首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
太湖梅梁湾沉积物中有机氯农药的残留现状   总被引:24,自引:3,他引:24  
采用GC/ECD分析了梅梁湾沉积物中有机氯农药的残留现状.所测样品中有机氯农药总浓度为1.78~64.74ng/g,其中,HCHs、DDTs在几乎所有采样点都有检出,含量分别是0.23~1.81ng/g、1.78~63.08ng/g.HCHs中,α-HCH与γ-HCH残留水平相当,未检出β-HCH.DDTs中p,p'DDE残留水平较高.数据表明有机氯农药中HCHs可能有新的污染源输入,DDTs在多数采样点发生好氧生物降解,与国内不同水体表层沉积物中HCHs、DDTs的含量相比,梅梁湾沉积物中有机氯农药含量较低.  相似文献   

2.
城区大气颗粒物中有机氯农药的含量与分布   总被引:21,自引:1,他引:20       下载免费PDF全文
采用FA-3型气溶胶粒度分布采样器采样,对北京和天津2个样点夏季大气中不同粒径颗粒物上有机氯农药残留量进行分析.在所有分级样品中均检测出δ-HCH,p,p'-DDD和p,p'-DDT,其他有机氯农药只在部分样品中被检出.北京样中HCHs(α-HCH+β-HCH+γ-HCH+δ-HCH)含量为0.240ng/m3,DDTs(p,p'-DDT+p,p'-DDD+p,p'-DDE)含量为0.962ng/m3,天津样品中HCHs含量为0.581 ng/m3,DDTs含量为1.874ng/m3.天津样中有机氯农药残留明显高于北京样.大气颗粒物上的有机氯农药粒径分布特征为:北京样中HCHs和DDTs含量随粒径均呈单峰分布,而天津样中HCHs呈三峰态分布,DDTs呈较弱的单峰态分布.HCHs和DDTs两类化合物的质量中值直径和分散度分别在2.1~2.5μm和3.1~3.7μm范围内.   相似文献   

3.
太湖沉积物中有机氯农药的残留特征及风险评估   总被引:76,自引:10,他引:66  
袁旭音  王禹  陈骏  孙成  许乃政 《环境科学》2003,24(1):121-125
分析了太湖沉积物中的有机氯农药残留情况,发现DDT及其代谢产物、HCH的异构体、艾氏剂、狄氏剂、六氯苯、七氯等在几乎所有的样品中均被检出.其中β-HCH、p,p'-DDE和六氯苯的残留水平最高,平均值分别达到6.572ng/g、1.432ng/g和2.158ng/g(干重),沉积物的HCHs含量明显高于DDTs.有机氯农药的主要来源为地表径流入湖、大气沉降和工业污水排放.数据表明太湖沉积物的HCHs、DDTs比报道的中国江河沉积物高,但低于海湾沉积物.根据海洋风险评估值进行对比,太湖沉积物中有机氯农药的生态风险较低.  相似文献   

4.
从胶州湾、套子湾及四十里湾海域和邻近河流采集了48个表层沉积物样品,采用气相色谱的分析方法对沉积物中有机氯农药(HCHs、HCB和DDTs)进行了测定,目的是探讨其在该研究区域的分布特征和来源.结果表明,胶州湾HCHs、HCB与DDTs的含量平均值分别为0.33、0.31和10.33 ng·g-1;套子湾及四十里湾的平均值分别为0.26、0.10和4.56 ng·g-1.相对于国内其他海域,胶州湾沉积物中OCPs偏高,特别是DDTs的含量;而套子湾及四十里湾沉积物中OCPs含量水平较低.对OCPs的分布特征及其来源进行分析得出,研究区域HCHs主要是历史残留,但是个别站位高含量的γ-HCH则表明了存在林丹的点污染源;而DDTs主要来源于工业DDTs,但是在胶州湾青岛港附近的站位o,p’-DDT/p,p’-DDT较高,暗示该区域受到三氯杀螨醇类型DDTs的污染.胶州湾高含量的DDTs需要引起足够的重视.  相似文献   

5.
泉州湾沉积物柱状样中有机氯农药的垂直分布特征   总被引:5,自引:0,他引:5  
用GC-ECD内标法测定了泉州湾沉积物柱样中有机氯农药的含量.通过研究有机氯农药在沉积物柱样中的垂直分布特征,探讨了有机氯农药在泉州湾的污染历史.该柱样中HCHs和DDTs的含量分别为(0.00~5.61)×10-9、(1.18~50.65)×10-9.研究表明该区沉积物未受到HCHs的明显污染,但已受到DDTs的轻微污染.有机氯农药的垂直变化基本反映了它在我国及福建的生产使用历史.在近年泉州湾仍有新的DDT输入.  相似文献   

