首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT Numerous concepts of surface water lag time have been developed and applied in the past. In this report, hydraulic solutions of a lag time derived by Overton [1970] are presented for several idealistic surfaces using the kinematic wave equations. These surfaces are: (1) a uniform plane; (2) hillslope as a cascade of planes; (3) V-shaped watershed; (4) V-shaped watershed with hill-slopes; (5) converging surface; (6) concave surface. The lag times are shown to be related to roughness, length and catchment slope, and the input rate. These relations may be used immediately in predicting lag time as the parameter in a unit response function. A lag relation has been developed for a nonuniform catchment in terms of the lag of a uniform plane and a convergence factor. A numerical procedure is shown whereby the convergence factor can be evaluated for any nonuniform catchment from observed input and output data.  相似文献   

2.
ABSTRACT: Detailed studies of the surface hydrology of reclaimed surface-mined watersheds for both rainfall and snowmelt events are non-existent for central Alberta yet this information is crucial for design of runoff conveyance and storage structures. A study was initiated in 1992 with principal objectives of quantifying surface runoff for both summer rainfall and spring snowmelt events and identifying the dominant flow processes occurring in two reclaimed watersheds. Snowmelt accounted for 86 and 100% of annual watershed runoff in 1993 and 1994, respectively. The highest instantaneous peak flow was recorded during a summer rainfall event with a return period of greater than 50 years. Infiltration-excess overland flow was identified as the dominant flow process occurring within the Sandy Subsoil Watershed, whereas saturation overland flow was the principal runoff process occurring within the West Watershed.  相似文献   

3.
ABSTRACT: A two-parameter farm pond storage index, FPSI, was Used to adjust computed surface. runoff using the partial area runoff contribution resulting from runoff captured by farm ponds. The validity of the index method was tested by fitting a continuous accounting version of the Soil Conservation Service curve number procedure to surface runoff data from each of three watersheds, first with and then without the FPSI routine. Evapotranspiration computed with the Jensen-Haise method and rainfall were input to the model. A linear relationship was assumed between the storage index and the portion of the controlled drainage area that was contributing to runoff. Adjusting the computed runoff with the FPSI reduced the coefficient of variation of monthly measured versus computed surface runoff for each of the three watersheds. The correlation coefficients for the same comparisons were increased. The annual predicted surface runoff Was improved for 12 of the 17 station years of data tested. The farm pond storage index could be used with any surface runoff model to improve the prediction of runoff from watersheds with drainage areas greater than 1 square mile and with about 20 percent or more of the drainage area controlled by farm ponds.  相似文献   

4.
ABSTRACT: This paper evaluates the effects of watershed geometric representation (i.e., plane and channel representation) on runoff and sediment yield simulations in a semiarid rangeland watershed. A process based, spatially distributed runoff erosion model (KINEROS2) was used to explore four spatial representations of a 4.4 ha experimental watershed. The most complex representation included all 96 channel elements identifiable in the field. The least complex representation contained only five channel elements. It was concluded that oversimplified watershed representations greatly influence runoff and sediment yield simulations by inducing excessive infiltration on hillslopes and distorting runoff patterns and sediment fluxes. Runoff and sediment yield decrease systematically with decreasing complexity in watershed representation. However, less complex representations had less impact on runoff and sediment‐yield simulations for small rainfall events. This study concludes that the selection of the appropriate level of watershed representation can have important theoretical and practical implications on runoff and sediment yield modeling in semiarid environments.  相似文献   

5.
An analysis of more than 200 overland flow hydrographs generated by simulated rainfall on long impermeable planes showed that kinematic waves prevailed over dynamic waves. Although laminar flow appears to occur at low flows, most flows appear to be either in the transition from the laminar to the turbulent state or in a fully developed turbulent state. Location of the laminar-turbulent transition could not be explained in terms of Reynolds number alone. The transition was significantly affected by rainfall intensity-a factor which rendered quantification of the transition indeterminate. However, the error involved in treating all flows as turbulent would be small with the resulting analysis made considerably less complex.  相似文献   

