首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An understanding of why introduced species achieve ecological success in novel environments often requires information about the factors that limit the abundance of these taxa in their native ranges. Although numerous recent studies have evaluated the importance of natural enemies in this context, relatively few have examined how ecological success may result from differences in the magnitude of interference competition between communities in the native and introduced ranges of nonnative species. Here we examine how native-range competitive environments may relate to invasion success for two important invasive species, the red imported fire ant (Solenopsis invicta) and the Argentine ant (Linepithema humile), in a region of native-range sympatry. At two study sites in northern Argentina, we used stable-isotope analysis, a variety of observational approaches, and two different reciprocal removal experiments to test (1) whether S. invicta competes asymmetrically with L. humile (as suggested by the 20th century pattern of replacement in the southeastern United States) and (2) the extent to which these two species achieve behavioral and numerical dominance. Stable-isotope analysis and activity surveys indicated that S. invicta and L. humile are both omnivores and forage during broadly overlapping portions of the diel cycle. Short-term removal experiments at baits revealed no competitive asymmetry between S. invicta and L. humile. Longer-term colony removal experiments illustrated that S. invicta and L. humile experience an approximately equal competitive release upon removal of the other. Our results indicate that neither S. invicta nor L. humile achieves the same degree of behavioral or ecological dominance where they co-occur in native populations as they do in areas where either is common in their introduced range. These results strongly suggest that interspecific competition is an important limiting factor for both S. invicta and L. humile in South America.  相似文献   

2.
Male competition in Cardiocondyla ants   总被引:3,自引:0,他引:3  
The two types of males in the ant genus Cardiocondyla differ remarkably in morphology and behavior. Ergatoid males are wingless fighters whose spermatogenesis continues throughout their entire adult lives and which therefore have an “unlimited” sperm supply. They attempt to kill all eclosing ergatoid rivals and thus to increase their share in copulations with the virgin queens reared in their nests. Winged males, on the other hand, are docile and emigrate from the nests a few days after eclosion, probably to mate with queens from other colonies. By this time, their testes have fully degenerated and all sperm is stored in the seminal vesicles. Before emigration, winged males may mate with virgin queens in their maternal nests, but they are nevertheless rarely attacked by ergatoid males. In the laboratory, the life expectancy of ergatoid males is only slightly higher than that of winged males, but because of the emigration of the latter the difference is likely to be more pronounced in the field. Both male morphs are capable of inseminating more than 35 virgin queens. However, winged males older than 14 days mate less often than ergatoid males of similar age, probably due to sperm depletion in later life. The spermathecae of queens inseminated by ergatoid males contained significantly more sperm than those of queens which mated with winged males. We discuss the evolution of intranidal mating and male polymorphism in ants. Received: 8 August 1997 / Accepted after revision: 6 October 1997  相似文献   

3.
4.
Policing in queenless ponerine ants   总被引:8,自引:0,他引:8  
Potential reproductive conflicts are common in insect societies. One process that can reduce or suppress conflict is policing. We review worker and "queen" policing in queenless ponerine ants. Queenless ants are an important model system for the study of intracolony reproductive conflict. Policing is widespread in queenless ants because workers are totipotent, so that additional potential conflicts occur in comparison to species where workers cannot mate, and these additional conflicts are frequently reduced by policing. Policing is more diverse than suggested by the examples known in other social insects. In almost all species of social Hymenoptera it can include preventing workers from reproducing by killing worker-laid eggs, but in queenless ants it can additionally include immobilisation or mutilation of workers attempting to reproduce by replacing the gamergate (i.e. mated worker with a queen-like role) or by becoming an extra gamergate. Policing by both workers and by the gamergate are important. Policing can be facultative. Depending on the age of the gamergate, workers can prevent her replacement by immobilising challenging workers or they can favour replacement by immobilising the gamergate. The initial definition of policing was inspired by species in which workers retain ovaries but cannot mate. We broaden the definition to include species, such as queenless ants, where females are totipotent, thereby including not only conflict over male production but also over gamergate replacement and gamergate number. Finally, we compare policing with punishment and dominance hierarchy. Policing is not always punishment and it does not necessarily entail dominance relationships.  相似文献   

