潜力分别占本行业总减排潜力的80.3%、75.5%和68.2%,而汽车制造、集装箱、机械制造行业的重点减排环节以无组织收集和末端治理为主,该环节减排潜力分别占本行业...  相似文献   

9.
长江经济带湖北省人为源VOCs排放清单及变化特征   总被引:3,自引:1,他引:2  
以人为源挥发性有机物(VOCs)为研究对象,以5类源活动水平数据为基础,采用排放因子法建立了长江经济带湖北省2018年人为源VOCs排放清单,并进一步研究了2009~2018期间工艺过程源VOCs排放特征及变化趋势.结果表明,湖北省2018年人为源VOCs排放总量为6.52×105 t,约占全国总排放量的6.41%;化石燃料固定燃烧源、工艺过程源、溶剂使用源、移动源和废弃物处理源对湖北省的贡献分别为3.26%、76.39%、4.54%、14.72%和1.09%.涉及9个行业45个子类的工艺过程源在VOCs排放中占比突出,其中武汉市和宜昌市的VOCs排放量较高.从经济水平和区域面积分别分析了各市州工艺过程源VOCs排放强度,天门市和神农架林区单位GDP的VOCs排放量较高,而武汉市、鄂州市和天门市单位面积VOCs排放量较高.2009年VOCs排放量从2.45×105 t逐年递增,2015~2017年趋于稳定,最大排放量达7.01×105 t,2018年VOCs排放量降至4.98×105 t,与全国人为源VOCs排放趋势相同.化学原料及化学制品制造业、橡胶和塑料制造业是其变化的主要驱动力,10年间贡献分别为33.85%~51.55%和7.07%~38.13%.其中化学药品原药、化学农药原药生产在10年间对VOCs排放贡献占据重要优势,而泡沫塑料生产排放量变化大,在2015~2017年突增到2.00×104 t以上.湖北省在国家及地方相关政策引导下,重点行业VOCs减排效果显著.  相似文献   

10.
针对厦门"金砖会晤"空气质量保障活动,本研究选取2017年8月10日—9月10日的O3、NO2和挥发性有机物(VOCs),以及气象因子等在线观测数据,开展人为减排、副热带高压、台风等对东南沿海城市大气O3污染特征的影响研究.结果表明,研究期间厦门大气O3-8 h平均浓度为(110.0±40.6)μg·m-3.与管控前相比,无台风影响的管控I期的O3-8 h浓度上升了19.9 μg·m-3,而管控II期的O3-8 h浓度下降了27.9 μg·m-3.对于管控I期和II期,台风影响下O3-8 h浓度较无台风时段分别下降85.2 μg·m-3和8.9 μg·m-3.在排放控制和台风的共同作用下,峰会期间厦门大气O3浓度的日变化显现出"削峰填谷"的特征.另外,与管控I期相比,管控II期O3前体物VOCs浓度显著下降,其臭氧生成潜势(OFP)下降了44.6%.总之,运用区域联防联控策略,对臭氧前体物(NOx和VOCs)实施针对性减排,可有效地降低沿海城市大气O3日间最高浓度.  相似文献   

11.
浙江省汽车整车制造行业挥发性有机物产排污系数   总被引:2,自引:2,他引:0  
选取了浙江省内4家典型汽车整车制造企业进行调研,并对其中的两家企业开展了实地监测,通过分析生产工艺及其所使用的主要原辅材料,确定了该行业挥发性有机物(VOCs)的主要产生和排放环节,计算了浙江省汽车整车制造行业的挥发性有机物产生和排放系数,估算了2017年全省汽车整车制造行业的VOCs产生和排放量.结果表明,浙江省汽车整车制造业的VOCs主要产生及排放环节为涂装工序;现阶段浙江省内仅有部分汽车整车制造企业对喷漆废气进行了高效处理;除涂料外,溶剂型清洗剂也是该行业VOCs的主要来源之一.计算得出的浙江省汽车整车制造业的VOCs产生系数为0.20 t·t~(-1)、 3.92 kg·辆~(-1)和29.36 g·m~(-2),排放系数为0.13 t·t~(-1)、 2.63 kg·辆~(-1)和19.72 g·m~(-2);2017年全省汽车整车制造行业的VOCs产生量为2 425.84 t,排放量为1 627.54 t.  相似文献   

12.
浙江省木制品行业挥发性有机物排放特征及排放系数   总被引:5,自引:4,他引:1  
姚轶  王浙明  何志桥  徐志荣  顾震宇 《环境科学》2016,37(11):4080-4085
以2015年310家木制品企业调查数据为基础,分析当前浙江木制品行业VOCs污染治理情况,并筛选出213家重点企业,分析木制品行业污染特征并计算VOCs排放系数.结果表明,浙江94%以上的木制品企业未能有效处理VOCs,且大部分企业仍使用溶剂型原辅材料,主要污染因子为二甲苯、乙酸丁酯、乙酸乙酯、甲苯、甲醛等9种VOCs.全省木制品行业VOCs排放系数为9.34 kg·(万元)~(-1),其中胶粘工艺排放系数为0.95 kg·(万元)~(-1),涂装工艺为9.36 kg·(万元)~(-1);涂装为主要污染工段,其中水性(UV)涂料使用企业排放系数为3.10 kg·(万元)~(-1),溶剂型涂料企业中,木质家具生产企业排放系数高达16.85 kg·(万元)~(-1).  相似文献   

