共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
This is the first in a series of five articles describing the applicability, performance, and cost of technologies for the remediation of contaminated soil and water at wood preserving sites. Site‐specific treatability studies conducted under the supervision of the United States Environmental Protection Agency (US EPA), National Risk Management Research Laboratory (NRMRL), from 1995 through 1997 constitute much of the basis for the evaluations presented, although data from other treatability studies, literature sources, and actual site remediations have also been included to provide a more comprehensive evaluation of remediation technologies. This article provides an overview of the wood preserving sites studied, including contaminant levels, and a summary of the performance of the technologies evaluated. The subsequent articles discuss the performance of each technology in more detail. Three articles discuss technologies for the treatment of soils, including solidification/stabilization, biological treatment, solvent extraction and soil washing. One article discusses technologies for the treatment of liquids, water and nonaqueous phase liquids (NAPLS), including biological treatment, carbon adsorption, photolytic oxidation, and hydraulic containment. The reader should be aware that other technologies including, but not limited to, incineration, thermal desorption, and base catalyzed dehalogenation, also have application for treating contaminants on wood preserving sites. They are not discussed in these five articles since the focus was to evaluate lesser known and hopefully lower cost approaches. However, the reader should include consideration of these other technologies as part of any evaluation or screening of technologies applicable to remediation of wood preserving sites. 相似文献
3.
At many sites, long‐term monitoring (LTM) programs include metals as chemicals of concern, although they may not be site‐related contaminants and their detected concentrations may be natural. At other sites, active remediation of organic contaminants in groundwater results in changes to local geochemical conditions that affect metal concentrations. Metals should be carefully considered at both types of sites, even if they are not primary contaminants of concern. Geochemical evaluation can be performed at LTM sites to determine if the monitored metals reflect naturally high background and, hence, can be removed from the analytical program. Geochemical evaluation can also be performed pre‐ and post‐treatment at active remediation sites to document the effects of organics remediation on metals and identify the processes controlling metal concentrations. Examples from both types of sites are presented in this article. © 2008 Wiley Periodicals, Inc. 相似文献
4.
Michael Greenberg K. Tyler Miller Karen Lowrie Mary Anne Carletta Joanna Burger 《补救:环境净化治理成本、技术与工艺杂志》2003,14(1):69-83
This article presents a database developed to determine the potential reuse of contaminated sites for primarily ecologically and culturally based activities. The database consists of 172 quantitative and qualitative measures of on‐site land suitability, ecological, cultural, and recreational value, and off‐site suitability, economic, and demographic information. Using sites owned by the U.S. Department of Energy (DOE) as a case study, the article evaluates the quality of available data and suggests ways of using it for planning ecologically sensitive remediation activities and future land use. This type of database can be developed and used by anyone who needs to select, review, or evaluate site remediation and future land use options. Also discussed are the challenges associated with compiling and using data that has been generated by many sources over several years. © 2003 Wiley Periodicals, Inc. 相似文献
5.
Michael Greenberg Joanna Burger Charles Powers Thomas Leschine Karen Lowrie Barry Friedlander Elaine Faustman William Griffith David Kosson 《补救:环境净化治理成本、技术与工艺杂志》2002,13(1):39-58
This article discusses a process for finding insights that will allow federal agencies and environmental professionals to more effectively manage contaminated sites. The process is built around what Etzioni (1968) called mixed‐scanning, that is, perpetually doing both comprehensive and detailed analyses and periodically re‐scanning for new circumstances that change the decision‐making environment. The article offers a checklist of 127 items, which is one part of the multiple‐stage scanning process. The checklist includes questions about technology; public, worker, and ecological health; economic cost and benefits; social impacts; and legal issues. While developed for a DOE high‐level radioactive waste application, the decision‐making framework and specific questions can be used for other large‐scale remediation and management projects. © 2002 Wiley Periodicals, Inc. 相似文献
6.
