首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: The summertime heating of runoff in urban areas is recognized as a common and consistent urban climatological phenomenon. In this study, a simple thermal urban runoff model (TURM) is presented for the net energy flux at the impervious surfaces of urban areas to account for the heat transferred to runoff. The first step in developing TURM consists of calculating the various factors that control how urban impervious areas absorb heat and transfer it to moving water on the surface. The runoff temperature is determined based on the interactions of the physical characteristics of the impervious areas, the weather, and the heat transfer between the moving film of runoff and the impervious surface common in urban areas. Key surface and weather factors that affect runoff temperature predictions are type of impervious surface, air temperature, humidity, solar radiation before and during rain, rainfall intensity, and rainfall temperature. Runoff from pervious areas is considered separately and estimated using the Green‐Ampt Mein‐Larson rainfall excess method. Pervious runoff temperature is estimated as the rainfall temperature. Field measurements indicate that wet bulb temperature can be used as a surrogate for rainfall temperature and that runoff temperatures from sod average just 2°C higher than rainfall temperatures. Differences between measured and predicted impervious runoff temperature average approximately 2°C, indicating that TURM is a useful tool for determining runoff temperatures for typical urban areas.  相似文献   

2.
ABSTRACT: This paper presents a method for determining the causes of salinization of surface waters, in this case the upper Colorado River and its tributaries in Texas. The analysis, which includes a combination of statistical analysis and graphical methods, indicates that among the sources of salt (e.g., saline ground water discharge into surface waters and storm runoff, both surface and shallow subsurface, and washing minerals into surface waters) the major contributor is saline ground water, which discharges into the river and streams. Data also points to salt plume intrusion into the river and streams from sources of salt in the aquifers.  相似文献   

3.
ABSTRACT: Since the trend in infiltration modeling is currently toward process-based approaches such as the Green-Ampt equation, more emphasis is being placed on methods of determining appropriate parameters for this approach. The SCS curve number method is an accepted and commonly used empirical approach for estimating surface runoff, and is based on numerous data from a variety of sources. The time and expense of calibrating process-based infiltration parameters to measured data are often prohibitive. This study uses curve number predictions of runoff to develop equations to estimate the “baseline” hydraulic conductivities (Kb) for use in the Green-Ampt equation. Curve number predictions of runoff were made for 43 soils. Kb values in the Water Erosion Prediction Project (WEPP) model were then calibrated so that the annual runoff predicted by WEPP was equal to the curve number predictions. These calibrated values were used to derive an equation that estimated Kb based on the percent sand, percent clay, and cation exchange capacity of the soil. Estimated values of Kb from this equation compared favorably with measured values and values calibrated to measured natural runoff plot data. WEPP predictions of runoff using both optimized and estimated values of Kb were compared to curve number predictions of runoff and the measured values. The WEPP predictions using the optimized values of Kb were the best in terms of both average error and model efficiency. WEPP predictions using estimated values of Kb were shown to be superior to predictions obtained from the curve number method. The runoff predictions all tended to be biased high for small events and low for larger events when compared to the measured data. Confidence intervals for runoff predictions on both an annual and event basis were also developed for the WEPP model.  相似文献   

4.
ABSTRACT: Significant errors in estimating surface runoff and erosion rates are possible if a watershed is assumed to contribute runoff uniformly over the entire area, when actually only a portion of the entire area may be contributing. Generation of overland flow on portions of small semiarid watersheds was analyzed by three methods: an average loss rate procedure, a lumped-linear model, and a distributed-nonlinear model. These methods suggested that, on the average, 45, 60, and 50% of the drainage area was contributing runoff at the watershed outlet. Infiltrometer data support the partial area concept and indicate that the low infiltration zones are the runoff source areas as simulated with the distributed-nonlinear model.  相似文献   