5.
Reproductive skew among cooperatively breeding animals has recently attracted considerable interest. In social insects reproductive skew has been studied in females but not in males. However, cooperative breeding of males occurs when two males mate with the same queen and father offspring. Here we present the first analysis of comparative data on paternity skew in ants. We show that, across seven species of Formica ants, the average skew in paternity among worker offspring of doubly mated queens is negatively correlated with the population-wide frequency of multiple (mostly double) mating. We also demonstrate that this trend is relatively robust in additional analyses taking phylogenetic relationships between species into account. The observed trend is opposite to the one normally found in non-social insects with second-male precedence through sperm displacement, but agrees with predictions based on queen-male conflict over sperm allocation as a consequence of facultative, worker controlled, sex allocation – an interpretation which assumes first-male precedence. However, alternative (but not mutually exclusive) explanations are possible and further studies will be needed to discriminate between these alternatives. Received: 16 May 1997 / Accepted after revision: 26 September 1997  相似文献   

6.
In the course of our studies on the chemical ecology of the widely distributed Mediterranean ant Aphaenogaster senilis, we found that trail following is triggered by extracts of the poison gland and Dufour’s gland. To assess the specificity of the trail pheromone, we examined whether a cross-reaction exists between trails of A. senilis and the closely related species A. iberica. Specificity seemed to differ amongst these two species, because workers of A. senilis did not follow trails of A. iberica, whereas the latter followed trails made by both species. Chemical analyses of the glandular contents reveal that Dufour’s glands of both species contain mainly alkanes and alkenes exhibiting species-specific profiles. However, differences in the poison gland content of the two species were dramatic, with A. senilis showing high amounts of alkaloids that were completely absent in A. iberica.  相似文献   

7.
Summary Small colonies of ants often produce mostly male alates, while large colonies produce mostly female alates. I present a simple model consistent with this pattern in which males that compete for mates are related (Local Mate Competition). The model explains the observed trend even when relatedness among competing males is low, so that there is only a negligible effect on the predicted sex allocation ratio in the population. The reverse trend is expected when there is competition among related females for a limited resource, such as nest sites (Local Resource Competition); small broods are predicted to be mostly female and large broods are predicted to be mostly male.  相似文献   

8.
Summary. Because generalist ants are aggressive towards foreign insects, the recognition of homopterans by tending ants is critical in ant/homopteran trophobiosis. Herein we report experimental evidence indicating that Argentine ant, Linepithema humile (Mayr) (Hymenoptera: Formicidae) learn to associate the production of honeydew with the chemical characteristics of homopteran cuticle, suppressing ant aggression and allowing the ants to tend homopterans. Although chemically-mediated associative learning is well understood in honeybee foraging, to our knowledge, it has not been reported before in ant/homopteran trophobiosis.  相似文献   

9.
In this paper we present a model that determines the number of potential recruits of Lasius niger, when feeding on a liquid sugar source. The core of the model are two rules: (i) there is a number of workers (facultative foragers) that become potential recruits if starved and (ii) facultative foragers are more likely to become starved than nonforagers because they are more likely to donate food in a trophallaxis (sugar-exchange) event. We develop and explore an analytical model based on these rules, deriving the number of potential recruits after an arbitrary period of starvation. We develop a simplified recruitment model and observe that the predictions of the model are in rough agreement with the empirical data.  相似文献   

10.
Patterns of male parentage in the fungus-growing ants   总被引:2,自引:0,他引:2  
Ant queens from eight species, covering three genera of lower and two genera of higher attine ants, have exclusively or predominantly single mating. The ensuing full-sib colonies thus have a strong potential reproductive conflict between the queen and the workers over male production. This is because, all other things being equal, relatedness incentives should favour traits expressed in both workers and the queen to monopolise the production of the colony's male offspring. Microsatellite genotyping of males from these attine species shows that workers in queenless colonies are able to produce males, but that no worker-produced males were found in queenright colonies. Our results suggest that worker reproduction is rare or even absent in colonies with a fertile queen. This indicates that either the queen directly prevents the workers from raising their own sons, or that worker reproduction is absent in the presence of a fertile queen due to high ergonomic costs of this behaviour.  相似文献   

11.
Summary Nomadic behavior of the army ant Neivamyrmex nigrescens was studied in a desert-grassland habitat. Six colonies were followed through eight nomadic phases (94 nomadic days) while direction and distance of emigrations, growth of larvae, number of adults and larvae per colony were determined.In all colonies, the nomadic phase began when newly eclosed adults and small larvae were present, and ended when the larvae were fully grown. Average emigration distance was positively related to number of larvae in the colony. These findings support Schneirla's theory that brood stimulation is a proximate cause of the nomadic phase.Failures to emigrate were equally likely at all points in the nomadic phase, and there was no systematic increase in emigration distance as the phase progressed. These findings do not support Schneirla's version of brood-stimulative theory.Number of adults per colony was positively related to the directionality of the nomadic phase; however, both the direction and distance of emigrations varied unpredictably from one nomadic day to the next, in marked contrast to predictions from optimal foraging theory.Schneirla's theory is useful in predicting phase differences in colony behavior, but it does not account for characteristics such as frequency, direction, or distance of emigrations within the nomadic phase. These aspects of nomadic behavior are more closely related to characteristics of the habitat such as prey density and availability of nest sites. Army ant nomadism in this habitat may depart from the optimum because of high prey density, small colony size, or lack of nesting sites.  相似文献   