Performance of water cut-off and remediation promotion techniques at coastal waste landfill sites 总被引:1,自引:0,他引:1
Shinya Inazumi Toshimitsu Kakuda 《Journal of Material Cycles and Waste Management》2014,16(3):533-545
This paper proposes the construction of steel pipe sheet pile (SPSP) cutoff walls for promoting remediation of water-soluble toxic substances and containment of water-soluble toxic substances at landfill sites in order to maintain and ensure the environmental safety of waste landfill sites over time. It investigates environmental safety at coastal waste landfill sites by applying water cut-off and remediation promotion techniques to the joint sections of SPSP water cut-off walls that provide shore protection for waste landfills. Results from the research herein show that the construction of SPSP water cut-off walls with features such as the containment of water-soluble toxic substances and remediation promotion is possible by applying water cut-off and remediation techniques to H–H joints, which are structural joint components of SPSP walls. In addition, they show that the performance of remediation in H–H joints can be controlled by adjusting the water cut-off efficiency of the H–H joint flange. 相似文献
7.
This article presents site closure strategies of source material removal and dissolved‐phase groundwater natural attenuation that were applied at two manufactured gas plant (MGP) sites in Wisconsin. The source removal actions were implemented in 1999 and 2000 with groundwater monitoring activities preceding and following those actions. Both of these sites have unique geological and hydrogeological conditions. The article briefly presents site background information and source removal activities at both of these sites and focuses on groundwater analytical testing data that demonstrate remediation of dissolved‐phase MGP‐related groundwater impacts by natural attenuation. A statistical evaluation of the data supports a stable or declining MGP parameter concentration trend at each of the sites. A comparison of the site natural attenuation evaluation is made to compare with the requirements for site closure under the Wisconsin Department of Natural Resources regulations and guidance. © 2003 Wiley Periodicals, Inc. 相似文献
8.
John A. Connor Lisa J. Molofsky Shawn M. Paquette Robert E. Hinchee Shilpi P. Desai Miriam K. Connor 《补救:环境净化治理成本、技术与工艺杂志》2011,21(3):121-144
This article quantifies the nature, frequency, and cost of environmental remediation activities for onshore oil and gas operations, as determined from over 4,100 environmental remediation cases in Texas, Kansas, New Mexico, and Colorado. For the purpose of this article, “remediation'' refers to cleanup efforts that entail longer‐term site characterization, monitoring, and remedial action beyond the initial spill cleanup or emergency response stage. In addition, data are also presented regarding short‐term spill cleanup activities in two of the four states. © 2011 Wiley Periodicals, Inc. 相似文献
9.
10.
11.
This article discusses the use of solidification/stabilization (S/S) to treat soils contaminated with organic and inorganic chemicals at wood preserving sites. Solidification is defined for this article as making a material into a freestanding solid. Stabilization is defined as making the contaminants of concern nonmobile as determined from a leaching test. S/S then combines both properties. For more information on S/S in general the reader should refer to other publications (Connors, J.R. [1990]). Chemical fixation and solidification of hazardous wastes. New York: Van Nostrand Reinhold; US Environmental Protection Agency. [1993a]. Engineering bulletin solidification/stabilization of organics and inorganics (EPA/540/S‐92/015); Wiles, C.C. [1989]. Solidification and stabilization technology. In H.M. Freeman [Ed.], Standard handbook of hazardous waste treatment and disposal. New York: McGraw Hill) as this article addresses only wood preserving sites and assumes basic knowledge of S/S processes. For a more general discussion of wood preserving sites and some other remedial options, the reader may wish to refer to a previous EPA publication (US Environmental Protection Agency. [1992a]. Contaminants and remedial options at wood preserving sites [EPA/600/R‐92/182]). This article includes data from the successful remediation of a site with mixed organic/inorganic contaminants, remediation of a site with organic contaminants, and detailed treatability study results from four sites for which successful formulations were developed. Included are pre‐ and post‐treatment soil characterization data, site vaines. ileizdot‐ names (in some cases), treatment formulas used (generic aridproprietary), costs, recommendations, and citatioiis to inore detailed refer‐ en ces. The data presen ted iiidica te that dioxins, pentachlorophepi 01 (PCP), creosote, polycyclic aromatic hydrocarbom (PAHsI, and metals can be treated at moderate cost by the use of S/S techuologp. 相似文献
12.
Timothy J. Havranek Daniel J. Watts Grant Geckeler Marty Rowland Mikos Fabersunne 《补救:环境净化治理成本、技术与工艺杂志》2010,21(1):153-159
Remediation developed a Sustainable Remediation Panel in the Summer 2009 issue, which featured the Sustainable Remediation Forum White Paper. The panel is composed of leaders in the field of sustainable remediation who have volunteered to provide their opinions on difficult subjects related to the topic of how to integrate sustainability principles into the remediation practice. The panel's opinions are provided in a question‐and‐answer format, whereby selected experts provide an answer to a question. This issue's question is provided below, followed by opinions from five experts in the remediation field.
