共查询到20条相似文献,搜索用时 14 毫秒
1.
2.
随着GB 13223—2011《火电厂大气污染物排放标准》的颁布,汞排放问题正式列入了控制目标,这必将对燃煤电厂的环保设施提出新的更高的要求。在综述国外汞监测技术的前提下,总结脱硫脱硝污染物监测的经验,针对中国的具体情况分析了新形势下我国燃煤电厂汞监测技术的发展方向和关键技术的开发重点。同时分析了在最大化地利用燃煤电厂现有环保设施和设备的情况下,如何开发在今后一段时期内最适宜在我国广泛应用的汞排放控制技术,也对国内今后的政策发展进行了预测。 相似文献
3.
通过对某地区4个有代表性的燃煤电厂汞排放的数据分析,研究了国内燃煤电厂汞排放的一些特征,并同发达国家燃煤电厂汞排放和汞脱除的情况作了比较,分析了我国燃煤电厂在汞排放和汞脱除领域所存在的差距.在介绍了国内外燃煤电厂的主要汞脱除技术后,提出我国今后应加大对燃煤电厂汞脱除技术投入和研究的建议. 相似文献
4.
针对300 MW燃煤机组,基于US EPA(美国国家环境保护局)的30 B汞监测方法,通过多点监测对比了实施低氮燃烧器改造、SCR脱硝改造、新增低温省煤器、静电除尘器高频电源改造、湿法脱硫塔脱硫提效并增加管式除雾、新增湿式静电除尘器技术路线开展的超低排放改造前后汞排放及分布特征.研究表明:超低排放改造前,神华煤w(Hg)为49 μg/kg,烟囱入口ρ(Hg)测量值为1.87 μg/m3;煤燃烧及经过污染物控制单元后,有35.0%的汞存在于灰中,有29.5%的汞存在于石膏中,有35.4%的汞从烟囱排出.超低排放改造后,神华煤中w(Hg)为30 μg/kg,烟囱入口ρ(Hg)测量值为0.46 μg/m3;脱硫进水及湿式除尘器进水对汞平衡几乎没有影响,煤燃烧及经过污染物控制单元后,有36.1%的汞存在于灰中,有55.2%的汞存在于石膏中,有8.7%的汞从烟囱排出.超低排放改造后,污染物控制设备的烟气综合脱汞效率提高了1.5倍左右,表明超低排放脱硝增强了对汞的催化氧化,而脱硫增强了对二价汞的吸收结果.湿式电除尘器对脱汞没有明显效果. 相似文献
5.
6.
上海燃煤电厂大气汞排放初探 总被引:2,自引:0,他引:2
燃煤电厂是主要的人为汞排放源之一,也是上海城市范围内最大的大气汞排放点源。耗煤量、煤汞含量、燃烧装置的结构以及空气污染控制装置的协同除汞能力是影响燃煤电厂大气汞排放的主要因素。文章利用历年的统计数据和美国环境保护局的经验值筛选出汞排放的影响因子,粗略估算了上海燃煤电厂的大气汞年排放量,从空气污染控制装置的协同除汞效果.改进颗粒物控制装置、提高烟气脱硫系统的汞捕集能力、投加粉末状活性碳的除汞效果等方面,分析了空气污染控制装置的除汞效果及其改进方法。 相似文献
7.
为了研究某典型300 MW燃煤电厂汞排放特性,对入炉煤、炉渣、石灰石、脱硫工艺水、石膏、脱硫废水、灰中的汞进行了取样测试。并采用EPA30B和安大略法实测了不同位置烟气中汞的形态分布情况。结果表明:该机组汞排放浓度满足GB 13223—2011《火电厂大气污染物排放标准》。烟气中的汞排放比重相当大,达到89.52%,排向大气环境的汞量约为38.72μg/(k W·h)。该典型300 MW机组尾部烟气净化系统为SCR+ESP+WFGD组合,对烟气中的汞脱除效率仅为29.71%,在未加入脱汞措施的情况下汞脱除率并不高。 相似文献
8.
燃煤电厂烟气汞排放控制技术 总被引:3,自引:0,他引:3
引言
燃煤锅炉排放的重金属有害空气污染物(HAP)主要有汞、镉、铅、铬和砷等,而(汞)Hg是其中最易挥发的重金属元素之一。局部区域排放的汞通过在陆地、海洋的沉积和二次排放可传输扩散到范围更广的区域,有研究认为如果亚洲每年减少50%汞排放,美国西海岸则会减少由于湿沉降带来的10%~20%的汞。由于汞的剧毒性、积累性,加之在大气中停留时间较长,因此对环境的危害不容忽视。有关汞的排放及控制已经成为煤的燃烧污染防治中的一个新兴的研究领域。 相似文献
9.
