首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
污泥焚烧过程中氯化物对Cd迁移行为的影响   总被引:3,自引:0,他引:3  
采用固定层燃炉及向污泥中添加Cd方式,分别研究了污泥焚烧过程中有机氯(PVC)与无机氯(NaCl)对Cd迁移转化行为的影响,同时考察了不同焚烧条件下Cd的迁移及分布规律.结果表明,污泥焚烧过程中不同氯化物的加入均增强了Cd向飞灰或者烟气中迁移,但随着氯化物加入量的增加,Cd挥发增加的趋势并不明显.随温度的升高,有机氯(PVC)与无机氯(NaCl)均使得Cd在底渣中的分布减少,而焚烧时间及初始浓度对Cd迁移分布没有显著影响.底渣和飞灰的SEM-EDS和XRD分析表明,污泥焚烧过程中NaCl的加入导致Cd易与氯化物形成CdCl2、Na2CdCl4、K2CdCl6、K2CdSiO4和NaCdO2,而PVC的加入,除了与Cd形成Na2CdCl4和CdCl2外,还生成了K4CdCl6和K6CdO4氯化物,可见有机氯(PVC)与无机氯(NaCl)对Cd迁移转化影响主要与Cd的生成物种类及形态有关.  相似文献   

2.
焚烧飞灰高温过程中重金属的挥发及其氯转化特征   总被引:3,自引:2,他引:1  
刘敬勇  孙水裕 《环境科学》2012,33(9):3279-3287
研究了垃圾与污泥掺烧后的焚烧飞灰在900℃、1 000℃高温处置过程中重金属(Cu、Zn、Pb、Cd)随不同停留时间的挥发特性,并研究了添加剂氯化物(CaCl2、MgCl2、NaCl、FeCl3、AlCl3)对重金属转化与挥发特性的影响.结果表明,没有添加氯化剂情况下,污泥焚烧飞灰中不同重金属的挥发特性有较大的差别,其中Pb的挥发率超过80%,而Cu的挥发率<30%,重金属的挥发性大小依次为:Pb>Cd>Zn>Cu.热处置过程中重金属的挥发率受温度的影响较大,而停留时间的延长对重金属挥发促进效果较小,并且易挥发元素Pb和Cd表现尤为明显.飞灰中添加氯化剂后,重金属的挥发性有显著的改变,并且难挥发元素Cu和Zn的挥发性增加较Pb和Cd显著.随着Cl含量的增加,重金属挥发率有增加的趋势,但不同种类的氯化物对重金属氯转化差异较大,其中NaCl对重金属Cd、Zn和Cu挥发特性的促进效果小于其它氯化剂.研究结果为飞灰最大限度无害化处理及资源化回收利用提供理论依据.  相似文献   

3.
对不同粒径飞灰中重金属的分布情况进行了研究,并采用高温熔融管式电炉试验装置,对垃圾焚烧飞灰进行了高温热处理研究,探讨了热处理过程中飞灰减重率和重金属挥发率的变化规律,并对飞灰热处理后的收集物进行XRD实验。结果表明,Cd和Pb在小粒径飞灰中含量较高,Zn和Cu的分布与飞灰的粒径分布相似,Cr富集于相对较大粒径的飞灰中。热处理过程中,1150℃和1350℃时飞灰减重率增长快,而在650~1050℃之间减重率增长缓慢,仅从8%增加至17%。飞灰中重金属经热处理后,挥发率依次为Pb〉Cd〉Cu〉Zn。XRD实验结果表明,Pb主要以双金属氯化物(KPb2Cl5)形式挥发。  相似文献   

4.
垃圾焚烧飞灰熔融固化处理过程特性分析   总被引:15,自引:2,他引:13  
为研究熔融固化过程中飞灰主要成分的迁移转化规律,在有温控的高温实验熔融炉中对垃圾焚烧飞灰进行了动态熔融固化实验研究,对处理后的飞灰进行了XRF、XRD分析检测,分析了飞灰熔融过程中熔融渣的主要成分、物相组成、碱度、挥发率和减容率的变化规律.试验结果表明:①飞灰中主要成分CaO、Al2O3和SiO2的质量分数随着温度的升高而增加,而主要成分Cl元素和SO3则从原来的20.59%和10.74%分别降低到0.15%和0.22%,可见高含量Cl元素和S元素是引起飞灰熔融固化挥发率高的主要原因,并且可能主要以氯化物和硬石膏的形式分解挥发,XRD的测定结果也进一步证明了这一点.②飞灰熔融前,碱度随温度的升高而显著降低,但当温度达到流动温度后,碱度值随温度的变化很小,基本保持在0.95左右.③飞灰中盐类分解挥发主要发生在1150℃~1260℃之间,在飞灰熔融温度前约100℃的范围内.  相似文献   

