共查询到19条相似文献,搜索用时 46 毫秒
1.
基于CAMx-PSAT空气质量模型,对2015年京津冀区域PM_(2.5)污染及相互输送特征进行定量模拟,建立了京津冀13个城市的PM_(2.5)传输矩阵.结果表明,在年均尺度上京津冀区域PM_(2.5)以本地污染源贡献为主(21.49%~68.74%),传输贡献为辅,其中区域内传输贡献约为13.31%~54.62%,区外贡献约为13.32%~45.02%.PM_(2.5)传输特征呈现显著的时空差异性,区域中部城市唐山、北京、天津、保定和石家庄PM_(2.5)受本地贡献主导,在冬季尤其明显,而受传输影响较大的城市多分布在区域边界且在南部集中.区内作为汇的城市有廊坊、衡水、承德、秦皇岛和邢台,作为源的城市有天津、沧州、唐山、北京、石家庄和邯郸,张家口和保定对区内城市输出和受区内输入基本持平.典型城市分析证明城市间PM_(2.5)污染交互影响,北京与廊坊、保定、承德、天津和沧州等城市之间,天津与廊坊、唐山、北京、沧州和保定等城市之间,石家庄与邢台、衡水、保定、邯郸和廊坊之间均存在显著的PM_(2.5)相互输送. 相似文献
2.
利用环境监测、气象常规观测、美国国家环境预报中心(NCEP)再分析等资料,采用气溶胶激光雷达和HYSPLIT模式对2018年8月1—2日发生在天津市夏季的一次重污染天气过程进行分析。结果表明:地面弱气压场、低空逆温和偏东暖湿气流的输送为此次重污染形成提供了有利条件;气溶胶激光雷达分析表明,此次污染过程存在明显的水平输送和垂直分布特征,市区PM2.5浓度升高除与水平输送有关,还与本地低空逆温造成的PM2.5积累密切相关;HYSPLIT模式后向轨迹追踪研究表明,PM2.5前期积累爬升阶段,气团主要来自偏南气流,200、500、1 000 m高度气团均有明显沉降,后期气团来向转变为较清洁的偏东暖湿气流,但同时带来大量水汽,造成天津市相对湿度的增加。此次污染过程前期是由于静稳天气形势导致PM2.5积累,后期主要是天津市各区县之间PM2.5的输送以及偏东暖湿气流输送水汽导致相对湿度的增加,污染进一步加重。 相似文献
3.
为了解鞍型场对西安市PM2.5重污染过程的影响.以西安市2016年2月6—14日重污染过程ρ(PM2.5)及气象要素的小时变化为研究对象,综合分析了此次重污染过程特征、天气型以及气象要素变化.结果表明:①西安市此次重污染过程可分为污染上升阶段(6—7日)、污染维持阶段(8—11日)及污染减轻阶段(12—14日),3个阶段分别处于均压场、鞍型场、高压前部等天气型的影响下.②此次鞍型场发生时,天气持续静稳,气压梯度力小,且西安市处于气流的辐合地带,导致污染物的形成和积累,ρ(PM2.5)最高值达198 μg/m3.③在鞍型场的控制下,西安市日均气温维持在偏高的水平(最高达7.2℃),相对湿度呈上升的趋势,最高达86.5%;而风速和能见度则波动下降,平均风速和能见度最低值分别为0.8 m/s和0.5 km.高温、高湿、小风的气象条件有利于污染物的吸湿增长从而导致PM2.5重污染.④受鞍型场的影响,西安市边界层高度较低,最低时只有55 m,且逆温层较厚,强度较大,最大值达3.8℃/(100 m),极低的边界层高度和较厚的逆温层削弱了污染物的垂直扩散能力,污染物被抑制在近地面,形成较严重的污染.研究显示,鞍型场天气型导致的均压场、暖湿、静风、低边界层及强逆温层是此次西安市PM2.5重污染过程的重要原因. 相似文献
4.