中国燃煤电厂汞的物质流向与汞排放研究 总被引:4,自引:0,他引:4
为研究中国燃煤电厂中汞的去向,基于2010年中国各省份燃煤中的汞含量、燃煤消耗量、燃煤电厂大气污染控制设备的安装比例以及粉煤灰、脱硫石膏的二次利用方式,计算了我国燃煤电厂2010年向大气、水体、土壤中排放汞的量.2010年我国电厂燃煤共输入汞271.7t (147.1~403.6t).煤炭在电厂燃烧一次排放到大气中的汞为101.3t (44.0~167.1t),进入燃煤副产物、水体的汞分别为167.4t (84.3~266.3t),3.0t (1.2~5.0t).燃煤副产物二次利用过程向大气排放的汞为32.7t (12.5~56.1t),进入土壤中的汞为58.6t (33.6~103.9t),还有76.1t (30.3~108.6t)汞留在了产品中.结果表明,粉煤灰用于水泥生产和粉煤灰制砖是副产物向大气中二次排放的重要源,分别占总二次排放量的81.7%和15.3%. 相似文献
10.
11.
重庆市燃煤电厂汞排放特征及排放量 总被引:1,自引:2,他引:1
以重庆市两种锅炉类型[循环流化床锅炉(CFB)和煤粉炉(PC)]的4个燃煤电厂为研究对象,分析不同规模电厂输入输出物料汞含量,探讨电厂中汞的来源和去向,研究重庆市典型燃煤电厂汞的排放特征,估算其大气汞排放量和排放因子.结果表明,4个电厂的汞主要来源为煤,入炉煤汞含量为(80.77±6.39)~(266.83±4.71)μg·kg-1.4个电厂排放的汞主要进入了固体废物,其中,CFB电厂中汞的去向主要是粉煤灰,而PC电厂汞的去向主要是脱硫石膏和粉煤灰.4个电厂的汞脱除率为72.89%~96.05%,CFB电厂高于PC电厂.4个电厂的大气汞排放因子(EF电、EF煤)分别为4.66~29.47μg·(k W·h)-1和8.55~71.77 mg·t-1,大气汞排放量为6.13~429.17 g·d-1.燃煤电厂的汞排放与煤中汞含量、锅炉类型、发电负荷、污控设备等因素有关.为控制电厂汞排放,需改善燃煤机组的能效,提高烟气净化设备的除汞效率,加强燃煤电厂的固体废物利用监管. 相似文献
12.
13.
为评估GB 13223─2011《火电厂大气污染物排放标准》实施对燃煤电厂大气Hg(汞)减排的影响,采用“自下而上”排放因子法,对燃煤电厂大气Hg排放量进行了估算,通过设计不同发展情景,对排放标准实施条件下我国燃煤电厂大气Hg减排量(不含港澳台地区数据,下同)进行了预测. 结果表明:不同能耗情景下,预计2015年燃煤电厂的煤炭消费量为18.5×108~20.3×108 t,2020年煤炭消费量可达19.7×108~22.5×108 t;GB 13223─2011实施后,大气污染控制设施包括ESP(静电除尘器)、FF(袋式除尘器)、WFGD(湿法脱硫)和SCR(选择性催化还原脱硝)的应用比例亟需提高,控制设施面临提效改造,主要控制技术组合SCR+ESP+WFGD在2015年和2020年的应用比例将达到40%、75%;改造后技术组合FF+WFGD、ESP+WFGD、SCR+ESP+WFGD可分别实现90%、85%、80%的脱Hg效率. 由此可为我国燃煤电厂大气Hg排放带来巨大的协同减排潜力,与2010年约119 t的排放水平相比,2015年和2020年在低能耗情景下,我国燃煤电厂大气Hg减排幅度可分别高达38%和39%. 为进一步提高燃煤电厂大气的Hg减排量,建议逐步推广应用活性炭喷射(ACI)等技术. 相似文献
14.
15.
16.
17.
18.
19.
燃煤电厂大气汞排放控制的必要性与防治技术分析 总被引:2,自引:0,他引:2
目前,汞已经成为温室气体和持久性有机物后又一引人关注的全球性化学污染物,汞污染和控制问题成为全球环境问题的新热点和前沿研究领域.2002年,联合国环境规划署(UNEP)专门对全球汞污染状况进行了评估,指出"人为活动的汞排放已经明显改变了全球汞的自然循环,对人类健康和生态系统构成了严重威胁". 相似文献