6.
ABSTRACT: This paper first discusses the results of sensitivity analyses conducted on various parameters of the San Francisco Stormwater Model ta version of WREM) and the Penn State Runoff Model in terms of their impact on outflow hydrographs. The parameters considered within a idealized catchment include: basin shape, imperivous fraction, overland roughness and slope: deterntion depth; infiltration capacity; and hyetograph timing. Second, the results for the hypothetical catchment are extended to the lazzard laboratory surfaces (asphalt, grass, roofing material) as a mean of illustrating the need for changes in model structure, as opposed to continued parameter adjustment Finally the effect of altering the scale of hydraulic representation in the surface runoff and sewer transport calculations are demonstrated for two gaged watersheds in Hamburg, West Germany.  相似文献   

7.
The U.S. Soil Conservation Service has developed a method for estimating runoff for small watersheds when stream flow data are not available. The technique is based on a simplified infiltration model of runoff using various kinds of soil, land use, and empirical approximation.  相似文献   

8.
ABSTRACT: The NRCS curve number approach to runoff estimation has traditionally been to average or “lump” spatial variability into a single number for purposes of expediency and simplicity in calculations. In contrast, the weighted runoff curve number approach, which handles each individual pixel within the watershed separately, tends to result in larger estimates of runoff than the lumped approach. This work proposes further enhancements that consider not only spatial variability, but also the orientation of this variability with respect to the flow aggregation pattern of the drainage network. Results show that the proposed enhancements lead to much reduced estimates of runoff production. A revised model that considers overland flow lengths, consistent with existing NRCS concepts is proposed, which leads to only mildly reduced runoff estimates. Although more physically‐based, this revised model, which accounts directly for spatially distributed curve numbers and flow aggregation, leads to essentially the same results as the original, lumped runoff model when applied to three study watersheds. Philosophical issues and implications concerning the appropriateness of attempting to disaggregate lumped models are discussed.  相似文献   

9.
ABSTRACT: Legal, economic, and social constraints prevented the development of a surface outlet from an 878 acre watershed in the eastern Great Plains. However, frequent flooding of potentially excellent cropland within the watershed had to be controlled. The process of considering various alternatives within given constraints and utilizing natural features of the watershed to attain a water management system without surface runoff is presented. The coordinated system includes surface drainage, waterholding structures, and pumping plants. The excellent water control provided permits effective utilization of more than 115 acres of land which was previously of very low productivity.  相似文献   

10.
ABSTRACT: Storm-runoff quantity and quality were studied in three watersheds located near St. Paul in Ramsey County, Minnesota, from April 15 through September 15 of 1984, 1985, and 1986 to qualitatively determine the effects of precipitation and selected land uses on storm runoff. In respect to precipitation effects, differences in stormrunoff quantity between years in an urban watershed that lacks wetlands appear to be related to the average storm size (amount of precipitation) during the study period of each year. In contrast, the differences in storm-runoff quantity from watersheds that contain wetlands appear to be related to total precipitation during study period of each year. In respect to land use, the differences in storm-runoff quantity appear to be related to the amounts of impervious and wetland area. The watershed that contains the largest amount of impervious area and smallest amount of wetland area has the largest amount of storm runoff. Differences in storm-runoff quality appear to be related to the amounts of wetland and lake area. The watershed that contains the largest amounts of wetland and lake area has the smallest storm-runoff loading of suspended solids, phosphorus, and nitrogen. The wetland and lake areas likely retain the loading and, subsequently, lower the amount of storm-runoff loading exported from a watershed.  相似文献   

11.
ABSTRACT: To alleviate serious flooding problems brought upon by rapid urbanization in the Beargrass Creek watershed, located in Louisville, Kentucky, the U.S. Army Corps of Engineers undertook a major flood study in 1973. In order to predict flood conditions in 1990, the year when the watershed was expected to undergo complete urbanization, trends in the Clark Instantaneous Unit Hydrograph (Clark IUH) parameters were utilized to determine the 1990 unit hydrograph and flood conditions. Based on the results from this flood study, this paper demonstrates the applicability of using projected Clark IUH parameters for modeling future runoff conditions in an urbanizing watershed. Values of these parameters, as estimated from maximum annual historical flood data, are used to develop regression models for predicting future Clark IUH parameters. Using the projected parameters, selected annual flood events since 1973 are simulated in order to verify the accuracy of these projections. Results show a close correspondence between the simulated and observed flood characteristics. Hence, the use of projected Clark IUH parameters is an appropriate procedure for modeling future runoff conditions in an urbanizing watershed.  相似文献   