13.
四川省典型行业挥发性有机物源成分谱   总被引:3,自引:3,他引:0  
徐晨曦  陈军辉  韩丽  王继钦  王波 《环境科学》2020,41(7):3031-3041
本研究选取了四川省汽车制造、木制家具、人造板制造、涂料生产和合成树脂生产等挥发性有机物(VOCs)排放源典型行业,通过GC-MS国标方法分析各环节有组织排放的VOCs组分,采用排放总量归一化法处理,获取了四川省汽车制造等典型行业挥发性有机物的成分谱.结果表明,汽车整车制造、木制家具和油性涂料生产企业的VOCs主要组分为芳香烃和含氧化合物,占总VOCs的70%以上,汽车零部件制造企业排放物种主要为芳香烃,其占比达90%以上.人造板制造业含氧化合物占比达97%,其中甲醛占比为75%,其次为异丙醇、丙酮等物质.合成树脂行业芳香烃、烯烃占比较高,占比之和达80%以上,其中烯烃物种主要为1,3-丁二烯和1-丁烯.不同行业排放物种虽存在一定差异,但主要以芳香烃和含氧化合物为主,因此,应加强对芳香烃和含氧化合物等浓度高、活性高、毒性大的组分进行识别和控制,采取源头、过程和末端全过程控制,达到总量减排的效果.  相似文献   

14.
为探明当前浙江省汽摩配行业挥发性有机物的整体排放与治理情况,以2015年浙江省范围内的70家汽摩配企业的VOCs调查数据为基础,展开了前期研究工作.通过分析全部70家汽摩配企业的调查数据,了解了行业的VOCs污染治理现状;通过深入研究筛选出的56家典型企业的调查数据,探究了行业的VOCs污染基本特征、以及初步计算了其VOCs排放系数.结果表明,虽然省内约三分之二的企业配有废气收集处理设施,但多数设施在运行维护方面存在着一定的问题;行业内使用的原辅材料以溶剂型为主,废气中VOCs的主要污染因子为二甲苯、乙酸丁酯、环己酮、乙酸乙酯、甲苯等物质;全省汽摩配行业的VOCs排放系数均值为4.14 kg·(万元)~(-1),其中汽配企业为2.94 kg·(万元)~(-1),摩配及通用型配件企业为7.15kg·(万元)~(-1).  相似文献   

15.
吴文璐  单春艳  赵菁林  崔羽浓 《环境科学》2023,44(11):5924-5932
基于济南市2020年大气污染源排放清单,选取化工、工业涂装、印刷和家具制造作为VOCs排放典型行业,对VOCs排放现状及存在问题进行调查分析,并依据企业规模及末端治理技术现状,设计出2种减排情景,估算减排潜力.结果表明,典型行业VOCs排放量从大到小依次为化工(7 947.92 t)、工业涂装(2 383.29 t)、印刷(792.87 t)和家具制造(143.79 t),其中,化工和工业涂装以大型企业为主,VOCs排放量占比分别为46.45%和50.89%,印刷和家具制造以中型企业为主,VOCs排放量占比分别为51.76%和42.37%;末端治理以单一低效治理技术为主,燃烧技术和组合技术等高效治理技术的使用率仅为7.46%;企业现场调研发现部分企业存在未完成源头替代、无组织排放管理不到位和末端治理设施适配性差等问题,具有一定的减排潜力.在设计的2种减排情景下,化工行业减排潜力最大,减排率为69.58%~84.99%,工业涂装、印刷和家具制造行业的减排率分别为26.98%~34.74%、 36.96%~59.74%和8.55%~40.45%.各行业的大、中型企业减排潜力较大,平均减排率...  相似文献   

16.
浙江省包装印刷行业挥发性有机物排放特征及排放系数   总被引:1,自引:0,他引:1  
本文通过2105年浙江省254家包装印刷企业的调查数据,剖析了该行业原辅料组分及挥发性有机物(VOCs)污染治理现状,并筛选出100家典型企业,按印刷工艺划分阐述包装印刷行业VOCs排放特征、核算VOCs排放系数.结果表明,浙江省近2/3包装印刷企业未能有效处理VOCs,且大部分企业仍使用溶剂型原辅料,主要排放污染因子为乙酸乙酯、异丙醇、乙醇、乙酸丙酯、乙酸丁酯等9种物质.全省包装印刷行业VOCs平均排放系数为0.485 kg·kg~(-1),其中凹印工艺排放系数最高,为0.634 kg·kg~(-1).与物料衡算法计算值相比,由排放系数得到的排放量误差控制在15%以内.  相似文献   

