首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

The use of street sweepers to clean paved roads, particularly after high-wind events, has been proposed as a PM10 control method. Using an artificial tunnel, the emission rates for several street sweepers were quantified under actual operating conditions. The tunnel was a tent enclosure, 6.1 × 4.3 × 73 m, open on both ends. PM10 concentrations were measured at the inlet and outlet while a sweeper removed sand deposited along the length. Measurements were made using a specialized low-volume filter sampler and an integrating nephelometer. The volume of air passing through the tunnel was measured by releasing an inert tracer, sulfur hexafluoride, at the inlet and measuring its concentration at the outlet. A large difference in emission rates between vacuum-type sweepers was observed, with rates varying from 5 to 100 mg m-1 swept. For the cleanest sweepers, the background rates (collected by sweeping clean pavement) were about half of the total PM10 emission rate. These background emission rates likely were from diesel exhaust; background rates for the single gasoline-powered sweeper were below detection. Particle light scattering data confirmed the filter collection results. The artificial tunnel approach would be useful in measuring total emissions from other mobile and stationary sources.  相似文献   

2.
Almond harvest accounts for substantial PM10 (particulate matter [PM] < or =10 microm in nominal aerodynamic diameter) emissions in California each harvest season. This paper evaluates the effects of using reduced-pass sweepers and lower harvester separation fan speeds (930 rpm) on lowering PM emissions from almond harvesting operations. In-canopy measurements of PM concentrations were collected along with PM concentration measurements at the orchard boundary; these were used in conjunction with on-site meteorological data and inverse dispersion modeling to back-calculate emission rates from the measured concentrations. The harvester discharge plume was measured as a function of visible plume opacity during conditioning operations. Reduced-pass sweeping showed the potential for reducing PM emissions, but results were confounded because of differences in orchard maturity and irrigation methods. Fuel consumption and sweeping time per unit area were reduced when comparing a reduced-pass sweeper to a conventional sweeper. Reducing the separation fan speed from 1080 to 930 rpm led to reductions in PM emissions. In general, foreign matter levels within harvested product were nominally affected by separation fan speed in the south (less mature) orchard; however, in samples conditioned using the lower fan speed from the north (more mature) orchard, these levels were unacceptable.  相似文献   

3.
Street sweeping is often proposed as a means of reducing the emissions from paved roads. The objective of this study was to evaluate the effectiveness of street sweeping on ambient particulate matter concentrations and to determine the difference In source contributions to PM10 concentrations between street sweeping and non-street sweeping periods.

Chemically-speciated measurements of PM10 and PM2.5 were taken in the commercial section of Reno, Nevada, for a one-month sampling period. The Chemical Mass Balance (CMB) model was applied to these data and an average of approximately 50 percent of the PM10 was apportioned to resuspended geological material. During half of the sampling period, streets In the vicinity of the sampling site were completely swept with a regenerative-air vacuum sweeper, while no sweeping was performed during the remainder of the experiment. Ratios of primary geological contributions divided by primary motor vehicle contributions to PM10 were compared between sweeping and non-sweeping periods using analysis of variance. This ratio of source contributions minimizes the effects of variations in traffic volume and meteorological dispersion. No significant differences in geological contributions to PM10 were detected as a result of regenerative-air vacuum street sweeping.  相似文献   

4.
The performance of Teflon-coated glass fiber filter media (Pallflex Emfab TX40) is evaluated for particulate matter (PM) sampling of residential wood heating devices in a dilution tunnel. Thirty samples of varying duration and PM loading and concentration were collected from an U.S. Environmental Protection Agency (EPA) Method 28 dilution tunnel using dual Method 5G sample trains with untreated glass fiber and Emfab filters. Filters were weighed soon after the end of sampling and again the next day after equilibration at 35% relative humidity (RH). PM concentrations from both types of filters agreed very well with 1-day equilibration, demonstrating that Emfab filters are appropriate for use in measuring PM from residential wood burning appliances in a dilution tunnel and have performance equal to or better than the glass fiber filter media. Agreement between filter media without equilibration was erratic, with PM from glass fiber filter samples varying from slightly less than the Emfab samples to as much as 2.8 times higher. Some of the glass fiber filters lost substantial mass with equilibration, with the highest percent loss at lower filter mass loadings. Mass loss for Emfab samples was a small percentage of the mass and very consistent across the range of mass loadings. Taken together, these results may indicate water uptake on the glass fiber media that is readily removed with 1-day equilibration at moderate RH conditions.