5.
Surface runoff losses of copper and zinc in sandy soils   总被引:1,自引:0,他引:1  
Increased anthropogenic inputs of Cu and Zn in soils have caused considerable concern relative to their effect on water contamination. Copper and Zn contents in surface soil directly influence the movement of Cu and Zn. However, minimal information is available on runoff losses of Cu and Zn in agricultural soils, and soil-extractable Cu and Zn in relation to runoff water quality. Field experiments were conducted in 2001 to study dissolved Cu and Zn losses in runoff in Florida sandy soils under commercial citrus and vegetable production and the relationship between soil-extractable Cu and Zn forms and dissolved Cu and Zn concentrations in runoff water. Five extraction methods were compared for extracting soil available Cu and Zn. Concentrations of dissolved Cu and Zn in runoff were measured and runoff discharge was monitored. Mean dissolved Cu in field runoff water was significantly correlated with the extractable Cu obtained only by 0.01 mol L(-1) CaCl2, Mehlich 1, or DTPA-TEA methods. Dissolved Zn in runoff water was only significantly correlated with extractable Zn by 0.01 mol L(-1) CaCl2. The highest correlations to dissolved Cu in runoff were obtained when soil-available Cu was extracted by 0.01 mol L(-1) CaCl2. The results indicate that 0.01 mol L(-1) CaCl2-extractable Cu and Zn are the best soil indexes for predicting readily released Cu and Zn in the sandy soils. Both runoff discharge and 0.01 mol L(-1) CaCl2-extractable Cu and Zn levels had significant influences on Cu and Zn loads in surface runoff.  相似文献   

6.
Survey information on pesticide usage in New Zealand during 1985–1989 is summarized by regions and principal applications. Two screening tests, one based on a simple water-balance method and the other based on a semiempirical runoff formula, have been used to identify 18 pesticides with application rates that may yield runoff concentrations that are harmful to aquatic fauna. These are predominantly associated either with intensive applications in horticulture or extensive applications to cereal crops and pasture. The purpose of the screening tests was to calculate typical edge-of-field concentrations in runoff and, by comparing them with known aquatic toxicity values, determine which compounds are applied at rates that may yield toxic runoff. While it may be possible to extend these methods to calculate typical surface water concentrations, further studies will be needed to evaluate pesticide persistence and assimilation in stream channels.  相似文献   

7.
The South Saskatchewan River Basin (SSRB) of Alberta, Canada, is semiarid and under severe water stress due to increasing human demands. We present the first examination of projected changes in SSRB runoff from a large set of North American Regional Climate Change Assessment Program regional climate models (RCMs) plus one Coordinated Regional Climate Downscaling Experiment RCM. We used six different runoff estimation methods: total surface and subsurface runoff (total runoff), surface runoff, and four estimations based on Budyko functions. Most RCM estimations showed substantial biases and distribution differences when compared to observed data; thus bias correction was necessary. Total runoff was the best of the six variables in modeling observed runoff for each of the four SSRB subbasins. Projected total runoff for 2041–2070 shows a geographic gradient in the SSRB, with possible drying in the southern Oldman River subbasin and possible increased runoff in the northernmost Red Deer River subbasin. A shift to an earlier spring peak in runoff and drier late summer, with a need for increased irrigation, should be expected. In a first examination of the important question of projected changes in interannual variability, we show increasing magnitude. This result further adds to adaptation challenges over the course of this century in this basin, which is already largely closed to further allocation.  相似文献   

8.
ABSTRACT: Water quality controls of storm water runoff and infiltration should be a major part of a nonpoint source control program. Although surface runoff and ground water controls are often approached separately, coordination between the two is essential. For practical reasons, a rather simplified technology-based approach appears to be desirable. Areas affected vary greatly as to their sensitivity to pollution; and the various classes of pollutant source vary greatly as to their potential harmfulness. In effect, a matrix approach appears best, in which both vulnerability of the area and harmfulness of the pollutant source would have weight in determining which level of best management practices (BMP) would be appropriate, whether standard, special, or complete prohibition of the type facility under given circumstances.  相似文献   