2016年12月17~19日重污染期间,在天津市武清区高村开展车载系留气球颗粒物浓度垂直观测,并以观测数据为基础,计算了区域内PM_(2.5)传输通量.结果表明重污染过程期间,大气混合层较低,约200 m左右,PM_(2.5)浓度垂直分布特征与混合层高度密切相关,混合层以下,PM_(2.5)浓度较高,垂直变化特征不显著,形成明显的污染层,混合层以上,PM_(2.5)浓度迅速降低并维持在降低水平.观测期间,粒径小于1. 0μm颗粒物浓度较高,粒径大于2. 2μm颗粒物浓度较低,近地层粒径为0. 777μm颗粒物浓度最高.颗粒物浓度粒径谱分布与相对湿度和混合层高度相关,高湿度和低混合层下颗粒物浓度粒径谱分布较宽泛.观测期间,PM_(2.5)在西南方向上的传输通量最高,占总传输通量的63. 3%,其中46~156 m和156~296 m高度之间PM_(2.5)传输通量最高.近地面300 m内PM_(2.5)传输主要以西南方向传输为主,300 m以上传输方向较分散. 相似文献
5.
利用2017~2019年晋城市和长治市冬季PM2.5逐时浓度资料、地面风场数据等,结合HYSPLIT轨迹模型和中尺度数值模式WRFV4.2分析了晋东南地区冬季PM2.5污染的特征和传输特点.结果表明,晋城市冬季PM2.5污染程度高于长治市.受地形影响,晋城市地面盛行偏南风、偏北风和西北风,污染方向主要为偏南风和偏北风;长治市近地面盛行偏南风,该风向污染频率最高.影响晋城市和长治市污染的潜在源区主要分布在偏西、东北和东南方向,偏西气流来自陕西省中部,东北气流来自河北省西南部,东南气流来自河南省中东部.污染经过晋东南地区主要影响山西省中南部和北京南部.通过数值模拟流场,结合潜在源区和影响区域的分析结果,在均压场或高压后部的天气形势下,晋东南地区污染输送路径包括来自东北方向(河北省西南部一带)的气流,沿长治市东北部的滏口陉向晋东南地区输送污染物及沿太行山东麓向南在晋豫交界处的太行陉发生转折向晋东南地区输送污染物;来自东南方向(河南北部及东部)的气流输送和来自偏西方向(陕西中南部)的气流输送.污染物经过晋东南地区向北输送至山西省中南部,部分经过山西省中东部的井陉输送至北京南部. 相似文献
6.
为了解华东森林及高山背景区域大气中PM10和PM2.5质量浓度的变化特征,选取国家大气背景监测福建武夷山站2011年3月~2012年2月PM10、PM2.5为期1 a的监测数据,研究其浓度变化特征及其影响因子,并利用后向轨迹模式探讨区域输送对背景区域PM10和PM2.5质量浓度的影响.结果表明:华东森林及高山区域现阶段PM10和PM2.5背景浓度分别为(23±16)μg·m-3和(18±12)μg·m-3;PM10和PM2.5浓度具有相同的季节变化特征,即春季>秋季>冬季>夏季,2011年春季武夷山背景点因受沙尘远距离输送影响,PM10和PM2.5浓度明显高于其它三季;武夷山背景地区主要以细粒子为主,PM2.5/PM10年平均比值为0.76;PM10和PM2.5浓度与气体污染物均有较好的相关性,表明PM10和PM2.5可能来源于区域人为污染源的输送和二次粒子转化;2011年4月的污染事件与北方沙尘输送有关,而9月的污染事件主要与华东高污染负荷区的污染物输送有关. 相似文献
7.
天津市多发生以PM2.5为首要污染物的重污染事件,明确ρ(PM2.5)时空分布特征及重污染过程来源对PM2.5的综合治理意义深远.利用天津市2014-2017年环境资料和2016年气象资料,结合WRF-Chem模式研究了天津市ρ(PM2.5)时空分布特征及重污染过程来源.结果表明:①自2014年以来,天津市ρ(PM2.5)呈逐年下降趋势.②ρ(PM2.5)月变化曲线呈\"U\"型分布,呈冬春季高、夏秋季低的季节性特征;ρ(PM2.5)日变化呈双峰型分布,主峰值出现在08:00-09:00,次峰值出现在21:00-翌日00:00.③各季节天津市ρ(PM2.5)空间分布不同,春季、夏季、秋季和冬季高值中心分别位于天津市西南部的静海区、中心城区北部的北辰区、西部的武清区及北部的蓟州区.④WRF-Chem模式模拟的天津市秋冬季污染物来源结果表明,本地源贡献率为56%,外来源输送贡献率为44%,其中以河北省和山东省的输送为主.2016年12月16-22日天津市一次重污染过程的模拟结果表明,天津市本地源贡献率为49.6%,河北省、北京市和山东省的外来源输送贡献率分别为32.2%、7.0%和2.2%.污染前期,不利气象条件和外来源输送造成天津市ρ(PM2.5)聚集并形成重度污染;污染持续过程中,本地源贡献率逐渐增大并占主导地位.研究显示,近年来天津市ρ(PM2.5)呈下降趋势,并有明显的空间分布特征. 相似文献
8.