相似文献
13.
14.
Barry L. Shirk 《补救:环境净化治理成本、技术与工艺杂志》1991,1(3):325-330
With increasingly stringent federal, state, and local regulations, reliable operation of environmental remediation systems is critical. Most environmental systems are required to operate continuously—night and day—and to be closely monitored for performance and reporting. For the owners of these systems, the cost associated with their long-term operation and monitoring is a growing concern. This article describes a cost-effective solution to control and monitor these systems, both locally and from remote locations. Two case studies are provided. 相似文献
15.
Jurgen H. Exner 《补救:环境净化治理成本、技术与工艺杂志》1995,5(3):1-18
Contamination of soil and sediment by pollutants represents a major environmental challenge. Remediation of soil during the original Superfund years consisted primarily of dig and haul, capping, or containment. The 1986 amendments to CERCLA—SARA—provided the incentive for treatment and permanent remedies during site remediation. Thermal treatment, which routinely achieves the low cleanup criteria required by RCRA land-ban regulations, became one of the major technologies used for cleanup under the concept of ARAR. As the remediation industry matured and recognized specific market niches in soil remediation, a number of new technologies emerged. Thermal desorption, bioremediation, soil vapor extraction, soil washing, and soil extraction are being used on sites at which the technology offers advantages over incineration. In addition, a continuing stream of emerging technologies is being presented that requires careful evaluation relative to existing cleanup methods. Each of these technologies offers a range of options for achieving appropriate cleanup criteria, application to different soil matrices, cost, time of remediation, and public acceptability. Balancing cleanup criteria defined by regulation or risk assessment with technology cost and capability affords the opportunity to solve these problems with appropriate balance of cost and protection of human health and the environment. 相似文献
16.
Based on actual project experiences over the past decade, execution strategies for remediation projects have varied significantly. For example, the overlap between the assessment and cleanup phases can range from none (for projects that complete assessment activities before starting the cleanup) to almost half of the assessment duration (for projects that may be under pressure to show progress at the site). This article quantifies the relationship between remediation project execution strategies, project definition components, and remediation project cost and schedule performance. By relating project outcomes to indicators that can be monitored early in the project cycle, project teams may be able to correct problems before they affect the ultimate performance of the remediation project. 相似文献
17.
Michael A. Morse 《补救:环境净化治理成本、技术与工艺杂志》1993,3(2):141-155
Current cost estimates for the assessment and remediation of environmental contamination at facilities operated by the U.S. Department of Energy (DOE) are based largely on assumptions, with a resulting high level of uncertainty. Therefore, consistent and reliable methods for estimating the uncertainty inherent in the estimates are of vital importance. This article presents an approach and format for estimating contingency in DOE's Environmental Restoration Program. The method involves an analysis of risk factors having a potential to affect the cost of the major elements in the estimate. Application of the contingency analysis to a project site is included in the discussion. 相似文献
18.
It is an established fact that property owners can face significant liabilities as a result of an on-site environmental contamination problem. This paper outlines a successful, innovative remedial strategy that, in conjunction with agency negotiation, afforded a property owner minimal financial expenditure and, at the same time, facilitated property cleanup and reuse. The strategy includes the delisting and sale of “clean” portions of the property to obtain the finances necessary to remediate the remaining “impacted” portion of the property. Previous investigations performed by EPA indicate the affected area to be a five to seven acre area located in the northeast portion of the property. Since a portion of the property was affected, significant restrictions for long-term use were placed on the entire property. A summary of environmental data generated for the property was prepared and submitted to the agency. This data summary communicated a strategy which was developed to delist and sell the “clean” portion of the property and to use the proceeds to clean up the affected property. To accomplish this, several tasks were outlined, including work-plan preparation and submittal, data collection, and interim remedial activities. In addition, a risk assessment is planned to identify potential threats to receptors downgradient of the impacted areas. This strategy allows the owner of an environmentally distressed property to use financial assets of the property to facilitate an acceptable solution with both regulatory agencies and the surrounding community. 相似文献
19.