9.
干旱区水环境质量的好坏直接决定着绿洲经济建设的水平.通过对玛纳斯河15年来的水质监测资料的分析、研究,从中寻找出该流域的地表及地下水质变化规律与发展趋势.研究结果表明:玛河径流形成区及山前倾斜平原区水质一直保持在一级未受污染级别;山前倾斜平原区地下水中挥发酚以及氮素含量逐年上升,但总体水质仍然保持在一级未受污染级别的范围.  相似文献   

10.
ABSTRACT. Unit hydrographs derived by using two methods, linear programming and least squares, are compared. Test data comprise rainfall and runoff information from four storms over the North Branch Potomac River near Cumberland, Maryland. The mathematical bases of these methods for unit-hydrograph derivation are explained. The linear programming method minimizes the sum of absolute deviations, and the least squares method minimizes the sum of the squares of deviations. Computer subroutines are readily available for application of these methods. The unit hydrographs derived with the two methods are practically the same for storms 2 and 3, but differ somewhat for storms 1 and 4. However, the reconstituted direct surface runoff hydrographs are similar to those observed with the exception of the hydrograph for storm 4 which had a relatively more non-uniform rainfall excess of a considerably larger duration.  相似文献   

11.
ABSTRACT: The effects of an artificial lake system upon the runoff hydrology of a small watershed have been determined by comparing the quantity and quality of runoff with that of an adjacent and similar watershed containing no lakes. Lake storage reduced peak discharge and slowed flood recession rate downstream. Water stored within the lakes is generally of different quality than downstream surface runoff. Salt stored in the lakes from winter deicing is released during periods of surface runoff throughout the rest of the year. During summer or fall runoff events, lake outflow dominates the salt load of the outlet stream, generating double-peaked load hydrographs in which the second, or lake-induced, crest is many times larger than the peak which corresponds to maximum flow. On the other hand, the lakes cause a reduction of salt loads and concentration in winter runoff. The concentration and loads of ions which are not related to road salt are generally less affected by the lakes, although they are increased substantially in the fall.  相似文献   

12.
Spatially disaggregated estimates of over 131 stream‐flow, ground water, and reservoir evaporation monthly time series in California have been created for 12 different climate warming scenarios for a 72‐year period. Such disaggregated hydrologic estimates of multiple hydrologic cycle components are important for impact and adaptation studies of California's water system. A statewide trend of increased winter and spring runoff and decreased summer runoff is identified. Without operations modeling, approximate changes in water availability are estimated for each scenario. Even most scenarios with increased precipitation result in less available water because of the current storage systems' inability to catch increased winter streamflow in compensation for reduced summer runoff. The water availability changes are then compared with estimated changes in urban and agricultural water uses in California between now and 2100. The methods used in this study are relatively simple, but the results are qualitatively consistent with other studies focusing on the hydrologies of single basins or surface water alone.  相似文献   

13.
ABSTRACT: Few studies have addressed sediment discharge due to interrill erosion from natural and minimally disturbed alpine and subalpine forested watersheds. Infiltration, runoff, and surface erosion of two Tahoe Basin soils under several conditions were investigated using rainfall simulation. A significant three-way interaction among soil type, plot condition, and slope was identified. Although high erodibiity was commonly associated with disturbance and/or high slope, this was not always the case. Soil type, plot condition, slope, and duration of the event were all found to be important factors in determining the amount of erosion. Decreased water clarity in Lake Tahoe has been partly attributed to increased algal growth associated with surface runoff and erosion from adjacent watersheds. Interpretive evaluation for resource management planning should be event based and carefully delineated on a sitespecific basis.  相似文献   

