首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Despite the great importance that formaldehyde has in atmospheric photochemistry, few studies have been reported on rain water. In this paper, concentrations of HCHO in rain fractions within rain events are presented. Two sampling sites were chosen: one at Mexico City, a great polluted urban area, and the second at Rancho Viejo, a forested area under the meteorological influence of the city. The results show a general decrease during the early portion of the rain event. This seems to indicate that below-cloud scavenging is the most important mechanism while, from the small variations observed in the latter portion of the rainfall, it is possible to assume within-cloud scavenging as the predominant mechanism. Using the HCHO concentrations in rain water, the mixing ratios were estimated for the two sampling sites. The values were 0.68 ppb and 0.44 ppb at Mexico City and Rancho Viejo, respectively. Measurements at ground level in Mexico City gave a mean HCHO concentration in air of 24 ppb, much higher than the estimated mixing ratio. The high levels of HCHO found in ambient air and in rain water reflect anthropogenic emissions as the potential atmospheric sources.  相似文献   

2.
Scavenging coefficients are obtained for sea-salt particles at rainfall intensity of 5, 10, 15, 20 and 45 mm h−1. Evolutions of size distributions for sea-salt particles by precipitation scavenging are simulated using theoretically estimated scavenging coefficients. Results indicate that below-cloud scavenging affects mainly sea-salt particles in coarse mode. Observed concentrations of Na+ and Cl in rainwater increased with rainfall intensity and aerosol size. Comparison of predicted concentrations of Na+ and Cl in rainwater with observed ionic concentrations of short-timed wet-only samples collected during rain events on 2 August 2002 over Arabian Sea (ARMEX-2002) supports the model result.  相似文献   

3.
Numerical modeling of scavenging processes has been compared with data obtained for rainwater and aerosol chemistry at Serra do Navio, in the state of Amapá in the Brazilian Amazon region. Sulfate, nitrate and ammonium concentrations were determined in rainwater samples collected from May 1995 until June 1997. The levels of these same chemicals were also determined in aerosols for the same period and region. Scavenging processes have been evaluated on a rainfall event basis, via numerical modeling, in order to simulate the rainwater concentrations and compare them with the observed data. RAMS (Regional Atmospheric Modeling System) was used to simulate cloud structures. A model of below-cloud scavenging was evaluated, as well. The determinations made from the results of the scavenging model are the following: a) aerosol vertical profiles are quite important to rainwater concentrations; b) modeled sulfate in rainwater is a better fit to the observed data values than ammonium and nitrate; c) the obtained sulfate aerosol concentrations samples are similar to ones found in the literature, although the sulfate concentrations in rainwater are much lower than other studies in the literature; d) the in-cloud scavenging process dominates, e) our modeled results, using an input gas vertical profile extracted from the ABLE2B experimental data set, present a smaller ratio between gas and aerosol scavenging than found in other studies in the literature, other studies may have had larger rainfall times, which increase the importance of gas phase scavenging.  相似文献   

4.
Concentrations of ions in storm rainwater in Texas have been monitored for each 0.254 mm increment of precipitation. The changes in concentrations have been analyzed to investigate the role of differential rates of scavenging of particulate matter of differing particle size, and especially the major acid and base components. The empirical trend at the onset of rainfall is a chemical fractionation of acids and bases with correspondingly wide pH variations. These results are confirmed by model calculations, which show a significant preferential scavenging of calcium relative to sulfate in the first 10 mm of rainfall, resulting in fractionation of bases and acids from their atmospheric concentrations. Previous studies, using Target Transformation Factor Analysis of ion concentrations in storm precipitation and regional ambient aerosol data, statistically determined the average source for acidic secondary species and alkaline particulate matter. Two types of crustal sources were identified as western and eastern soil dust. In this study, an alternate physical explanation for these two soil dust factors is offered. As a storm progresses, the elements in the local soil dust are fractionated as a result of their differential rates of precipitation scavenging, enriching species predominantly in the fine particle size and depleting elements predominantly in the coarse particle size. This fractionation process results in a single source having different elemental ratios at the beginning and at the end of a rain event. For Austin, Dallas, and Tyler, Texas, the soil dust previously identified as being from eastern sources could, instead, be a fractionated form of the western soil source.  相似文献   