Implications: EPA regulations now allow the use of either glass fiber or Teflon filter media for wood appliance PM emission testing. Teflon filter media minimizes the potential for acid-gas PM artifacts on glass fiber filters; this is important as EPA moves toward the use of locally sourced cordwood for testing that may have higher sulfur content. This work demonstrates that the use of Teflon-coated glass fiber filters can give similar PM measurement results to glass fiber filters after 1 day of equilibration. With no equilibration, measured PM from glass fiber filters was usually higher than from Teflon-coated glass fiber filters.  相似文献   


5.
In this investigation, the collection efficiency of particulate emission control devices (PECDs), particulate matter (PM) emissions, and PM size distribution were determined experimentally at the inlet and outlet of PECDs at five coal-fired power plants. Different boilers, coals, and PECDs are used in these power plants. Measurement in situ was performed by an electrical low-pressure impactor with a sampling system, which consisted of an isokinetic sampler probe, precut cyclone, and two-stage dilution system with a sample line to the instruments. The size distribution was measured over a range from 0.03 to 10 microm. Before and after all of the PECDs, the particle number size distributions display a bimodal distribution. The PM2.5 fraction emitted to atmosphere includes a significant amount of the mass from the coarse particle mode. The controlled and uncontrolled emission factors of total PM, inhalable PM (PM10), and fine PM P(M2.5) were obtained. Electrostatic precipitator (ESP) and baghouse total collection efficiencies are 96.38-99.89% and 99.94%, respectively. The minimum collection efficiency of the ESP and the baghouse both appear in the particle size range of 0.1-1 microm. In this size range, ESP and baghouse collection efficiencies are 85.79-98.6% and 99.54%. Real-time measurement shows that the mass and number concentration of PM10 will be greatly affected by the operating conditions of the PECDs. The number of emitted particles increases with increasing boiler load level because of higher combustion temperature. During test run periods, the data reproducibility is satisfactory.  相似文献   

6.
There is a dearth of information on dust emissions from sources that are unique to the U.S. Department of Defense testing and training activities. However, accurate emissions factors are needed for these sources so that military installations can prepare accurate particulate matter (PM) emission inventories. One such source, coarse and fine PM (PM10 and PM2.5) emissions from artillery backblast testing on improved gun positions, was characterized at the Yuma Proving Ground near Yuma, AZ, in October 2005. Fugitive emissions are created by the shockwave from artillery pieces, which ejects dust from the surface on which the artillery is resting. Other contributions of PM can be attributed to the combustion of the propellants. For a 155-mm howitzer firing a range of propellant charges or zones, amounts of emitted PM10 ranged from -19 g of PM10 per firing event for a zone 1 charge to 92 g of PM10 per firing event for a zone 5. The corresponding rates for PM2.5 were approximately 9 g of PM2.5 and 49 g of PM2.5 per firing. The average measured emission rates for PM1o and PM2.5 appear to scale with the zone charge value. The measurements show that the estimated annual contributions of PM10 (52.2 t) and PM2.5 (28.5 t) from artillery backblast are insignificant in the context of the 2002 U.S. Environment Protection Agency (EPA) PM emission inventory. Using national-level activity data for artillery fire, the most conservative estimate is that backblast would contribute the equivalent of 5 x 10(-4) % and 1.6 x 10(-3)% of the annual total PM10 and PM2.5 fugitive dust contributions, respectively, based on 2002 EPA inventory data.  相似文献   