华北区域大气污染过程中天气型和输送路径分析 总被引:14,自引:2,他引:14
以2003年10月2—12日一次大气污染过程为例,分析华北区域大气污染过程中主要天气型及污染物输送路径.结果表明:区域内大部分城市API上升阶段,以西南输送路径为主;API下降阶段,受纬向锋区影响,以东北气流为主,污染物从北向南扩散,区域内各城市空气质量好转.统计2003年9—12月7次大气污染过程发现,当华北地区为大尺度高气压控制时,若高压中心位于山西南部,河北为弱的低气压区(地形槽)时,将导致西南风气流盛行该区域.受地形和天气型控制,西南方向的输送通道是引起北京大气污染过程的主要通道. 相似文献
9.
为了探讨华东高山背景区域春季颗粒物中水溶性组分的特征,2014年3月至5月在国家大气背景监测福建武夷山站采集PM2.5及PM2.5~10样品,获取了水溶性无机离子组分,并同步收集气象因子及SO2、NO2、O3、PM10和PM2.5等污染物质量浓度数据.结果表明,春季武夷山背景点PM2.5和PM2.5~10中水溶性无机离子总浓度分别为(8.3±2.8)μg·m-3和(1.3±0.9)μg·m-3,分别占PM2.5和PM2.5~10质量浓度的(43.7±7.5)%和(24.4±6.4)%.SO2-4占PM2.5质量浓度百分比最高,为(32.4±6.3)%;NO-3占PM2.5~10质量浓度百分比最高,为(8.9±3.7)%.春季武夷山背景点硫酸盐主要存在于细颗粒物中,且以(NH4)2SO4和K2SO4的形式存在,粗颗粒中的硝酸盐则主要以Mg(NO3)2的形式存在.春季武夷山背景点水溶性无机离子主要来源于沙尘、海盐及高污染区域的远距离输送. 相似文献
10.
为揭示重污染过程中多因素的综合作用,选取济南市2018年11月25日-12月4日一次长时间、高强度PM2.5污染和沙尘混合的重污染过程,利用气象资料、空气质量监测结果、激光雷达探测资料及水溶性离子在线数据,开展污染特性以及潜在污染源综合分析.结果表明:①研究期间,首要污染物为颗粒物,ρ(PM10)、ρ(PM2.5)平均值分别为294、141 μg/m3,污染较严重.②根据ρ(PM2.5)/ρ(PM10)将此次重污染过程分为4个阶段,阶段Ⅰ~Ⅳ总水溶性离子浓度分别为(107.3±35.9)(95.2±34.5)(99.0±18.2)(29.3±9.3)μg/m3,分别占ρ(PM2.5)的73.8%、56.9%、64.2%和43.2%.SOR(硫氧转化率)分别为0.47、0.42、0.55、0.25,NOR(氮氧转化率)分别为0.42、0.26、0.28、0.13,表明济南市大气中出现了显著的二次转化过程,SOR均大于NOR表明SO42-转化程度高于NO3-.NO3-/SO42-(质量浓度比)分别为2.97、1.75、1.69、1.45,表明此次污染各阶段中氮和硫的来源以移动源为主.③此次重污染过程济南市ρ(PM2.5)受本地及周边城市传输和两次沙尘过境的综合影响,主要潜在污染源有山东省本地以及江苏省北部、安徽省北部、内蒙古自治区中部和京津冀地区等区域.④近地面均压场、高湿、小风等不利气象因素是导致此次重污染过程的重要因素.研究显示,济南市此次污染过程是不利气象条件、污染物一次积累和二次转化、区域污染传输、沙尘天气等多因素综合作用的结果. 相似文献
11.