5.
The Guttalgor method has been used to determine the chemical species concentrations in size-selected raindrops in nine rain events at Hong Kong from 1999 to 2001. The curve (concentration against raindrop radius) patterns for all the species are similar but depend on the starting time of sampling within a rain event. In these plots, the maximum concentration occurs at the same range of droplet radius, irrespective of the species, and this indicates the importance of coalescence and breakup processes. The maximum is located at a smaller droplet radius than was found in previous studies in Germany. All results show almost constant concentrations with size for large raindrops, and these indicate the in-cloud contributions. The pH of raindrops of similar size is linearly correlated with a function of the sulfate, nitrate, acetate, formate, calcium and ammonium ion species concentrations. Within a single raindrop, chloride depletion is not significant, and sulfate, ammonium and hydrogen ions are found in ratios compatible with the precursor solid-phase mixture of ammonium sulfate and ammonium bisulphate. When simulated by a below-cloud model, good agreement between the modeled and measured sodium and sulfate concentrations has been found. Below-cloud sulfur dioxide scavenging contributes at most 60% of the sulfate concentration in a single raindrop.  相似文献   

6.
The scavenging processes of chemical species have been previously studied with numerical modeling, in order to understand the gas and particulate matter intra-reservoir transferences. In this study, the atmospheric (RAMS) and scavenging (B.V.2) models were used, in order to simulate sulfate concentrations in rainwater using scavenging processes as well as the local atmospheric conditions obtained within the LBA Project in the State of Rondonia, during a dry-to-wet transition season. Two case studies were conducted. The RAMS atmospheric simulation of these events presented satisfactory results, showing the detailed microphysical processes of clouds in the Amazonian region. On the other hand, with cloud entrainments, observed values have been overestimated. Modeled sulfate rainwater concentration, using exponential decay and cloud heights of 16 km and no entrainments, presented the best results, reaching 97% of the observed value. The results, using shape parameter 5, are the best, improving the overall result.  相似文献   

7.
Three limestone slabs (approx. 20 cm2 each) were extracted from the El Tajin archaeological zone in Veracruz, Mexico. X-ray diffraction analysis revealed three components: calcite (81.2%), quartz (17.9%) and feldspar (0.9%). Calcite content by x-ray diffraction analysis was slightly higher than that determined by chemical reaction between the limestone sample and nitric acid. The latter analysis, carried out in triplicate, yielded a calcite content of 77.1%. Mean water absorption, density and porosity of the limestone samples were also determined. Dissolution of limestone samples was investigated using an experimental rainfall simulation chamber, in which the stone samples were irrigated with artificial rain matching the pH and the ionic composition with 40 rainfall samples collected at El Tajin from August 18, 2002, to April 9, 2003. According to calcium and bicarbonate net concentrations found in the effluent of the chamber, a chemical mechanism by which limestone at El Tajin is dissolved by acid rain is proposed. A model used to investigate the air transport pathways corresponding to precipitation events at El Tajin shows that air parcels come mainly from the Gulf of Mexico, although no directional preference is evident for acidic vs. non-acidic events.  相似文献   

8.
Precipitation scavenging of particles is a major mechanism for atmospheric deposition of organic contaminants, but there have been few field studies. We studied precipitation scavenging of PCDD/Fs with the aim of deepening understanding of environmental variables influencing this process. Bulk deposition of PCDD/Fs and their concentrations in ambient air measured at a background site in Sweden were used to calculate precipitation scavenging ratios. Contrary to expectations, increasing scavenging ratios with decreasing degree of chlorination of the PCDD/F congeners were observed when the particle-associated PCDD/F concentrations in air were used for the calculation. This was attributed to differences in temperature and thereby in the gas – particle partitioning of the PCDD/Fs between ground level and clouds where much of the particle scavenging occurs. When the particle-associated PCDD/F concentrations were recalculated for a 10–20 °C lower temperature, the scavenging ratios of the different PCDD/F congeners were similar. Hence differences between ground level and in-cloud temperature should be considered when calculating scavenging ratios from field observations and when modeling this process. The scavenging ratios averaged ~200 000, with lower values when the particle-associated PCDD/F concentration in air was lower. The soot concentration in air was a good predictor of bulk deposition of PCDD/Fs.  相似文献   