14.
The potential loss of P in runoff is a function of the combined effects of fertilizer-soil interactions and climatic characteristics. In this study, we applied a Bayesian approach to experimental data to model the annualized long-term risk of P runoff following single and split P fertilizer applications using two example catchments with contrasting rainfall/runoff patterns. Split P fertilizer strategies are commonly used in intensive pasture production in Australia and our results showed that three applications of 13.3 kg P ha(-1) resulted in a greater risk of P runoff compared with a single application of 40 kg P ha(-1) when long-term surface runoff data were incorporated into a Bayesian P risk model. Splitting P fertilizer applications increased the likelihood of a coincidence of fertilizer application and runoff occurring. We found that the overall risk of P runoff is also increased in catchments where the rainfall/runoff pattern is less predictable, compared with catchments where rainfall/runoff is winter dominant. The findings of our study also question the effectiveness of current recommendations to avoid applying fertilizer if runoff is likely to occur in the next few days, as we found that total P concentrations at the half-life were still very high (18.2 and 8.2 mg P L(-1)) following single and split P treatments, respectively. Data from the current study also highlight that omitting P fertilizer on soils that already have adequate soil test P concentrations is an effective method of reducing P loss in surface runoff. If P fertilizer must be applied, we recommend less frequent applications and only during periods of the year when the risk of surface P runoff is low.  相似文献   

15.
A methodology is developed to relate urban growth studies to distributed hydrological modeling using an integrated approach of remote sensing and GIS. This linkage is possible because both studies share land-use and land-cover data. Landsat Thematic Mapper data are utilized to detect urban land-cover changes. GIS analyses are then conducted to examine the changing spatial patterns of urban growth. The integration of remote sensing and GIS is applied to automate the estimation of surface runoff based on the Soil Conservation Service model. Impacts of urban growth on surface runoff and the rainfall–runoff relationship are examined by linking the two modeling results with spatial analysis techniques. This methodology is applied to the Zhujiang Delta of southern China, where dramatic urban growth has occurred over the past two decades, and the rampant urban growth has created severe problems in water resources management. The results revealed a notably uneven spatial pattern of urban growth and an increase of 8.10 mm in annual runoff depth during the 1989–1997 period. An area that experienced more urban growth had a greater potential for increasing annual surface runoff. Highly urbanized areas were more prone to flooding. Urbanization lowered potential maximum storage, and thus increased runoff coefficient values.  相似文献   

16.
In nondegraded watersheds of humid climates, subsurface flow patterns determine where the soil saturates and where surface runoff is occurring. Most models necessarily use infiltration‐excess (i.e., Hortonian) runoff for predicting runoff and associated constituents because subsurface flow algorithms are not included in the model. In this article, we modify the Water Erosion Prediction Project (WEPP) model to simulate subsurface flow correctly and to predict the spatial and temporal location of saturation, the associated lateral flow and surface runoff, and the location where the water can re‐infiltrate. The modified model, called WEPP‐UI, correctly simulated the hillslope drainage data from the Coweeta Hydrologic Laboratory hillslope plot. We applied WEPP‐UI to convex, concave, and S‐shaped hillslope profiles, and found that multiple overland flow elements are needed to simulate distributed lateral flow and runoff well. Concave slopes had the greatest runoff, while convex slopes had the least. Our findings concur with observations in watersheds with saturation‐excess overland flow that most surface runoff is generated on lower concave slopes, whereas on convex slopes runoff infiltrates before reaching the stream. Since the WEPP model is capable of simulating both saturation‐excess and infiltration‐excess runoff, we expect that this model will be a powerful tool in the future for managing water quality.  相似文献   