采用大气化学模式定量估算2019年4月~9月区域输送对京津冀区域,特别是天津市O3浓度的影响,分析天气形势和气象条件与区域输送的关系.结果显示,京津冀区域13个城市O3以区域输送贡献为主,不同城市O3差异较大,天津本地贡献占比24%,区域输送以京津冀区域其他城市和山东为主,共贡献48.3%.低压、低压前和低压后形势下,O3区域输送占比最高.途径天津偏南区域的气流是造成天津高浓度O3污染的重要因素,也是区域输送的主要路径.随着O3浓度升高,输送贡献占比呈逐步上升趋势,重度污染时本地生成与区域输送贡献相当.一次典型O3污染过程分析表明,高温强辐射天气和有利的天气形势促进O3本地生成,西南气流和弱下沉气流下的区域输送共同维系了这场持续3d的连续污染过程. 相似文献
12.
区域输送是大气污染防治中需要考虑的重要因素,本文利用大气化学模式定量估算2016年10月~2017年9月区域输送对天津的影响,重点基于天气背景分析区域输送影响和气象条件的关系,为京津冀地区大气污染联防联控提供支撑.结果表明,京津冀地区各城市区域输送贡献百分率平原城市显著高于沿山城市,天津一次PM2.5本地贡献62.9%,区域输送贡献37.1%,主要受沧州、廊坊、河北中南部、北京、唐山和山东等地输送影响,每年4~6月区域输送最显著, 7~8月区域输送最弱.区域输送与天气形势、风场和降水等气象条件密切相关,高压后和锋前低压是区域输送占比最高的两种污染天气类型,西南风、西风和南风3个风向下天津大气污染输送影响最为明显,风速2~3 m·s-1时最有利于PM2.5区域传输,降水超过5 mm以上将降低大气污染物区域传输效率.对于不同污染类型和重污染阶段,轻度污染天气时区域输送贡献最为明显,比均值偏高20.5%,重污染天气虽受静稳气团控制,但由于周边区域高浓度的PM2.5,污染气团迁移对区域内污染聚集传输有显著影... 相似文献
13.
对南宁市2003年的空气污染指数(API)与天气因素(天气类型、气象因子)的相关性进行了详细分析。结果表明,高压脊在冬春季对API影响较大;低压槽、副热带高压在夏秋季对API影响较大。湿度、云量与API呈相反走势,而温度则与API相关性不大。 相似文献
14.
针对2012年珠江三角洲地区出现的2个典型灰霾个例(3月18~21日,10月13~15日),利用广州番禺大气成分综合观测基地的同期观测资料集,包括:能见度(VIS)、大气颗粒物质量浓度(PM10/PM2.5/PM1)、黑碳浓度(BC)等观测数据,分析过程中的气溶胶物理光学特征;配合过程的天气类型,气象要素和后向气流轨迹等对过程的成因进行综合分析.结果表明:在两个典型灰霾过程中,番禺日均能见度低至5.3km,黑碳浓度小时均值最高达19.0μg/m3、PM2.5浓度小时均值最高达163.0μg/m3,细粒子与黑碳粒子污染特征较为明显.两次典型灰霾过程分别受到冷锋前-均压场-冷锋前天气形势和台风外围-准均压场-冷锋前天气类型等不利于污染物输送扩散的气象条件影响.珠江三角洲地区低能见度的霾天气主要发生在高相对湿度的条件下,并可推断在珠江三角洲地区湿季的气溶胶吸湿能力明显高于干季. 相似文献
15.