12.
ABSTRACT: The effects of an artificial lake system upon the runoff hydrology of a small watershed have been determined by comparing the quantity and quality of runoff with that of an adjacent and similar watershed containing no lakes. Lake storage reduced peak discharge and slowed flood recession rate downstream. Water stored within the lakes is generally of different quality than downstream surface runoff. Salt stored in the lakes from winter deicing is released during periods of surface runoff throughout the rest of the year. During summer or fall runoff events, lake outflow dominates the salt load of the outlet stream, generating double-peaked load hydrographs in which the second, or lake-induced, crest is many times larger than the peak which corresponds to maximum flow. On the other hand, the lakes cause a reduction of salt loads and concentration in winter runoff. The concentration and loads of ions which are not related to road salt are generally less affected by the lakes, although they are increased substantially in the fall.  相似文献   

13.
ABSTRACT: One-dimensional and two-dimensional modeling approaches were compared for their abilities in predicting overland runoff and sediment transport. Both 1-D and 2-D models were developed to test the hypothesis that the 2-D modeling approach could improve the model predictions over the 1-P approach, based on the same mathematical representations of physical processes for runoff and sediment transport. The models developed in this study were applied to overland areas with cross slopes. A hypothetical case and an experimental study reported by Storm (1991) were used. Based on the simulation results from the selected hypothetical case and experimental study, the 2-D model provided better representation of spatial distribution of flow depths and sediment concentrations than the 1-D model. However, no significant differences in predictions of total runoff volume and sediment yield at the outlet area were found between the 1-D and 2-D models.  相似文献   

14.
ABSTRACT: The average microwave temperature of the watershed surface as detected by an airborne Passive Microwave Imaging Scanner (PMIS) was compared with the measured Soil Conservation Service (SCS) watershed storm runoff coefficient (CN). Previous laboratory work suggested that microwave response to the watershed surface is influenced by some of the same surface characteristics that affect runoff, i.e., soil moisture, surface roughness, vegetative cover, and soil texture. In order to field test and develop relations between runoff potentfal and microwave response, several highly instrumented watersheds of approximately 1.5 to 17 km2 were scanned under wet- and dry-soil conditions in April and June 1973. The polarized (horizontal and vertical) scans at 2.8 cm wavelength provided the data base from which other values were calculated. The best relationship between runoff coefficients (CN) and PMIS temperatures was observed when horizontally polarized temperatures from the near-dormant, early-growing season flight were used. Lower SCS runoff coefficients seem to be correlated with the cross-polarized response under dry watershed conditions late in the growing season and the difference in horizontal polarized response between wet conditions early in the growing season and dry conditions late in the growing season. To apply the results, the relationships need to be verified further.  相似文献   

15.
ABSTRACT: Identifying phosphorus (P) source areas and transport pathways is a key step in decreasing P loading to natural water systems. This study compared the effects of two modeled runoff generation processes ‐ saturation excess and infiltration excess ‐ on total phosphorus (TP) and soluble reactive phosphorus (SRP) concentrations in 10 catchment streams of a Catskill mountain watershed in southeastern New York. The spatial distribution of runoff from forested land and agricultural land was generated for both runoff processes; results of both distributions were consistent with Soil Conservation Service‐Curve Number (SCS‐CN) theory. These spatial runoff distributions were then used to simulate stream concentrations of TP and SRP through a simple equation derived from an observed relation between P concentration and land use; empirical results indicate that TP and SRP concentrations increased with increasing percentage of agricultural land. Simulated TP and SRP stream concentrations predicted for the 10 catchments were strongly affected by the assumed runoff mechanism. The modeled TP and SRP concentrations produced by saturation excess distribution averaged 31 percent higher and 42 percent higher, respectively, than those produced by the infiltration excess distribution. Misrepresenting the primary runoff mechanism could not only produce erroneous concentrations, it could fail to correctly locate critical source areas for implementation of best management practices. Thus, identification of the primary runoff mechanism is critical in selection of appropriate models in the mitigation of nonpoint source pollution. Correct representation of runoff processes is also critical in the future development of biogeochemical transport models, especially those that address nutrient fluxes.  相似文献   

16.
ABSTRACT: An envelope of steady-state surface runoff response for a hilislope is established in terms of the probability distribution and spatial arrangement of individual point infiltration capacities and the rainfall intensity. Minimum overland flow is shown to occur when point infiltration capacities are ordered with the highest at the slope bottom, while maximum overland flow occurs when the highest point capacities are at the top of the slope. Equations for envelope curves are developed for both continuous distributions and discretely sampled data; examples for each case are given. Use of the analysis as a rainfall-runoff model is also discussed.  相似文献   