17.
Antibiotic Transport via Runoff and Soil Loss   总被引:1,自引:0,他引:1  
Research has verified the occurrence of veterinary antibiotics in manure, agricultural fields, and surface water bodies, yet little research has evaluated antibiotic runoff from agricultural fields. The objective of this study was to evaluate the potential for agricultural runoff to contribute antibiotics to surface water bodies in a worst-case scenario. Our hypothesis was that there would be significant differences in antibiotic concentrations, partitioning of losses between runoff and sediment, and pseudo-partitioning coefficients (ratio of sediment concentration to runoff concentration) among antibiotics. An antibiotic solution including tetracycline (TC), chlortetracycline (CTC), sulfathiazole (STZ), sulfamethazine (SMZ), erythromycin (ERY), tylosin (TYL), and monensin (MNS) was sprayed on the soil surface 1 h before rainfall simulation (average intensity = 60 mm h(-1) for 1 h). Runoff samples were collected continuously and analyzed for aqueous and sediment antibiotic concentrations. MNS had the highest concentration in runoff, resulting in the highest absolute loss, although the amount of loss associated with sediment transport was <10%. ERY had the highest concentrations in sediment and had a relative loss associated with sediment >50%. TYL also had >50% relative loss associated with sediment, and its pseudo-partitioning coefficient (P-PC) was very high. The tetracyclines (TC and CTC) had very low aqueous concentrations and had the lowest absolute losses. If agricultural runoff is proven to result in development of resistance genes or toxicity to aquatic organisms, then erosion control practices could be used to reduce TC, ERY, and TYL losses leaving agricultural fields. Other methods will be needed to reduce transport of other antibiotics.  相似文献   

18.
Cheng, Shin-jen, 2010. Inferring Hydrograph Components From Rainfall and Streamflow Records Using a Kriging Method-Based Linear Cascade Reservoir Model. Journal of the American Water Resources Association (JAWRA) 46(6):1171–1191. DOI: 10.1111/j.1752-1688.2010.00484.x Abstract: This study investigates the characteristics of hydrograph components in a Taiwan watershed to determine their shapes based on observations. Hydrographs were modeled by a conceptual model of three linear cascade reservoirs. Mean rainfall was calculated using the block Kriging method. The optimal parameters for 42 events from 1966-2008 were calibrated using an optimal algorithm. Rationality of generated runoffs was well compared with a trusty model. Model efficacy was verified using seven averaged parameters with 25 other events. Hydrograph components were characterized based on 42 calibration results. The following conclusions were obtained: (1) except for multipeak storms, a correlation between base time of the surface runoff and soil antecedent moisture is a decreasing power relationship; (2) a correlation between time lag of the surface flow and soil antecedent moisture for single-peak storms is an increasing power relationship; (3) for single-peak events, times to peak of hydrograph components are an increasing power correlation corresponding to the peak time of rainfall; (4) the peak flows of hydrograph components are linearly proportional to that of total runoff, and the peak ratio for the surface runoff to total runoff is approximately 78 and 13% for subsurface runoff to total runoff; and (5) the relationships of total discharges have direct ratios between hydrograph components and observations of total runoffs, and a surface runoff is 60 and 32% for a subsurface runoff.  相似文献   

19.
20.
ABSTRACT: This paper demonstrates how satellite image data [e.g., from Landsat 5 Thematic Mapper (TM)], in conjunction with an urban growth model and simple runoff calculations, can be used to estimate future surface runoff and, by implication, water quality within a watershed. To illustrate the method, predictions of land use change and surface runoff are shown for Spring Creek Watershed, a medium sized urbanizing watershed in Central Pennsylvania. Land cover classifications for this watershed were created from images for summertime 1986 and 1996 and subsequently used as input to the Clarke urban growth model, called SLEUTH, to predict land use changes to the year 2025. Simulations with this model show a progressive growth in the percentage of urban pixels and in impervious surface area in the watershed but also an increase in woodland, primarily in previously clear‐cut areas. Given that woodland area will continue to increase in area, surface runoff into Spring Creek is predicted to remain only slightly above present level. However, should the woodland amount fail to increase, surface runoff is then predicted to increase more significantly during the next 25 years. Finally, the concept of urban sprawl is addressed within the context of predicted increases in urbanization by relating the implied increase in impervious surface area to population density within the watershed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号