7.
Vehicle gaseous emissions (NO, CO, CO2, and hydrocarbon [HC]) and driver's particle exposures (particulate matter < 1 microm [PM1], < 2.5 microm [PM2.5], and < 10 microm [PM10]) were measured using a mobile laboratory to follow a wide variety of vehicles during very heavy traffic congestion in Macao, Special Administrative Region, People's Republic of China, an urban area having one of the highest population densities in the world. The measurements were taken with high time resolution so that fluctuations in the emissions can be seen readily during vehicle acceleration, cruising, deceleration, and idling. The tests were conducted in close proximity to the vehicles, with the inlet of a five-gas analyzer mounted on the front bumper of the mobile laboratory, and the distance between the vehicles was usually within several meters. To measure the driver's particle exposures, the inlets of the particle analyzers were mounted at the height of the driver's breathing position in the mobile laboratory, with the driver's window open. A total of 178 and 113 vehicles were followed individually to determine the gaseous emission factor and the driver's particle exposures, respectively, for motorcycle, passenger car, taxi, truck, and bus. The gaseous emission factors were used to model the roadside air quality, and good correlations between the modeled and monitored CO, NO2, and nitrogen oxide (NO(x)) verified the reliability of the experiments. Compared with petrol passenger cars and petrol trucks, diesel taxies and diesel trucks emitted less CO but more NO(x). The impact of urban canyons is shown to cause a significant increase in the PM1 peak. The background concentrations contributed a significant amount of the driver's particle exposures.  相似文献   

8.
Open beef cattle feedlots emit various air pollutants, including particulate matter (PM) with equivalent aerodynamic diameter of 10 microm or less (PM10); however limited research has quantified PM10 emission rates from feedlots. This research was conducted to determine emission rates of PM10 from large cattle feedlots in Kansas. Concentrations of PM10 at the downwind and upwind edges of two large cattle feedlots (KS1 and KS2) in Kansas were measured with tapered element oscillating microbalance (TEOM) PM10 monitors from January 2007 to December 2008. Weather conditions at the feedlots were also monitored. From measured PM10 concentrations and weather conditions, PM10 emission rates were determined using reverse modeling with the American Meteorological Society/U.S. Environmental Protection Agency Regulatory Model (AERMOD). The two feedlots differed significantly in median PM10 emission flux (1.60 g/m2-day for KS1 vs. 1.10 g/m2-day for KS2) but not in PM10 emission factor (27 kg/1000 head-day for KS1 and 30 kg/1000 head-day KS2). These emission factors were smaller than published U.S. Environmental Protection Agency (EPA) emission factor for cattle feedlots.  相似文献   

9.
Particulate matter < or =10 microm (PM10) emissions due to wind erosion can vary dramatically with changing surface conditions. Crust formation, mechanical disturbance, soil texture, moisture, and chemical content of the soil can affect the amount of dust emitted during a wind event. A refined method of quantifying windblown dust emissions was applied at Mono Lake, CA, to account for changing surface conditions. This method used a combination of real-time sand flux monitoring, ambient PM10 monitoring, and dispersion modeling to estimate dust emissions and their downwind impact. The method identified periods with high emissions and periods when the surface was stable (no sand flux), even though winds may have been high. A network of 25 Cox sand catchers (CSCs) was used to measure the mass of saltating particles to estimate sand flux rates across a 2-km2 area. Two electronic sensors (Sensits) were used to time-resolve the CSC sand mass to estimate hourly sand flux rates, and a perimeter tapered element oscillating microbalance (TEOM) monitor measured hourly PM10 concentrations. Hourly sand flux rates were related by dispersion modeling to hourly PM10 concentrations to back-calculate the ratio of vertical PM10 flux to horizontal sand flux (K-factors). Geometric mean K-factor values (K(f)) were found to change seasonally, ranging from 1.3 x 10(-5) to 5.1 x 10(-5) for sand flux measured at 15 cm above the surface (q15). Hourly PM10 emissions, F, were calculated by applying seasonal K-factors to sand flux measurements (F = K(f) x q15). The maximum hourly PM10 emission rate from the study area was 76 g/m2 x hr (10-m wind speed = 23.5 m/sec). Maximum daily PM10 emissions were estimated at 450 g/m2 x day, and annual emissions at 1095 g/m2 x yr. Hourly PM10 emissions were used by the U.S. Environmental Protection Agency (EPA) guideline AERMOD dispersion model to estimate downwind ambient impacts. Model predictions compared well with monitor concentrations, with hourly PM10 ranging from 16 to over 60,000 microg/m3 (slope = 0.89, R2 = 0.77).  相似文献   