9.
The high density network component of the Oxidation and Scavenging Characteristics of April Rains (OSCAR) experiment combined aircraft, surface and sequential precipitation chemistry measurements to characterize the physicochemical and dynamic features of four storms sampled during an April 1981 field investigation. A surface network of 47 precipitation sampling stations, covering a region roughly 110 km by 110 km, was established in the area surrounding Fort Wayne, Indiana. The network provided temporal and spatial resolution of rainfall chemistry via the use of specially designed automatic sequential bulk precipitation collectors, while aircraft and surface sampling provided measurements of the major aerosols and trace gases in the boundary-layer inflow region.Composite concentration and ion ratio profiles for the events were analyzed to investigate potential pollutant scavenging pathways. This analysis led to the following observations:
  • 1.(i) dryfall deposition during pre-rainfall exposure periods influenced initial sampler stage chemistry;
  • 2.(ii) relative precipitation acidity increased throughout the events; SO42− and NO3 were the major contributors to this acidity;
  • 3.(iii) evidence exists for the in-cloud oxidation of SO2 during Events 3 and 4, while scavenging of HNO3 and aerosol NO3 probably produced precipitation NO3;
  • 4.(iv) the non-frontal meteorology of Event 3 influenced the precipitation chemistry associated with this storm and led to distinct concentration profiles;
  • 5.(v) an anomalous pattern of NH4+ concentrations observed during Event 1 cannot be explained by known NH4+ scavenging behavior or by non-scavenging related influences, such as local source contamination or NH3 volatilization;
  • 6.(vi) Event 4 is more suitable for analysis by one- and two-dimensional diagnostic wet removal models. Analysis of the other events is complicated by more complex meteorological behavior and, in some cases, a less complete chemistry data set. This paper enlarges on these observations with comparisons of the major meteorological and chemical characteristics of the four events.
  相似文献   

10.
In this paper, the concept of scale analysis is applied to evaluate ozone predictions from two regional-scale air quality models. To this end, seasonal time series of observations and predictions from the RAMS3b/UAM-V and MM5/MAQSIP (SMRAQ) modeling systems for ozone were spectrally decomposed into fluctuations operating on the intra-day, diurnal, synoptic and longer-term time scales. Traditional model evaluation statistics are also presented to illustrate how the scale analysis approach can help improve our understanding of the models’ performance. The results indicate that UAM-V underestimates the total variance (energy) of the ozone time series when compared with observations, but shows a higher mean value than the observations. On the other hand, MAQSIP is able to better reproduce the average energy and mean concentration of the observations. However, both modeling systems do not capture the amount of variability present on the intra-day time scale primarily due to the grid resolution used in the models. For both modeling systems, the correlations between the predictions and observations are insignificant for the intra-day component, high for the diurnal component because of the inherent diurnal cycle but low for the amplitude of the diurnal component, and highest for the synoptic and baseline components. This better model performance on longer time scales suggests that current regional-scale models are most skillful in characterizing average patterns over extended periods, rather than in predicting concentrations at specific locations, during 1–2 day episodic events. In addition, we discuss the implications of these results to using the model-predicted daily maximum ozone concentrations in the regulatory framework in light of the uncertainties introduced by the models’ poor performance on the intra-day and diurnal time scales.  相似文献   

11.
Real-time simultaneous studies on chemical characteristics of rainwater and PM10 aerosols were carried out to understand the scavenging of major chemical components in Indian region. The concentrations of Ca2+, NH4+, SO42− and NO3 were observed to be lower in the aerosol samples collected during rain as compared to before and after rain events. The most significant reduction was noticed for Ca2+ (74%) during rain which showed highest scavenging ratio (SR) and indicated that below-cloud scavenging is an effective removal process for Ca2+ in Indian region. Among non-sea salt components, Ca2+ had highest SR at Hyderabad indicating typical characteristics of crustal influence as abundance of calcium carbonate in soil dust has been reported in India. However, the levels of these major chemical components gradually got build-up in due course of time. After rain events, the levels of SO42− aerosols were noticed to be substantially higher (more than double) within 24 h. In general, scavenging ratios for all components (except Ca2+, NH4+ and K+) were higher over BOB as compared to Hyderabad. The maximum fall in aerosol levels (BR minus AR) was observed during continuous and low intensity rain events that did not allow building up of aerosol concentrations.  相似文献   