6.
从湛江湾的遂溪河入海口至其与南海相交的湾口采集了16个表层沉积物样品,采用气相色谱-质谱分析方法检测了沉积物中的有机氯农药(HCHs、DDTs),旨在探讨其分布与风险特征.结果表明,湛江湾表层沉积物中OCPs的含量为nd~189.52 ng·g-1,平均值为32.17 ng·g-1,其中六六六(HCHs)与滴滴涕(DDTs)的含量平均值分别为5.81 ng·g-1和26.90 ng·g-1.总体分布特征表现为湾区的河流入海口和主航道区具有较高的OCPs,近岸区含量高于离岸区域.对其来源进行分析发现,HCHs的输入以农业为主,工业输入影响不明显,DDTs在港口航道区域呈现高值"热点"区,可能存在防污漆的输入.另外风险评估值显示湛江海湾表层沉积物中DDTs存在一定的不利生物效应影响风险.总体上,湛江湾的有机氯农药污染状况相比国内其他海湾属中等偏上,尤其是港口和船舶维修区域可能存在较高的有机氯农药输入,存在一定的生态风险,需要引起重视和进一步的研究.  相似文献   

7.
黄河湿地孟津段水体及沉积物中有机氯农药的分布特征   总被引:7,自引:5,他引:2  
采集了黄河湿地孟津段滩区表层水体和沉积物样品,采用C18固相萃取柱和索氏提取分离富集、气相色谱-电子捕获(GC-ECD)检测、气相色谱仪-质谱(GC-MS)确证的方法对样品中20种有机氯农药进行分析和研究.结果表明,研究区表层水体中有α-HCH、β-HCH、γ-HCH、δ-HCH、4,4-DDT、七氯和艾氏剂等7种有机氯农药被检出,检出率为4.2%~62.5%,总含量为ND~12.21 ng/L;沉积物中只有4,4-DDE和4,4-DDT 2种组分被检出,检出率为50%~75%,总含量为ND~64.58 ng/g.表层水体中∑HCHs和∑DDTs含量均未超标,但表层沉积物中有机氯农药存在一定的生态风险.组分分布特征表明,有机氯农药各组分在湿地水体-沉积物的迁移过程中,HCHs在水体中含有较高的比例,沉积物则是DDTs的最终归宿.表层水体及沉积物中有机氯农药的含量具有明显的季节性,从高到低依次为:丰水期>平水期>枯水期.源解析的结果表明,表层水体中,HCHs可能主要来源于环境中的早期残留,丰水期可能有林丹的近期输入或附近有林丹的使用;沉积物中,枯水期有机氯农药的污染主要源自环境中的早期残留,而平水期和丰水期则可能有新的污染源输入.总体研究结果表明该区域有机氯农药的来源具有面源污染特征.  相似文献   

8.
采集洪湖湿地自然保护区鸟类聚集区和参照区表层沉积物样品共17个,并用GC-ECD测定其有机氯农药含量,探讨了聚集区和参照区沉积物中OCPs的含量、分布及组成特征。结果表明,研究区表层沉积物有机氯农药污染物主要为HCHs和DDTs,由于鸟类对OCPs的生物传输使得聚集区沉积物中β-HCH和p,p'-DDE的含量明显大于参照区。聚集区沉积物中OCPs含量呈由边缘向湖心先增大再减小的趋势。聚集区沉积物中DDE占DDTs的50%以上,DDTs、HCHs的组成特征表明OCPs主要来源于以前使用的农药的残留,林丹代替工业六六六在使用。风险评价表明,聚集区沉积物中有机氯农药的生态风险较高,主要为DDT污染。  相似文献   

9.
利用GC-ECD测定了钦州湾沉积物中17种有机氯农药的含量,并对其组分分布和来源进行了分析。结果表明,样品中有机氯农药的总量为1.50~129ng/g,滴滴涕(DDTs)浓度为0.59~126ng/g,六六六(HCHs)的浓度为nd~2.65ng/g。有机氯农药的分布特征为茅尾海>钦州外湾,茅尾海东岸>西岸。组分分布特征分析显示,DDTs主要来自于历史积累,林丹在某些采样区域内有近期输入。与国内外不同地区沉积物中有机氯农药残留相比,钦州湾沉积物中有机氯农药污染处于低到中等水平。以沉积物生态风险评估值为基准的分析表明,研究区内DDT含量存在较大的生态风险。  相似文献   