10.
Boiler briquette coal versus raw coal: Part I--Stack gas emissions   总被引:1,自引:0,他引:1  
Stack gas emissions were characterized for a steam-generating boiler commonly used in China. The boiler was tested when fired with a newly formulated boiler briquette coal (BB-coal) and when fired with conventional raw coal (R-coal). The stack gas emissions were analyzed to determine emission rates and emission factors and to develop chemical source profiles. A dilution source sampling system was used to collect PM on both Teflon membrane filters and quartz fiber filters. The Teflon filters were analyzed gravimetrically for PM10 and PM2.5 mass concentrations and by X-ray fluorescence (XRF) for trace elements. The quartz fiber filters were analyzed for organic carbon (OC) and elemental carbon (EC) using a thermal/optical reflectance technique. Sulfur dioxide was measured using the standard wet chemistry method. Carbon monoxide was measured using an Orsat combustion analyzer. The emission rates of the R-coal combustion (in kg/hr), determined using the measured stack gas concentrations and the stack gas emission rates, were 0.74 for PM10, 0.38 for PM2.5, 20.7 for SO2, and 6.8 for CO, while those of the BB-coal combustion were 0.95 for PM10, 0.30 for PM2.5, 7.5 for SO2, and 5.3 for CO. The fuel-mass-based emission factors (in g/kg) of the R-coal, determined using the emission rates and the fuel burn rates, were 1.68 for PM10, 0.87 for PM2.5, 46.7 for SO2, and 15 for CO, while those of the BB-coal were 2.51 for PM10, 0.79 for PM2.5, 19.9 for SO2, and 14 for CO. The task-based emission factors (in g/ton steam generated) of the R-coal, determined using the fuel-mass-based emission factors and the coal/steam conversion factors, were 0.23 for PM10, 0.12 for PM2.5, 6.4 for SO2, and 2.0 for CO, while those of the BB-coal were 0.30 for PM10, 0.094 for PM2.5, 2.4 for SO2, and 1.7 for CO. PM10 and PM2.5 elemental compositions are also presented for both types of coal tested in the study.  相似文献   

11.
From 1993 through 1998, Wedding or Graseby high-volume PM10 samplers were collocated with tapered element oscillating microbalance (TEOM) samplers at three sites at Owens Lake, CA. The study area is heavily impacted by windblown dust from the dry Owens Lake bed, which was exposed as a result of water diversions to the city of Los Angeles. A dichotomous (dichot) sampler and three collocated Partisol samplers were added in 1995 and 1999, respectively. U.S. Environmental Protection Agency (EPA) operating procedures were followed for all samplers, except for a Wedding sampler that was not cleaned for the purpose of this study. On average, the TEOM and Partisol samplers agreed to within 6%, and the dichot, Graseby, and Wedding samplers measured lower PM10 concentrations by about 10, 25, and 35%, respectively. Surprisingly, the "clean" Wedding sampler consistently measured the same concentration as the "dirty" Wedding sampler through 85 runs without cleaning. The finding that the Graseby and Wedding high-volume PM10 samplers read consistently lower than the TEOM, Partisol, and dichot samplers at Owens Lake is consistent with PM10 sampler comparisons done in other fugitive dust areas, and with wind tunnel tests showing that sampler cut points can be significantly lower than 10 microns under certain conditions. However, these results are opposite of the bias found for TEOM samplers in areas that have significant amounts of volatile particles, where the TEOM reads low due to the vaporization of particles on the TEOM's heated filter. Coarse particles like fugitive dust are relatively unaffected by the filter temperature. This study shows that in the absence of volatile particles and in the presence of fugitive dust, a different systematic bias of up to 35% exists between samplers using dichot inlets and high-volume samplers, which may cause the Graseby and Wedding PM10 samplers to undermeasure PM10 by up to 35% when the PM10 is predominantly from coarse particulate sources.  相似文献   