12.
A year-long study was conducted in Pinal County, AZ, to characterize coarse (2.5 – 10 μm aerodynamic diameter, AD) and fine (< 2.5 μm AD) particulate matter (PMc and PMf, respectively) to further understand spatial and temporal variations in ambient PM concentrations and composition in rural, arid environments. Measurements of PMc and PMf mass, ions, elements, and carbon concentrations at one-in-six day resolution were obtained at three sites within the region. Results from the summer of 2009 and specifically the local monsoon period are presented.

The summer monsoon season (July – September) and associated rain and/or high wind events, has historically had the largest number of PM10 NAAQS exceedances within a year. Rain events served to clean the atmosphere, decreasing PMc concentrations resulting in a more uniform spatial gradient among the sites. The monsoon period also is characterized by high wind events, increasing PMc mass concentrations, possibly due to increased local wind-driven soil erosion or transport. Two PM10 NAAQS exceedances at the urban monitoring site were explained by high wind events and can likely be excluded from PM10 compliance calculations as exceptional events. At the more rural Cowtown site, PM10 NAAQS exceedances were more frequent, likely due to the impact from local dust sources.

PM mass concentrations at the Cowtown site were typically higher than at the Pinal County Housing and Casa Grande sites. Crustal material was equal to 52-63% of the PMc mass concentration on average. High concentrations of phosphate and organic carbon found at the rural Cowtown were associated with local cattle feeding operations. A relatively high correlation between PMc and PMf (R2?=?0.63) indicated that the lower tail of the coarse particle fraction often impacts the fine particle fraction, increasing the PMf concentrations. Therefore, reductions in PMc sources will likely also reduce PMf concentrations, which also are near the value of the 24-hr PM2.5 NAAQS.

Implications: In the desert southwest, summer monsoons are often associated with above average PM10 (<10 μm AD) mass concentrations. Competing influences of monsoon rain and wind events showed that rain suppresses ambient concentrations while high wind increase them. In this region, the PMc fraction dominates PM10 and crustal sources contribute 52-63% to local PMc mass concentrations on average. Cattle feedlot emissions are also an important source and a unique chemical signature was identified for this source. Observations suggest monsoon wind events alone cannot explain PM10 NAAQS exceedances, thus requiring these values to remain in compliance calculations rather than being removed as exceptional wind events.  相似文献   

13.
Temporal variations in different sized water insoluble particles in rain water during five rainfall events were investigated in a suburban area. The mass of particles ranged: 45–88 % (particle size > 8 μm), 12–43 % (1–8 μm) and 0–13 % (0.4–1 μm). A high concentration and following sharp decrease of the particles larger than 8 μm were observed at the initial stage of rainfall; the rate of the decrease was higher in the heavier rain. In many cases, the mass concentration of particles in rain water showed an inverse correlation with rainfall intensity. The variation of the smaller size particles was less significant compared to the larger ones.  相似文献   

14.
This study has investigated the influence of synoptic weather patterns and long-range transport episodes on the concentrations of several compounds related to different aerosol sources (EC, OC, SO42?, Ca2+, Na+, K+, 210Pb, levoglucosan and dicarboxylic acids) registered in PM10 or PM2.5 aerosol samples collected at three remote background sites in central Europe. Air mass back-trajectories arriving at these sites have been analysed by statistical methods. Firstly, air mass back-trajectories have been grouped into clusters. Each cluster corresponds to specific meteorological scenarios, which were extracted and discussed. Finally, redistributed concentration fields have been computed to identify the main potential source regions of the different key aerosol components. A marked seasonal pattern is observed in the occurrence of the different clusters, with fast westerly and northerly Atlantic flows during winter and weak circulation flows in summer. Spring and fall were characterised by advection of moderate flows from northeastern and eastern Europe. Significant inter-cluster differences were observed for concentrations of receptor aerosol components, with the highest concentrations of EC, OC, SO42?, K+ and 210Pb associated with local and mesoscale aerosol sources located over central Europe related to enhanced photochemical processes. Emissions produced by fossil fuel and biomass burning processes from the Baltic countries, Byelorussia, western regions of Russia and Kazakhstan in spring and fall also contribute to elevated levels of EC, OC, SO42?, K+ and 210Pb. In the summer period long-range transport episodes of mineral dust from North-African deserts were also frequently detected, which caused elevated concentrations of coarse Ca2+ at sites. The baseline aerosol concentrations in central Europe at the high altitude background sites were registered in winter, with the exception of coarse Na+. While the relatively high concentrations of Na+ can be explained by sea salt advected from the Atlantic, the low levels of other aerosol components are caused by efficient aerosol scavenging associated to advections of Atlantic air masses, as well as lower emissions of these species over the Atlantic compared to those over the European continent and very limited vertical air mass exchange over the continent.  相似文献   