17.
选取塑胶零件、印刷线路板及主板3类消费电子产品部件为研究对象,利用活性炭管采样,样品溶剂解吸后采用GC/MS分析,获得了各排气筒及车间内VOCs含量水平与组分特征.通过计算排放量,得出了分物种VOCs排放系数.结果表明,塑胶零件生产线排气筒总挥发性有机物(TVOCs)浓度为48.01~115.05 mg·m-3,印刷线路板为6.08~11.36 mg·m-3,主板为29.81~30.21 mg·m-3.塑胶零件生产车间内TVOCs浓度为4.23~120.58 mg·m-3,印刷线路板为1.50~2.02 mg·m-3,主板为7.01~9.93 mg·m-3.环烷烃类、酯类、苯类为主要排放物质.对于不同产品生产线的排气筒及车间废气,浓度和物种均有很大差异;对于相同产品,浓度有差异但物种基本相同.按产品分类,共计算得出了36个分物种VOCs排放系数,其中,塑胶零件、印刷线路板及主板TVOCs排放系数分别为0.626 kg·kg-1涂料用量、0.123 kg·kg-1油墨用量、0.028 kg·kg-1印刷线路板用量.通过排放量计算结果分析,3种产品中,塑胶零件生产为VOCs主要排放源,车间内无组织排放为主要排放方式.  相似文献   

18.
江门市人为源挥发性有机物排放清单   总被引:8,自引:7,他引:8  
将江门市人为源挥发性有机物(VOCs)排放分为工业源、移动源、生活源和农业源四大类,以2014年为基准年,根据江门市的统计数据和实地调研结果,采用"自上而下"和"自下而上"结合的排放因子法建立了江门市人为源VOCs排放清单.结果显示江门市2014年人为源VOCs排放总量约为75.09 kt,工业源、移动源、农业源和生活源VOCs排放量为41.37、19.16、11.07和3.50 kt,占比分别为55.09%、25.51%、14.74%和4.65%.工业源中摩托车制造、集装箱制造、涂料、油墨、颜料及类似产品制造、印刷及包装印刷、塑料及橡胶制品、人造革制造、皮革鞣制加工、化石燃料燃烧、基础化学原料制造、电子制造、胶黏剂制造、家具制造等行业的VOCs排放量均超过1 000 t,为江门市重点VOCs排放行业.江门市蓬江区、江海区、鹤山市这3地以工业源排放为主,占比均超过50%,而恩平市、台山市等地则以农业源排放为主.各区和县级市在进行VOCs减排政策制定时要针对本土化的VOCs清单特征,进行精细化管控,才能取得较好减排效果.  相似文献   

19.
基于工艺过程的金属包装业VOCs污染特征   总被引:1,自引:0,他引:1  
识别金属包装业挥发性有机化合物(volatile organic compounds,VOCs)产生和排放节点,定量分析不同类型生产工艺所排放VOCs的物种及含量,结合最大增量反应活性法和修正的气溶胶生成系数法对行业二次污染进行核算.结果表明,金属包装业排放的VOCs主要为苯系物、醇类、酮类和酯类,苯系物和醇类在不同类型工序和排污节点中贡献较大,酮类和酯类贡献相对较少,单物种浓度最高的VOCs为正丁醇,浓度达269.08mg·m~(-3);生产线与相应的排气筒之间VOCs物种浓度相关性较好,但物种种类存在差异;行业的O_3和二次有机气溶胶(secondary organic aerosol, SOA)生成潜势(以O_3/VOCs和SOA/VOCs计)分别为(3.09±0.94)g·g~(-1)和(2.58±1.99)g·g~(-1),苯系物和内全涂烘干工序为O_3和SOA的主要前体物和首要生成节点.  相似文献   

20.
家具制造业是典型的高污染低附加值、工艺相对落后、污染治理水平低和挥发性有机物(VOCs)排放较为严重的行业,是我国VOCs防治的重点行业.本文以典型家具制造企业为研究对象,开展家具制造业VOCs排放特征和环境影响研究,获取了典型企业VOCs排放浓度水平和成分谱,分析了家具制造业VOCs的环境影响.结果表明,封边、底漆、底色、面漆和晾干等车间VOCs浓度范围为9. 18~181. 58 mg·m-3,处理设施出口VOCs浓度为30. 64~155. 94 mg·m-3,处理效率为7. 43%~67. 14%;车间主要VOCs物种为芳香烃、酯类和醛酮类物质;排气筒主要VOCs物种为酯类和芳香烃,其次为烷烃类物质;行业主要VOCs物质为乙酸仲丁酯、甲苯、间-二甲苯、甲缩醛和乙苯等.车间和排气筒VOCs平均臭氧生成潜势(OFP)分别为258. 01 mg·m-3和289. 14 mg·m-3,平均二次有机气溶胶生成潜势(SOAFP)分别为148. 66 mg·m-3和165. 31 mg·m-3,各排放环节中对OFP和SOAFP贡献最大的皆为芳香烃类物质,封边车间的OFP和SOAFP较大,应加强控制.车间边界VOCs中主要恶臭物质为乙酸仲丁酯、间-二甲苯、乙酸丁酯、对-二甲苯、乙苯、1-乙基-3-甲基苯、邻-二甲苯和甲苯,厂界VOCs几乎不产生恶臭污染.建议有针对性地加强芳香烃和酯类物质的控制.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号