12.
Encounter rate and task allocation in harvester ants   总被引:7,自引:0,他引:7  
As conditions change, social insect colonies adjust the numbers of workers engaged in various tasks, such as foraging and nest work. This process of task allocation operates without central control; individuals respond to simple, local cues. This study investigates one such cue, the pattern of an ant's interactions with other workers. We examined how an ant's tendency to perform midden work, carrying objects to and sorting the refuse pile of the colony, is related to the recent history of the ant's brief antennal contacts, in laboratory colonies of the red harvester ant, Pogonomyrmex barbatus. The probability that an ant performed midden work was related to its recent interactions in two ways. First, the time an ant spent performing midden work was positively correlated with the number of midden workers that ant had met while it was away from the midden. Second, ants engaged in a task other than midden work were more likely to begin to do midden work when their rate of encounter per minute with midden workers was high. Cues based on interaction rate may enable ants to respond to changes in worker numbers even though ants cannot count or assess total numbers engaged in a task. Received: 1 July 1998 / Accepted: 15 November 1998  相似文献   

13.
In a field experiment, great tits Parus major foraged on a pair of artificial trees that were supplied with equal amounts of food. Wood ants Formica aquilonia were excluded from one tree, but foraged on the other. Great tits visited the tree without ants more frequently, and for longer periods of time, than the tree with ants. The time of foraging visits by tits in the tree with ants decreased as ant activity there increased. These results are the first to show that interference competition from ants can influence a bird’s choice of microhabitat in which to forage, as well as alter the time it spends foraging there. Received: 10 March 1995/Accepted after revision: 9 September 1995  相似文献   

14.
Senescence, the decline in physiological and behavioral function with increasing age, has been the focus of significant theoretical and empirical research in a broad array of animal taxa. Preeminent among invertebrate social models of aging are ants, a diverse and ecologically dominant clade of eusocial insects characterized by reproductive and sterile phenotypes. In this review, we critically examine selection for worker life span in ants and discuss the relationship between functional senescence, longevity, task performance, and colony fitness. We did not find strong or consistent support for the hypothesis that demographic senescence in ants is programmed, or its corollary prediction that workers that do not experience extrinsic mortality die at an age approximating their life span in nature. We present seven hypotheses concerning how selection could favor extended worker life span through its positive relationship to colony size and predict that large colony size, under some conditions, should confer multiple and significant fitness advantages. Fitness benefits derived from long worker life span could be mediated by increased resource acquisition, efficient division of labor, accuracy of collective decision-making, enhanced allomaternal care and colony defense, lower infection risk, and decreased energetic costs of workforce maintenance. We suggest future avenues of research to examine the evolution of worker life span and its relationship to colony fitness and conclude that an innovative fusion of sociobiology, senescence theory, and mechanistic studies of aging can improve our understanding of the adaptive nature of worker life span in ants.  相似文献   

15.
Improvement in collective performance with experience in ants   总被引:3,自引:4,他引:3  
We show that entire ant colonies can improve their collective performance progressively when they repeat the same process. Colonies of Leptothorax albipennis can reduce their total emigration times over successive emigrations. We show that this improvement is based on experience and some memory-like process, rather than a coincidental developmental change or an increased general level of arousal. We demonstrate that the benefits of experience can be lost (i.e. forgotten) if the interval between successive emigrations is too long. We also show that the benefits of experience are more likely to be retained over a longer period if the collective performance has been repeated several times. This is a new demonstration of a process akin to learning in ants and we briefly discuss how it may involve not only improvements in individual performance but also improvements in the ways in which the ants interact with one another.Communicated by L. Sundström  相似文献   