10.
长江口南岸水体SPM和表层沉积物中OCPs的赋存   总被引:5,自引:1,他引:4       下载免费PDF全文
利用GC-ECD对长江口南岸14个采样点水体悬浮颗粒物(SPM)及表层沉积物进行了有机氯农药(OCPs)的测定,分析了其中HCHs和DDTs的赋存水平和形态分布.研究表明,OCPs的含量水平有DDTs>HCHs的趋势;悬浮物中污染物浓度高于表层沉积物.悬浮物中HCHs污染水平分布在6.24~14.75ng/g,平均值为12.27ng/g;DDTs的污染水平为3.36~25.66ng/g,平均值为16.37ng/g.而表层沉积物中HCHs含量为1.19~8.22ng/g,平均值5.92ng/g;DDTs的含量水平为4.96~14.94ng/g,平均值为8.92ng/g.研究区内OCPs的含量低于ER-M值,对环境生物具有潜在的危害性.  相似文献   

11.
Toxic effects of two agrochemicals on nifH gene in agricultural black soil were investigated using denaturing gradient gel electrophoresis (DGGE) and sequencing approaches in a microcosm experiment. Changes of soil nifH gene diversity and composition were examined following the application of acetochlor, methamidophos and their combination. Acetochlor reduced the nifH gene diversity (both in gene richness and diversity index values) and caused changes in the nifH gene composition. The effects of acetochlor on nifH gene were strengthened as the concentration of acetochlor increased. Cluster analysis of DGGE banding patterns showed that nifH gene composition which had been affected by low concentration of acetochlor (50 mg/kg) recovered firstly. Methamidophos reduced nifH gene richness that except at 4 weeks. The medium concentration of methamidophos (150 mg/kg) caused the most apparent changes in nifH gene diversity at the first week while the high concentration of methamidophos (250 mg/kg) produced prominent effects on nifH gene diversity in the following weeks. Cluster analysis showed that minimal changes of nifH gene composition were found at 1 week and maximal changes at 4 weeks. Toxic effects of acetochlor and methamidophos combination on nifH gene were also apparent. Different nifH genes (bands) responded differently to the impact of agrochemicals: four individual bands were eliminated by the application of the agrochemicals, five bands became predominant by the stimulation of the agrochemicals, and four bands showed strong resistance to the influence of the agrochemicals. Fifteen prominent bands were partially sequenced, yielding 15 different nifH sequences, which were used for phylogenetic reconstructions. All sequences were affiliated with the alpha- and beta-proteobacteria, showing higher similarity to eight different diazotrophic genera.  相似文献   

12.
The effects of arbuscular mycorrhizal (AM) fungus (Glomus mosseae) and phosphorus (P) addition (100 mg/kg soil) on arsenic (As) uptake by maize plants (Zea mays L.) from an As-contaminated soil were examined in a glasshouse experiment.Non-mycorrhizal and zero-P addition controls were included.Plant biomass and concentrations and uptake of As,P,and other nutrients,AM colonization,root lengths,and hyphal length densities were determined.The results indicated that addition of P significantly inhibited root colonization and development of extraradical mycelium.Root length and dry weight both increased markedly with mycorrhizal colonization under the zero-P treatments,but shoot and root biomass of AM plants was depressed by P application.AM fungal inoculation decreased shoot As concentrations when no P was added,and shoot and root As concentrations of AM plants increased 2.6 and 1.4 times with P addition,respectively.Shoot and root uptake of P,Mn,Cu,and Zn increased,but shoot Fe uptake decreased by 44.6%,with inoculation, when P was added.P addition reduced shoot P,Fe,Mn,Cu,and Zn uptake of AM plants,but increased root Fe and Mn uptake of the nonmycorrhizal ones.AM colonization therefore appeared to enhance plant tolerance to As in low P soil,and have some potential for the phytostabilization of As-contaminated soil,however,P application may introduce additional environmental risk by increasing soil As mobility.  相似文献   