5.
CaCl2对垃圾焚烧飞灰热处理特性的影响   总被引:7,自引:4,他引:7  
以华东某城市生活垃圾焚烧厂飞灰为原料,对飞灰中重金属进行了高温热处理研究,主要考察了CaCl2对重金属蒸发的影响,并对蒸发物化学形态及成分进行了分析.结果表明:CaCl2能有效促进飞灰中Pb和Cd的蒸发,当温度为1 050℃,CaCl2的添加比例为15%时,Cd的蒸发率由原灰的43.8%剧增到88.3%,而重金属Cu的蒸发率则随着CaCl2添加比例的增加有所降低;当CaCl2的添加比例为10%时,各重金属的蒸发率均随温度的升高而有不同程度的增加;对所收集的蒸发物进行成分及物相分析显示,蒸发物主要以NaCl和KCl为主,重金属Pb以双金属氯化物(KPb2Cl5)形式蒸发.   相似文献   

6.
吴荣  李清海  蒙爱红  张衍国  陈勇 《环境科学》2009,30(7):2174-2178
利用管式炉和模拟垃圾,研究了焚烧过程中SiO2、Al2O3、CaO等吸附剂对重金属Cd、Pb迁移分布的影响规律,考察了不同吸附剂添加量、管式炉反应温度和停留时间的影响.结果表明,在各反应温度下,SiO2、Al2O3、CaO均有利于Cd停留在底渣中;对于Pb,SiO2、Al2O3亦使其易于停留在底渣中,而CaO在高温时表现为使Pb更易于向飞灰迁移.上述影响的程度均随着吸附剂添加量的增加而增加.当反应炉温度为850℃时,各吸附剂对于Cd的吸附效果顺序为CaO>Al2O3>SiO2,对Pb的顺序为Al2O3>SiO2>CaO.反应炉温度和停留时间的增加,也都易于使Cd、Pb向飞灰迁移.  相似文献   

7.
生活垃圾热处理过程中含氯化合物的存在会使重金属转化为颗粒更小、更易挥发的重金属氯化物,扩大其环境影响.本文采用热分析和管式炉模拟法,研究在不同气氛下城市生活垃圾中典型有机氯化物--聚氯乙烯(PVC)对重金属Pb迁移转化的影响.结果表明,PVC和PbO共存的体系中,PVC在250℃左右热分解产生HCl,并与PbO反应生成PbCl2(501℃左右开始挥发)而促进Pb迁移进入烟气.当Cl:Pb物质的量比为2,3,5和10时,在空气气氛下PVC浓度的增加对Pb的挥发没有显著影响,而在氮气气氛下,Cl:Pb=3时,Pb挥发率最大,达到88.19%,Cl:Pb=2时,Pb挥发率最小,为68.60%.  相似文献   

8.
为解决生活垃圾填埋场的纳滤膜浓缩液和生活垃圾焚烧飞灰协同处置中淋滤条件对氯盐和重金属溶出效果的问题,采用北京市某生活垃圾填埋场的纳滤膜浓缩液在不同液固比和酸碱条件下淋滤北京市某生活垃圾焚烧厂的焚烧飞灰,探讨氯离子溶出及重金属的迁移特性. 结果表明:在液固比为12∶1、8∶1和4∶1条件下,焚烧飞灰中氯离子的总溶出率分别为81%、76%和61%,液固比越大,导致填料高度越低,氯离子溶出越充分;在液固比为4∶1条件下,纳滤膜浓缩液pH分别为3.20和10.70时,氯离子可与含氧阴离子竞争吸附位置,导致氯离子的总溶出率较未调节pH时大幅提升,增幅分别为81%和83%;不同液固比和酸碱条件下,采用XRD对淋滤灰渣分析发现,淋滤灰渣中均未检测到NaCl和KCl的矿物相. 改变纳滤膜浓缩液的pH为3.20和10.70后,淋滤灰渣中重金属Pb、Zn、Cu、Cr、Cd和Hg的浸出浓度均满足《危险废物鉴别标准 浸出毒性鉴别》(GB 5085.3—2007)和《生活垃圾填埋场污染控制标准》(GB 16889—2008)标准限值要求. 研究显示,纳滤膜浓缩液淋滤飞灰可脱除焚烧飞灰中的氯盐及部分重金属,淋滤灰渣经热处理后可焚毁截留纳滤膜浓缩液的有机物,热处理后灰渣有望实现安全资源利用.   相似文献   