12.
Abstract

In this investigation, the collection efficiency of particulate emission control devices (PECDs), particulate matter (PM) emissions, and PM size distribution were determined experimentally at the inlet and outlet of PECDs at five coal-fired power plants. Different boilers, coals, and PECDs are used in these power plants. Measurement in situ was performed by an electrical low-pressure impactor with a sampling system, which consisted of an isokinetic sampler probe, precut cyclone, and two-stage dilution system with a sample line to the instruments. The size distribution was measured over a range from 0.03 to 10 µm. Before and after all of the PECDs, the particle number size distributions display a bimodal distribution. The PM2.5 fraction emitted to atmosphere includes a significant amount of the mass from the coarse particle mode. The controlled and uncontrolled emission factors of total PM, inhalable PM (PM10), and fine PM P(M2.5) were obtained. Electrostatic precipitator (ESP) and baghouse total collection efficiencies are 96.38–99.89% and 99.94%, respectively. The minimum collection efficiency of the ESP and the baghouse both appear in the particle size range of 0.1–1 µm. In this size range, ESP and baghouse collection efficiencies are 85.79–98.6% and 99.54%. Real-time measurement shows that the mass and number concentration of PM10 will be greatly affected by the operating conditions of the PECDs. The number of emitted particles increases with increasing boiler load level because of higher combustion temperature. During test run periods, the data reproducibility is satisfactory.  相似文献   

13.
The issue of fine particle (PM2.5) exposures and their potential health effects is a focus of scientific research because of the recently promulgated National Ambient Air Quality Standard for PM2.5. Before final implementation, the health and exposure basis for the standard will be reviewed by the U.S. Environmental Protection Agency within the next five years. As part of this process, it is necessary to understand total particle exposure issues and to determine the relative importance of the origin of PM2.5 exposure in various micro-environments. The results presented in this study examine emissions of fine particles from a previously uncharacterized indoor source: the residential vacuum cleaner. Eleven standard vacuum cleaners were tested for the emission rate of fine particles by their individual motors and for their efficiency in collecting laboratory-generated fine particles. An aerosol generator was used to introduce fine potassium chloride (KCl) particles into the vacuum cleaner inlet for the collection efficiency tests. Measurements of the motor emissions, which include carbon, and the KCl aerosol were made using a continuous HIAC/Royco 5130 A light-scattering particle detector. All tests were conducted in a metal chamber specifically designed to completely contain the vacuum cleaner and operate it in a stationary position. For the tested vacuum cleaners, fine particle motor emissions ranged from 9.6 x 10(4) to 3.34 x 10(8) particles/min, which were estimated to be 0.028 to 176 micrograms/min for mass emissions, respectively. The vast majority of particles released were in the range of 0.3-0.5 micron in diameter. The lowest particle emission rate was obtained for a vacuum cleaner that had a high efficiency (HEPA) filter placed after the vacuum cleaner bag and the motor within a sealed exhaust system. This vacuum cleaner removed the KCl particles that escaped the vacuum cleaner bag and the particles emitted by the motor. Results obtained for the KCl collection efficiency tests show > 99% of the fine particles were captured by the two vacuum cleaners that used a HEPA filter. A series of tests conducted on two vacuum cleaners found that the motors also emitted ultra-fine particles above 0.01 micron in diameter at rates of greater than 10(8) ultra-fine particles/CF of air. The model that had the best collection efficiency for fine particles also reduced the ultra-fine particle emissions by a factor of 1 x 10(3).  相似文献   