根据广东统计年鉴将广东省划分为粤东、粤西、粤北、珠三角四大区域,利用广东省101个环保国控站点2014—2016年期间的AQI六要素与广东省86个地面气象观测站的逐日能见度、相对湿度等资料,在对\"区域污染过程\"进行定义的基础上,分区域诊断典型污染天气过程,并对影响天气型及特征进行分析.结果表明:广东省四大区域污染过程具有显著协同性,区域污染可归类为6种影响天气型.量化分析表明区域污染过程与区域灰霾过程基本吻合,PM_(2.5)日均最大值均达到中度污染及以上(115μg·m~(-3)).整体区域污染过程影响天气型分类统计表明:珠三角和非珠三角PM_(2.5)易污染天气型中冷高变性出海形势占比超5成;珠三角O_3易污染天气型中副高、台风外围及两者叠加型占比超6成;珠三角NO_2易污染天气型中冷高出海型占比近7成.重污染影响天气型统计表明:区域PM_(2.5)重污染过程主要影响天气型为冷高压变性出海型;区域中度至重度O_3污染过程(集中在珠三角)主要影响天气型为副高、台风外围及两者叠加型;就天气型特征而言,单纯副高控制形势下,副高异常强盛;单纯台风外围形势下,台风强度为强台风至超强台风;副高叠加台风时,华南上空为大陆副高控制.广东地区近年高PM_(2.5)(与低能见度)污染过程逐年减少,但全省臭氧污染呈增加态势,尤其珠三角区域中度至重度O3污染过程次数同比明显增加,极端过程出现概率加大,尤其在秋季副高异常强盛,同时叠加台风外围下沉气流时,可预先根据影响天气型预报,实施珠三角重点区域联防联控预案措施. 相似文献
16.
比较了丙酮、乙醇、正丁醇、磷酸三丁酯、乙酸乙酯、甲苯和三氯甲烷等7种萃取剂检测活性污泥电子传递体系(ETS)活性的特性.结果表明,这7种萃取剂制作标准曲线的性能相近;在实际污泥样品检测中,37℃下丙酮的萃取时间仅需10min,待测样品量相同时,其萃取速度约是其它萃取剂的4~22倍,37℃下丙酮萃取污泥样品中三苯基甲脂(TF)的能力大于其它萃取剂在37℃或90℃下的萃取能力,同时以丙酮作萃取剂测定的污泥电子传递体系活性也最大,说明丙酮是污泥电子传递体系活性测定中萃取剂的最佳选择. 相似文献
17.
Local pollution and the cross-boundary transmission of pollutants between cities have an inevitable impact on the atmosphere. Quantitative assessments of the contribution of transport to pollution in inland and coastal cities are necessary for the implementation of practical, regional, and joint emission control strategies. In this study, the Comprehensive Air Quality Model (CAMx), together with the Weather Research and Forecasting model (WRF), was used to simulate the contributions to pollution of different cities in 2016. The monthly inflow, outflow, and net flux from the ground to the extended layers served as the three main indicators for the analysis of the interactions of PM2.5 transport between adjacent cities. Between inland and coastal cities, the magnitude of inflow and outflow are larger in the former than in the latter. The inflow flux in the inland cities (Beijing and Shijiazhuang) was 10.6 and 10.7 kt/day, respectively, while that in the coastal cities (Tianjin, Shanghai, Hefei, Nanjing, and Hangzhou) was 9.1, 3.3, 5.8, 4.4, and 3.7 kt/day, respectively. In terms of variation over the year, the strongest inflow in the BTH region occurred in April, followed by October, July, and January, while that in the coastal cities in YRD occurred in January, followed by October, April, and July. Therefore, based on the flux intensity calculations and the transport flux pathways, effective joint control measures can be provided with scientific support, and a better understanding of the evolutionary mechanism among inland and coastal cities can be acquired. 相似文献
18.
19.
2016年12月16~21日,京津冀地区经历了一次大范围重污染过程.本文基于空气质量监测资料及实况天气图分析了此次极端区域重污染事件的天气成因,并利用嵌套网格空气质量预报模式(NAQPMS)对京津冀主要城市PM2.5污染来源进行定量解析.结果表明:污染前中期500hPa高空为偏西气流伴空中回暖,后期转槽前偏南气流增温增湿明显;对应地面气压逐渐降低,辐合不断增强;垂直方向上,逆温层不断抬升加厚,中低层暖平流明显,风垂直切变小;大气长时间处于极度静稳状态也是造成此次重污染过程的天气因素.污染期间,京津冀各主要城市PM2.5污染本地贡献占40%~60%;北京市PM2.5本地贡献为48%,其中16~17日北京市主要受沿太行山东侧的西南向输送通道(邯郸-邢台-石家庄-保定-北京)影响,其后风速减小,北京本地及周边城市贡献增大. 相似文献