首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 46 毫秒
1.
以花生壳活性炭对RO浓水进行吸附处理,利用傅立叶红外光谱(FTIR)和荧光光谱(EEM)研究花生壳活性炭对不同pH的RO浓水的吸附特性.结果表明,花生壳活性炭对溶解性有机碳(DOC)的吸附遵循准二级吸附动力学方程,特别是碱性条件下,DOC的吸附量随着pH的升高而降低.而且pH越高,达到吸附平衡的时间越长.通过FTIR光谱分析发现,活性炭的芳香结构吸收峰在吸附后红移至1630 cm-1,表明被吸附的有机物在该处有明显的特征吸收峰,而C—O和O—H官能团的吸收峰则因为钙离子等物质的吸附而显著降低.由EEM光谱分析可知,RO浓水的荧光物质主要由腐殖酸类腐殖质和富里酸类腐殖质组成,其荧光强度与DOC之间具有较好的线性相关性.  相似文献   

2.
为探讨外源性甲醛是否会对小鼠肝脏和肾脏的热休克蛋白70(heat shock protein 70, Hsp70)产生影响,选雄性Balb/c小鼠为研究对象,采用动态吸入方式染毒2周,每周5 d,每天8 h,随机分为空白对照组、3 mg·m-3甲醛染毒组。染毒结束后,计算肝脏和肾脏的脏体比,检测各器官中活性氧(reactive oxygen species, ROS)、丙二醛(malondialdehyde, MDA)、还原型谷胱甘肽(glutathione, GSH)的含量,同时用实时荧光定量PCR(real-time PCR, RT-PCR)法检测Hsp70的基因表达,并通过HE染色观察形态学变化。结果表明:与对照组相比,2种器官的脏体比均显著下降(P0.05或P0.01); ROS、MDA含量上升、GSH含量下降,出现显著性差异(P0.05或P0.01); Hsp70基因表达水平下降且差异显著(P0.05或P0.01); HE切片显示,甲醛暴露使肝脏的中央静脉窦的破损程度增加、细胞核变大,肾脏中肾小中肾小球基底膜变窄、体积缩小甚至分解。上述结果表明,甲醛暴露会对小鼠的的肝脏和肾脏造成不同程度的氧化损伤,小鼠可通过上调Hsp70的基因表达以增强机体的抗氧化能力。  相似文献   

3.
将人工合成的5个相连的XRE(Xeobiotic response element)和minimal CMV(Human cytomegalovirus)启动子,插入载体pEGFP-1,构建得到载体pXRE5-EGFP.以pXRE5-EGFP转染人胃癌细胞SGC-7901,经过筛选得到一株受2,3,7,8-四氯代二苯并二英(2,3,7,8-tetrachlorodibenzo-p-dioxin,TCDD)诱导表达绿色荧光蛋白的细胞系XRE5-SGC-7901.将XRE5-SGC-7901细胞株暴露于不同浓度TCDD(0、250、500pg·mL-1)中,发现TCDD暴露组XRE5-SGC-7901细胞中绿色荧光蛋白的表达量显著升高,且与TCDD暴露浓度呈正相关.新构建的细胞株具有二英类化合物诱导表达绿色荧光蛋白的功能.  相似文献   

4.
垃圾渗滤液的Fenton氧化预处理研究   总被引:5,自引:0,他引:5  
朱兆连  孙敏  王海玲  张雪英  李爱民 《生态环境》2010,19(10):2484-2488
采用Fenton氧化法对垃圾渗滤液进行预处理,考察了渗滤液初始pH值、H2O2和FeSO4.7H2O投加量、H2O2/Fe2+投加的物质的量比及氧化反应时间等对Fenton氧化处理效果的影响,获得Fenton氧化处理垃圾渗滤液的最佳工艺条件:初始pH=3.0,H2O2投加量为5.0 mL.L-1,FeSO4.7H2O投加量为3.48 g.L-1,H2O2/Fe2+物质的量比为4-1,反应时间为1.5 h。最佳条件下处理后垃圾渗滤液COD为5 220 mg.L-1,COD去除率达57.8%。凝胶渗透色谱和三维荧光光谱分析结果表明,垃圾渗滤液中主要含有腐殖酸类大分子物质,经Fenton氧化后降解变成小分子化合物。  相似文献   

5.
• Explaintheadsorption, uptake and transmembrane transport of PAHs by bacteria. • Analyze functional regulation of membrane proteins inthe transmembrane transport. • Proteomics technology such as iTRAQ labeling was used to access expressed proteins. • Single cell analysis technology wereused to study the morphological structure. In recent years, increasing research has been conducted on transmembrane transport processes and the mechanisms behind the microbial breakdown of polycyclic aromatic hydrocarbons (PAHs), including the role of membrane proteins in transmembrane transport and the mode of transmission. This article explains the adsorption, uptake and transmembrane transport of PAHs by bacteria, the regulation of membrane protein function during the transmembrane transport. There are three different regulation mechanisms for uptake, depending on the state and size of the oil droplets relative to the size of the microbial cells, which are (i) direct adhesion, (ii) emulsification and pseudosolubilization, and (iii) interfacial uptake. Furthermore, two main transmembrane transport modes are introduced, which are (i) active transport and (ii) passive uptake and active efflux mechanism. Meanwhile, introduce the proteomics and single cell analysis technology used to address these areas of research, such as Isobaric tags for relative and absolute quantitation (iTRAQ) technology and Nano Secondary ion mass spectrometry (Nano-SIMS). Additionally, analyze the changes in morphology and structure and the characteristics of microbial cell membranes in the process of transmembrane transport. Finally, recognize the microscopic mechanism of PAHs biodegradation in terms of cell and membrane proteins are of great theoretical and practical significance for understanding the factors that influence the efficient degradation of PAHs contaminants in soil and for remediating the PAHs contamination in this area with biotechnology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号