13.
Several main metabolites of benzo[a]pyrene (BaP) formed by Penicillium chrysogenum, Benzo[a]pyrene-1,6-quinone (BP 1,6- quinone), trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene (BP 7,8-diol), 3-hydroxybenzo[a]pyrene (3-OHBP), were identified by high-performance liquid chromatography (HPLC). The three metabolites were liable to be accumulated and were hardly further metabolized because of their toxicity to microorganisms. However, their further degradation was essential for the complete degradation of BaP. To enhance their degradation, two methods, degradation by coupling Penicillium chrysogenum with KMnO4 and degradation only by Penicillium chrysogenum, were compared; Meanwhile, the parameters of degradation in the superior method were optimized. The results showed that (1) the method of coupling Penicillium chrysogenum with KMnO4 was better and was the first method to be used in the degradation of BaP and its metabolites; (2) the metabolite, BP 1,6-quinone was the most liable to be accumulated in pure cultures; (3) the effect of degradation was the best when the concentration of KMnO4 in the cultures was 0.01% (w/v), concentration of the three compounds was 5 mg/L and pH was 6.2. Based on the experimental results, a novel concept with regard to the bioremediation of BaP-contaminated environment was discussed, considering the influence on environmental toxicity of the accumulated metabolites.  相似文献   

14.
Sorption of chlorotoluron in ammonium sulfate, urea and atrazine multi-solutes system was investigated by batch experiments. The results showed application of nitrogen fertilizers to the soil could affect the behavior of chlorotoluron. At the same concentration of N, sorption of chlorotoluron decreased as the concentration of atrazine increased on the day 0 and 6 in soil, respectively. The sorption of chlorotoluron increased from 0 to 6 d when soils were preincubated with deionized water, ammonium sulfate and urea solution for 6 d. That indicated incubation time was one of the most important factors for the sorption of chlorotoluron in nitrogen fertilizers treatments. The individual sorption isotherms of chlorotoluron in rubbery polymer and silica were strictly linear in single solute system, but there were competition sorption between pesticides or between pesticides and nitrogen fertilizers. That indicated the sorption taken place by concurrent solid-phase dissolution mechanism and sorption on the interface of water-organic matter or water-mineral matter.  相似文献   

15.
In this study an effort has been made to use plant polyphenol oxidases; potato (Solanum tuberosum) and brinjal (Solanum melongena), for the treatment of various important dyes used in textile and other industries. The ammonium sulphate fractionated enzyme preparations were used to treat a number of dyes under various experimental conditions. Majority of the treated dyes were maximally decolorized at pH 3.0. Some of the dyes were quickly decolorized whereas others were marginally decolorized. The initial first hour was sufficient for the maximum decolorization of dyes. The rate of decolorization was quite slow on long treatment of dyes. Enhancement in the dye decolorization was noticed on increasing the concentration of enzymes. The complex mixtures of dyes were treated with both preparations of polyphenol oxidases in the buffers of varying pH values. Potato polyphenol oxidase was significantly more effective in decolorizing the dyes to higher extent as compared to the enzyme obtained from brinjal polyphenol oxidase. Decolorization of dyes and their mixtures, followed by the formation of an insoluble precipitate, which could be easily removed simply by centrifugation.  相似文献   

16.
RemovalofheavymetalsfromsewagesludgebylowcostingchemicalmethodandrecyclinginagricultureWuQitang,NyirandegePascasie,MoCehuiF...  相似文献   

17.
Single and joint effects of pesticides and mercury on soil urease   总被引:6,自引:3,他引:3  
The influence of two pesticides including chlorimuron-ethyl and furadan and mercury (Hg) on urease activity in 4 soils (meadow burozem and phaeozem) was investigated. The soils were exposed to various concentrations of the two pesticides and Hg individually and simultaneously. Results showed that there was a close relationship between urease activity and organic matter content in soil. Chlorimuron-ethyl and furadan could both activate urease in the 4 soils. The maximum increment of urease activity by chlorimuronethyl was up to 14%-18%. There was almost an equal increase (up to 13%-21%) in the urease activity by furadan. On the contrary, Hg markedly inhibited soil urease activity. A logarithmic equation was used to describe the relationship (P〈0.05) between the concentration of Hg and the activity of soil urease in the 4 tested soils. Semi-effect dose (ED50) values by the stress of Hg based on the inhibition of soil urease in the 4 soils were 88, 5.5, 24 and 20 mg/kg, respectively, according to the calculation of the corresponding equations. The interactive effect of chlorimuron-ethyl or furadan with metal Hg on soil urease was mainly synergic at the highest tested concentrations.  相似文献   