14.
Almost all Swedish cities need to determine air pollution levels—especially PM10—close to major streets. SIMAIR is an internet tool that can be used by all Swedish municipalities to assess PM10, NO2, CO and benzene levels and how they compare to the EU directive. SIMAIR is delivered to the municipalities with all required input data pre-loaded and is meant to be used prior to decisions if and where, monitoring campaigns are required. The system includes a road and vehicle database with emission factors and a model to calculate non-tailpipe PM10 emissions. Regional and urban background contributions are pre-calculated and stored as hourly values on a 1×1 km2 grid. The local contribution is calculated by the user, selecting either an open road or a street canyon environment.A comparison between measured and simulated concentrations in four street locations shows that SIMAIR is able to calculate statistics of yearly mean values, 90-percentile and 98-percentile daily mean values and the number of days exceeding the limit value that are well within ±50% that EU requires for model estimates of yearly mean values. In comparison, all values except one are within ±25% which is the quality objective for fixed measurements according to the EU directive.The SIMAIR model system is also able to separate the percentual contribution of the long-range transport from outside the city, the city contribution and the local contribution from the traffic of an individual street.  相似文献   

15.
Modern diesel particulate filter (DPF) systems are very effective in reducing particle emissions from diesel vehicles. In this work low-level particulate matter (PM) emissions from a DPF equipped EURO-4 diesel vehicle were studied in the emission test laboratory as well as during real-world chasing on a high-speed test track. Size and time resolved data obtained from an engine exhaust particle sizer (EEPS) and a condensation particle counter (CPC) are presented for both loaded and unloaded DPF condition. The corresponding time and size resolved emission factors were calculated for acceleration, deceleration, steady state driving and during DPF regeneration, and are compared with each other. In addition, the DPF efficiency of the tested vehicle was evaluated during the New European Driving Cycle (NEDC) by real time pre-/post-DPF measurements and was found to be 99.5% with respect to PM number concentration and 99.3% for PM mass, respectively. PM concentrations, which were measured at a distance of about 10 m behind the test car, ranged from 1 to 1.5 times background level when the vehicle was driven on the test track under normal acceleration conditions or at constant speeds below 100 kmh?1. Only during higher speeds and full load accelerations concentrations above 3 times background level could be observed. The corresponding tests in the emission laboratory confirmed these results. During DPF regeneration the total PM number emission of nucleation mode particles was 3–4 orders of magnitude higher compared to those emitted at the same speed without regeneration, while the level of the accumulation mode particles remained about the same. The majority of the particles emitted during DPF regeneration was found to be volatile, and is suggested to originate from accumulated sulfur compounds.  相似文献   

16.
Fuel-based emission factors for 143 light-duty gasoline vehicles (LDGVs) and 93 heavy-duty diesel trucks (HDDTs) were measured in Wilmington, CA using a zero-emission mobile measurement platform (MMP). The frequency distributions of emission factors of carbon monoxide (CO), nitrogen oxides (NO(x)), and particle mass with aerodynamic diameter below 2.5 microm (PM2.5) varied widely, whereas the average of the individual vehicle emission factors were comparable to those reported in previous tunnel and remote sensing studies as well as the predictions by Emission Factors (EMFAC) 2007 mobile source emission model for Los Angeles County. Variation in emissions due to different driving modes (idle, low- and high-speed acceleration, low- and high-speed cruise) was found to be relatively small in comparison to intervehicle variability and did not appear to interfere with the identification of high emitters, defined as the vehicles whose emissions were more than 5 times the fleet-average values. Using this definition, approximately 5% of the LDGVs and HDDTs measured were high emitters. Among the 143 LDGVs, the average emission factors of NO(x), black carbon (BC), PM2.5, and ultrafine particle (UFP) would be reduced by 34%, 39%, 44%, and 31%, respectively, by removing the highest 5% of emitting vehicles, whereas CO emission factor would be reduced by 50%. The emission distributions of the 93 HDDTs measured were even more skewed: approximately half of the NO(x) and CO fleet-average emission factors and more than 60% of PM2.5, UFP, and BC fleet-average emission factors would be reduced by eliminating the highest-emitting 5% HDDTs. Furthermore, high emissions of BC, PM2.5, and NO(x) tended to cluster among the same vehicles.  相似文献   