16.
17.
Summary Sex allocation theory is developed for polygynous eusocial Hymenoptera in which nests recruit their own daughters as new reproductive queens. Such restricted dispersal of females leads to the expectation of male-biased investment ratios. The expectation depends on the parameter q telling what proportion of the total contribution in the gene pool by all new queens is due to those dispersing. Under queen control the expected sex allocation, expressed as the proportion of resources invested in males, is IM =1/(1 + q). Under worker control, IM depends on the relatedness of old queens, on the number of males they have mated with, and on the proportion of males produced by workers. With single mating and no worker reproduction, the approximate predictions for IM are 1/(1 + q) when the nests have many highly related queens, 1/(1 + 2 q) when the old queens are as related as average worker nest mates, and 1/(1 + 3q) when the old queens are not related to each other at all. The observed investment ratios in polygynous ants would, on average, match values of the parameter q between 0.4 and 0.5. Values of q have not been estimated in nature. If q is smaller than 0.4, which may well be true, the observed sex allocation in polygynous ants is in fact more female-biased than predicted by the theory. This indicates that the female bias found in monogynous ants may not be exceptional and could be due to factors other than worker control of sex allocation. Because the value of q is likely to vary among species, testing the predictions of the theory requires thorough single-species studies.  相似文献   

18.
Plant defense against herbivores often involves constitutive and inducible mechanisms of resistance. Obligate ant-plants, which provide food and housing for ants, are thought to primarily rely on ants for defense against herbivores. This form of plant defense has largely been viewed as static. We have been investigating the dynamic nature of Azteca ants as an inducible defense of Cecropia trees. Ants rapidly recruit to and patrol sites of foliar damage. We propose that Azteca ants can be viewed as an inducible defense for Cecropia trees because of their sensitivity to cues associated with herbivory, their rapid and aggressive recruiting ability, and their reclaimable and redeployable nature as a plant defense. In this study, we examine ant behavior following plant damage, and the potential cues that indude ant recruitment. We found that ants present on leaves when the plant is damaged leave the damaged leaf and recruit other ants to it, presumably by laying recruitment trails. Volatile leaf cues associated with herbivory were important in eliciting an induced response in two experiments. However, we found that cues associated with a congeneric plant elicited a much stronger ant response than conspecific cues. Although the type of leaf damage (gaping wounds versus leaf edge wounds) did not affect the level of ant recruitment, the extent of damage did. Leaves with one hole punched showed a 50% increase in ants, while leaves with five holes punched in them elicited a 100% increase in ant numbers. In sum, it appears that multiple plant-related cues associated with herbivory are involved in induction of ant recruitment in the Cecropia-Azteca system. We discuss the generality of ant responses to herbivory in obligate ant-plant systems, and in facultative ant-plant associations, which may be more common. Received: 23 March 1998 / Accepted after revision: 5 July 1998  相似文献   

19.
Mutualistic relationships between ants and aphids are well studied but it is unknown if aphid-attending ants place a greater relative importance on defending aphids from aphid-predators or from competing ant colonies. We tested the hypothesis that aphid-attending ants defend their aphids against aphid-predators more aggressively than against ants from neighboring colonies. We conducted introduction trials by placing an individual non-predatory insect, an aphid-predator, or a foreign conspecific ant on the leaf of a resident ant. We found that ants did not attack non-predatory insects, but did attack competing ants and aphid-predators. When we presented resident ants with both the threats (i.e., predator and competitor) at the same time, residents always attacked potential competitors as opposed to aphid-predators. We suggest this behavior may reduce the likelihood of raids by neighboring colonies. Ants appear to balance both the energetic costs of making an attack and the costs associated with losing aphids to a predator, against the benefits of signaling their defensive ability to rivals and/or preventing rivals from gaining knowledge of a potential food resource.  相似文献   

20.
The success of a social group is often driven by its collective characteristics and the traits of its individuals. Thus, understanding how collective behavior is influenced by the behavioral composition of group members is an important first step to understand the ecology of collective personalities. Here, we investigated how the efficiency of several group behaviors is influenced by the aggressiveness of its members in two species of Temnothorax ants. In our manipulation of group composition, we created two experimentally reconstituted groups in a split-colony design, i.e., each colony was split into an aggressive and a docile group of equal sizes. We found strong species-specific differences in how collective behaviors were influenced by its group members. In Temnothorax longispinosus, having more aggressive individuals improved colony defense and nest relocation efficiency. In addition, source colony identity strongly influenced group behavior in T. longispinosus, highlighting that manipulations of group compositions must control for the origin of the chosen individuals. In contrast, group composition and source colony did not influence collective behaviors in Temnothorax curvispinosus. This suggests that the mechanisms regulating collective behaviors via individual differences in behavior might differ among even closely related species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号