15.
An indoor air quality model was used to predict dynamic particle mass concentrations based on homogeneous chemical mechanisms and partitioning of semi-volatile products to particles. The ozone–limonene reaction mechanism was combined with gas-phase chemistry of common atmospheric organic and inorganic compounds and incorporated into the indoor air quality model. Experiments were conducted in an environmental chamber to investigate secondary particle formation resulting from ozone/limonene reactions. Experimental results indicate that significant fine particle growth occurs due to the interaction of ozone and limonene and subsequent intermediate by-products. Secondary particle mass concentrations were estimated from the measured particle size distribution. Predicted particle mass concentrations were in good agreement with experimental results—generally within ∼25% at steady-state conditions. Both experimental and predicted results suggest that air exchange rate plays a significant role in determining secondary fine particle levels in indoor environments. Secondary particle mass concentrations are predicted to increase substantially with lower air exchange rates, an interesting result given a continuing trend toward more energy efficient buildings. Lower air exchange rates also shifted the particle size distribution toward larger particle diameters. Secondary particle mass concentrations are also predicted to increase with higher outdoor ozone concentrations, higher outdoor particle concentrations, higher indoor limonene emission rates, and lower indoor temperatures.  相似文献   

16.
The objective of this study is to develop an automated synoptic climatological procedure to forecast high air pollution concentrations in the most polluted synoptic categories. The procedure is able to identify air masses historically associated with high air pollution concentrations. The arrival of air mass can be predicted 24 or 48 h in advance with the use of the weather forecast data. The development and statistical basis of the procedure are discussed, and an analysis of the procedure's ability to forecast weather conditions associated with high air pollution concentrations is presented. In addition, the dataset of 24 weather variables from 1993 to 1995 is used to validate the procedure. The procedure predicts that 70.3 and 83.3% of total high and severe SO2 concentration days fall into the identified most polluted categories, and the corresponding figures for NOx are 47.8 and 73.7%. The agreement between observed and predicted values is generally good. The prediction models can explain about 58 and 45% of total variance for NOx and SO2 with RMSEs of 42.5 and 16.5 microg m(-3), respectively. They are smaller than 1 SD of the observations.  相似文献   

17.
An explicit multiphase chemistry model (Atm. Environ. 34 (29/30) (2000) 5015) has been coupled with quasi-spectral microphysics, based upon Berry and Reinhardt's parameterizations (1974a, b). This coupled model has been initialized with polluted conditions as observed at the Puy de Dôme mountain in the center of France and for a maritime cloud.The presence of clouds results in two effects on multiphase chemistry: a direct effect through mass transfer, solubility and reactivity, and an indirect effect through microphysical transfer from cloud water into rainwater and redistribution of reactive soluble species among interstitial air, cloud droplets and raindrops.Results demonstrate that microphysical processes are necessary to sketch out the complex, nonlinear multiphase chemistry in a real cloud. In addition to the direct exchange through mass transfer, incorporation of reactive oxidants such as HOx in droplets can arise and consequently make those species no longer available for reacting in the gas-phase. Moreover, microphysical coalescence conversions favor NOx destruction and enhance the chemical nitric acid production. Coalescence of cloud drops to form rain transfers dissolved species into drops that are undersaturated compared to Henry's law equilibrium. The rain becomes a reservoir for these species, allowing aqueous chemistry to produce more nitric acid than would be possible without the presence of rain.Finally, for the different cloud types, the fate of those intermediate and reactive species is investigated, looking at their budget in clear sky situation versus cloudy and/or rainy situations.  相似文献   