17.
With the recent focus on fine particle matter (PM2.5), new, self-consistent data are needed to characterize emissions from combustion sources. Such data are necessary for health assessment and air quality modeling. To address this need, emissions data for gas-fired combustors are presented here, using dilution sampling as the reference. The dilution method allows for collection of emitted particles under conditions simulating cooling and dilution during entry from the stack into the air. The sampling and analysis of the collected particles in the presence of precursor gases, SO2 nitrogen oxide, volatile organic compound, and NH3 is discussed; the results include data from eight gas fired units, including a dual-fuel institutional boiler and a diesel engine powered electricity generator. These data are compared with results in the literature for heavy-duty diesel vehicles and stationary sources using coal or wood as fuels. The results show that the gas-fired combustors have very low PM2.5 mass emission rates in the range of approximately 10(-4) lb/million Btu (MMBTU) compared with the diesel backup generator with particle filter, with approximately 5 x 10(-3) lb/MMBTU. Even higher mass emission rates are found in coal-fired systems, with rates of approximately 0.07 lb/MMBTU for a bag-filter-controlled pilot unit burning eastern bituminous coal. The characterization of PM2.5 chemical composition from the gas-fired units indicates that much of the measured primary particle mass in PM2.5 samples is organic or elemental carbon and, to a much less extent, sulfate. Metal emissions are quite low compared with the diesel engines and the coal- or wood-fueled combustors. The metals found in the gas-fired combustor particles are low in concentration, similar in concentration to ambient particles. The interpretation of the particulate carbon emissions is complicated by the fact that an approximately equal amount of particulate carbon (mainly organic carbon) is found on the particle collector and a backup filter. It is likely that measurement artifacts, mostly adsorption of volatile organic compounds on quartz filters, are positively biasing "true" particulate carbon emission results.  相似文献   

18.
Presently, in Japan there are no limitations on the emission of PCDDs or PCDFs, but in order to study the feasibility of dry type air pollution control, a pilot plant was constructed in 1988 and the removal efficiencies for PCDDs, acid gas and heavy metals were measured.At the same time PCDDs concentration was compared with that of a previously installed electrostatic precipitator (ESP) plus wet scrubber line.In this paper, the following two items are reported.
1. (1) The difference in the amounts of PCDDs and PCDFs produced due to differences in gas temperature and retention time in ESP and fabric filter (FF).
2. (2) Removal efficiencies of PCDDs and PCDFs of fabric filter.
PCDDs concentration, generally 100–200 ng/Nm3 at the boiler outlet (ESP inlet and/or Quench Reactor (QR) inlet), increased several times at the ESP outlet, but it showed almost no increase at the QR outlet due to a sudden temperature drop. The temperature was 280–310°C, and the gas retention time was 12 sec. during passage through ESP so that it is thought that PCDD was formed under these conditions.On the other hand, a removal efficiency of approx. 90% was obtained with the fabric filter, and the PCDD at the bag outlet was at a sufficiently low level.  相似文献   

19.
Standard protocols for sampling and measuring odor emissions from livestock buildings are needed to guide scientists, consultants, regulators, and policy-makers. A federally funded, multistate project has conducted field studies in six states to measure emissions of odor, coarse particulate matter (PM(10)), total suspended particulates, hydrogen sulfide, ammonia, and carbon dioxide from swine and poultry production buildings. The focus of this paper is on the intermittent measurement of odor concentrations at nearly identical pairs of buildings in each state and on protocols to minimize variations in these measurements. Air was collected from pig and poultry barns in small (10 L) Tedlar bags through a gas sampling system located in an instrument trailer housing gas and dust analyzers. The samples were analyzed within 30 hr by a dynamic dilution forced-choice olfactometer (a dilution apparatus). The olfactometers (AC'SCENT International Olfactometer, St. Croix Sensory, Inc.) used by all participating laboratories meet the olfactometry standards (American Society for Testing and Materials and European Committee for Standardization [CEN]) in the United States and Europe. Trained panelists (four to eight) at each laboratory measured odor concentrations (dilution to thresholds [DT]) from the bag samples. Odor emissions were calculated by multiplying odor concentration differences between inlet and outlet air by standardized (20 degrees C and 1 atm) building airflow rates.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号