17.
ABSTRACT: As an alternative to the conventional single-peak design storms commonly used in hydrologic practice, a large number of Southeastern Pennsylvania storm events were selected from hourly U.S. National Oceanographic and Atmospheric Administration (NOAA) records, and their temporal distributions were analyzed. From these recorded events, design storms of a typical distribution were developed for storm durations between 6 and 18 hours. All of these generated design storms have two or more peaks. The conventional single peak as well as the “typical” multi-peak storms were then applied to a simulated watershed. It was found that the multi-peak storms consistently produced more dispersed hydrographs with lower runoff peaks than the conventional single peak storms.  相似文献   

18.
ABSTRACT: Mathematical models for predicting watershed surface flow responses are available, most of which are elaborate nonlinear numerical surface and channel flow models linked with infiltration models. Such models may be used to make predictions for ungaged areas, assuming an acceptable fitting of the model to the topography and roughness of the real system. For some application purposes, these models are impractical because of their complexity and expensive computer solutions. A procedure is developed that uses a complex model of an ungaged area to derive a simpler parametric nonlinear system model for repetitious simulation with input sequences. The predicted flow outputs are obtained with the simpler model at significant savings of money and time. The procedures for constructing a complex kinematic model of a 40 acre (161,880 m2) reference watershed and deriving the simpler system model are outlined. The results of predictions from both models are compared with a selected set of measured events, all having essentially the same initial conditions. Peak discharges ranged from 3 to 118 ft3/sec (0.085 to 3.34 m3/sec), which includes the largest event of record. The inherent limitations of lumped systems models are demonstrated, including the bias caused by their inability to model infiltration losses after rainfall ceases. Computer costs and times for the models were compared. The derived simple model has a cost advantage when repeated use of a model is required. Such an applications hydrologic model has an engineering tradeoff of reduced accuracy, and lumping bias, but is more economical for certain design purposes.  相似文献   

19.
ABSTRACT: The effects of a moving rainstorm on flood runoff characteristics were investigated. A flood hydrograph simulation model called “FH-Model” and a natural watershed were used. A hypothetical rainstorm of 50 years recurrence interval, 75 mm depth, and 4 hours duration was used to show the effects of velocity and direction of the moving rainstorm on the runoff characteristics. Compared with an equivalent stationary rainstorm (ESRS), the peak flow caused by a rainstorm moving in a downstream direction with a speed equal to channel velocity, V, was 27.5 percent higher and the peak flow caused by the same rainstorm moving in an upstream direction was 21.7 percent smaller. These percentages reduced to 10.5 percent and 8.6 percent for storms moving downstream and upstream, respectively, at three times the channel velocity, 3V. There were negligible differences in the time of peak, Tp between runoff caused by storms moving downstream and runoff produced by ESRS. However, Tp for a storm moving upstream at V velocity was 82 percent higher than that produced by ESRS, but was reduced to 27 percent higher when the storm velocity was 3V.  相似文献   

20.
ABSTRACT: The use of continuous time, distributed parameter hydrologic models like SWAT (Soil and Water Assessment Tool) has opened several opportunities to improve watershed modeling accuracy. However, it has also placed a heavy burden on users with respect to the amount of work involved in parameterizing the watershed in general and in adequately representing the spatial variability of the watershed in particular. Recent developments in Geographical Information Systems (GIS) have alleviated some of the difficulties associated with managing spatial data. However, the user must still choose among various parameterization approaches that are available within the model. This paper describes the important parameterization issues involved when modeling watershed hydrology for runoff prediction using SWAT with emphasis on how to improve model performance without resorting to tedious and arbitrary parameter by parameter calibration. Synthetic and actual watersheds in Indiana and Mississippi were used to illustrate the sensitivity of runoff prediction to spatial variability, watershed decomposition, and spatial and temporal adjustment of curve numbers and return flow contribution. SWAT was also used to predict stream runoff from actual watersheds in Indiana that have extensive subsurface drainage. The results of this study provide useful information for improving SWAT performance in terms of stream runoff prediction in a manner that is particularly useful for modeling ungaged watersheds wherein observed data for calibration is not available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号