18.
In order to evaluate the spatial variation of aerosol (particulate matter with aerodynamic diameter < or = 10 microm [PM10]) and ozone (03) concentrations and characterize the atmospheric conditions that lead to 03 and PM10-rich episodes in southern Italy during summer 2007, an intensive sampling campaign was simultaneously performed, from middle of July to the end of August, at three ground-based sites (marine, urban, and high-altitude monitoring stations) in Calabria region. A cluster analysis, based on the prevailing air mass backward trajectories, was performed, allowing to discriminate the contribution of different air masses origin and paths. Results showed that both PM10 and 03 levels reached similar high values when air masses originated from the industrialized continental Europe as well as under the influence of wildfire emissions. Among natural sources, dust intrusion and wildfire events seem to involve a marked impact on the recorded data. Typical fair weather of Mediterranean summer and persisting anticyclone system at synoptic scale were indeed favorable conditions to the arrival of heavily dust-loaded air masses over three periods of consecutive days and more than half of the observed PM10 daily exceedances have been attributed to Saharan dust events. During the identified dust outbreaks, a consistent increase in PM10 levels with a concurrent decrease in 03 values was also observed and discussed.  相似文献   

19.
In this study, we measured the wet deposition fluxes of ten trace elements (As, Cd, Cr, Cu, Mn, Ni, Pb, Sb, V and Zn) from December 2002 to March 2006 at three sites along the Japan Sea coast, which have been strongly affected by the long-range transport of air pollutants from the Asian continent. Also, factors, contributing to their seasonal variations were investigated. At the northern and central sites, the monthly wet deposition fluxes of all or most trace elements greatly increased during the cold season (typically, November–April), along with their monthly average (volume-weighted) concentrations in the precipitation. The cold/warm season ratios for the average concentrations of trace elements in precipitation were within the range of 2.7–5.1 at the northern site and 1.8–5.9 at the central site, which were similar to the average scavenging ratios (= concentration in precipitation/concentration in air) at each site. However, there were small differences (0.47–1.2 at the northern site and 0.73–1.7 at the central site) in the ratios of average concentrations in air between the two seasons. These suggest that the increase in the wet deposition fluxes of trace elements during the cold season is due to increases in their scavenging ratios. On the other hand, the result for the southern site was different from those at the other sites. The number of days when the daily maximum wind speed exceeded 10 m s?1 at the meteorological observatories near the study sites increased markedly during the cold season at the northern and central sites, showing that strong winds usually blow during the cold season at those sites, but not at the southern site. Higher wind speed transports larger amounts of constituents into the cloud system, which can result in their increased concentrations in precipitation. Thus, high scavenging ratios of trace elements during the cold season may be caused by the increase in their amounts of discharge into the cloud system owing to high wind speed, suggesting that wind speed is an important factor in the seasonal variations in the wet deposition fluxes.  相似文献   

20.
Chemical composition of precipitation was measured with wet-only samplers at a rural site at Bhubaneswar in eastern India during 1997–1998. All rain events were compared with trajectories and precipitation fields from the ECMWF. The pH and ionic concentrations were found to vary systematically with the origin of air and the amount of rainfall along the trajectory. A seasonal cycle for pH was found with a monthly median pH below 5.0 during October–December. The highest monthly median concentration of Ca2+ was found in May with 20 μmol l−1 and for SO42− in January with 52 μmol l−1. Samples with trajectories within 400 km from Bhubaneswar during the last 5 days were found to have a median pH slightly below 5.0 as an average. These samples also had the highest concentration for all measured ions, indicating large pollution sources within the region. Samples with continental origin showed a decrease of ∼70% in concentration if there had been rain during >50% of the last 5 days compared to rain during <50% of the last 5 days. High concentrations of Na+ and Cl were also found in continental samples. Resuspension of previously deposited sea salt is believed to be the reason. The data were compared with data from three other sites in western India and higher concentrations of almost all ions (NH4+ being the exception) compared to Bhubaneswar were found at the west coast in monsoon samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号