18.
A study was conducted to compare the diversity of 2-, 3-, and 4-chlorobenzoate degraders in two pristine soils and one contaminated sewage sludge. These samples contained strikingly different populations of mono-chlorobenzoate degraders. Although fewer cultures were isolated in the uncontaminated soils than contaminated one, the ability of microbial populations to mineralize chlorobenzoate was widespread. The 3- and 4-chlorobenzoate degraders were more diverse than the 2-chlorobenzoate degraders. One of the strains isolated from the sewage sludge was obtained. Based on its phenotype, chemotaxonomic properties and 16S rRNA gene, the organism S-7 was classified as Rhodococcus erythropolis. The strain can grow at temperature from 4 to 37℃. It can utilize several (halo)aromatic compounds. Moreover, strain S-7 can grow and use 3-chlorobenzoate as sole carbon source in a temperatures range of 10-30℃ with stoichiometric release of chloride ions. The psychrotolerant ability was significant for bioremediation in low temperature regions. Catechol and chlorocatechol 1,2-dioxygenase activities were present in cell free extracts of the strain, but no (chloro)catechol 2,3- dioxygenase activities was detected. Spectral conversion assays with extracts from R. erythropolis S-7 showed accumulation of a compound with a similar UV spectrum as chloro-cis,cis-muconate from 3-chlorobenzoate. On the basis of these results, we proposed that S-7 degraded 3-chlorobenzoate through the modified ortho-cleave pathway.  相似文献   

19.
A field study was conducted in the Taihu Lake region, China in 2004 to reveal the organochlorine pesticide concentrations in soils after the ban of these substances in the year 1983. Thirteen organochlorine pesticides (OCPs) were analyzed in soils from paddy field, tree land and fallow land. Total organochlorine pesticide residues were higher in agricultural soils than in uncultivated fallow land soils. Among all the pesticides, ΣDDX (DDD, DDE and DDT) had the highest concentration for all the soil samples, ranging from 3.10 ng/g to 166.55 ng/g with a mean value of 57.04 ng/g and followed by ΣHCH, ranging from 0.73 ng/g to 60.97 ng/g with a mean value of 24.06 ng/g. Dieldrin, endrin, HCB and α-endosulfan were also found in soils with less than 15 ng/g. Ratios of p,p'-(DDD DDE)/DDT in soils under three land usages were: paddy field > tree land > fallow land, indicating that land usage inlfuenced the degradation of DDT in soils. Ratios of p,p'-(DDD DDE)/DDT >1, showing aged residues of DDTs in soils of the Taihu Lake region. The results were discussed with data from a former study that showed very low actual concentrations of HCH and DDT in soils in the Taihu Lake region, but according to the chemical half-lives and their concentrations in soils in 1980s, the concentration of DDT in soils seemed to be underestimated. In any case our data show that the ban on the use of HCH and DDT resulted in a tremendous reduction of these pesticide residues in soils, but there are still high amounts of pesticide residues in soils, which need more remediation processes.  相似文献   

20.
The contribution of aliphatic-rich plant biopolymer to sorption of hydrophobic organic compounds is significantly important because of their preservation and accumulation in the soil environment,but sorption mechanism is still not fully understood.In this study, sorption of 1-naphthol by plant cuticular fractions was examined to better understand the contributions of respective fraction.Toward this end,cuticular materials were isolated from the fruits of tomato by chemical method.The tomato cuticle sheet consisted of waxes (6.5 wt%),cuticular monomer (69.5 wt%),and polysaccharide (24.0 wt%).Isotherms of l-naphthol to the cuticular fractions were nonlinear (N value (0.82-0.90)) at the whole tested concentration ranges.The KodKow ratios for bulk cuticle (TC1),dewaxed cuticle (TC2),cutin (TC4),and desugared cuticle (TC5) were larger than unity,suggested that tomato bulk cuticle and cutin are much powerful solption medium.Sorption capability of cutin (TC4) was 2.4 times higher than the nonsaponifiable fraction (TC3).The 1-naphthol interactions with tomato cuticular materials were governed by both hydrophobic-type interactions and polar (H-bonding) interactions. Removal of the wax and polysaccharide materials from the bulk tomato cuticle caused a significant increase in the sorption ability of the cuticular material.There was a linear negative trend between K_(oc) values and the amount of polysaccharides or fraction's polarities ((N O)/C);while a linear positive relationship between K_(oc) values and the content of cutin monomer (linear R~2=0.993) was observed for present in the cuticular fractions.Predominant sorbent of the hydrophobic organic compounds (HOCs) in the plant cuticular fraction was the cutin monomer,contributing to 91.7% of the total sorption of tomato bulk cuticle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号