9.
垃圾焚烧飞灰熔融过程烟气中重金属的迁移分布规律   总被引:2,自引:0,他引:2  
采用重庆同兴垃圾焚烧(MSWI)发电厂飞灰,开展了高温熔融及铁浴熔融重金属分布迁移规律实验研究.采用布袋式除尘法收集捕捉熔融过程烟气中的烟尘,并对烟尘中的重金属组分、含量、形态和结构进行测试分析,研究了高温熔融分离过程各金属元素在烟气中的迁移分布规律.结果表明,迁移到烟气中的主要元素为Zn、Pb、Cl、K、Na,并以ZnS、ZnO、PbCl2、KCl、NaCl形态存在于熔融飞灰上;Rb、Cd、Sn、Sb等低沸点易挥发金属元素在熔融烟气中以硅酸盐、磷酸盐形态存在;Hg主要以氯氧化物、硫氯化物形态存在.铁浴熔融可有效抑制Ti、Mn、Fe、Se的挥发,提高Cd、Sn、Sb的挥发速率,有利于提高Rb在熔融飞灰上的分配率,但对Zn、Rb、Pb的挥发没有影响.  相似文献   

10.
垃圾焚烧飞灰熔融过程重金属的迁移特性实验   总被引:10,自引:0,他引:10  
对垃圾焚烧飞灰的熔融处理过程中重金属的迁移特性进行了实验研究.在自行设计的实验台上研究熔融温度、时间、气氛、冷却方式等条件对几种重金属固化特性的影响.结果表明,熔融可以固化大部分重金属,同时飞灰中重金属在熔融过程中的固化特性因种类不同呈现显著差异,Cd、Pb属于易挥发金属,而Ni、Cr和Zn不易挥发;飞灰成分、温度、气氛和冷却方式对各种重金属的影响程度各不相同.  相似文献   

11.
垃圾焚烧中硫化合物对重金属Pb迁移分布影响   总被引:1,自引:0,他引:1  
采用管式炉和模拟垃圾对垃圾焚烧中硫化合物(包括S、Na2S、Na2SO3、Na2SO4)、焚烧温度、重金属初始加入浓度以及焚烧停留时间对Pb迁移分布的影响进行了研究.使用ICP-AES分析技术(美国EPA消解方法)对重金属浓度进行测量.结果表明,垃圾焚烧中4种硫化合物的加入均使得Pb在底渣中的分布比例比未加入硫化合物时的分布比例降低.Pb在底渣中的分布比例随加入S和Na2S含量的增加而减少,相应地在飞灰中的分布随S和Na2S加入量的增加而增加,而Pb的迁移分布比例受Na2SO3和Na2SO4含量变化的影响不显著.温度的升高使得Pb向飞灰中的分布比例逐渐增加,整个试验温度范围内Pb在烟气中的分布均为0.初始浓度的增加也使Pb在底渣中的分布比例逐渐升高,飞灰中的分布比例逐渐下降.停留时间的增加会使得Pb在底渣中的分布比例降低,相应地在飞灰中的分布比例会增加.  相似文献   

12.
The impact of moisture on the partitioning of the heavy metals including Pb,Zn,Cu and Cd in municipal solid waste (MSW) was studied in a laboratory tubular furnace.A thermodynamic investigation using CHEMKIN software was performed to compare the experimental results.Simulated waste,representative of typical MSW with and without chlorine compounds,was burned at the background temperature of 700 and 950°C,respectively.In the absence of chlorine,the moisture content has no evident effect on the volatility of Pb,Zn and Cu at either 700 or 950°C,however,as flue gas moisture increasing the Cd distribution in the bottom ash increased at 700°C and reduced at 950°C,respectively.In the presence of chlorine,the flue gas moisture reduced the volatility of Pb,Zn and Cu due to the transformation of the more volatile metal chlorides into less volatile metal oxides,and the reduction became significant as chlorine content increase.For Cd,the chlorine promotes its volatility through the formation of more volatile CdCl 2.As a result,the increased moisture content increases the Pb,Zn,Cu and Cd concentrations in the bottom ash,which limits the utilization of the bottom ash as a construction material.Therefore,in order to accumulate heavy metals into the fly ash,MSW should be dried before incineration.  相似文献   

13.
Experimental study on MSW gasification and melting technology   总被引:1,自引:0,他引:1  
In order to develop municipal solid waste (MSW) gasification and melting technology, two preliminary experiments and a principle integrated experiment were fulfilled respectively. The gasification characteristics of MSW are studied at 500-750℃ when equivalence ratio (ER) was 0.2-0.5 using a fluidized-bed gasifier. When temperature was 550-700℃ and ER was 0.2-0.4, low heat value (LHV) of syngas reaches 4000-12000 kJ/Nm3. The melting characteristics of fly ash were investigated at 1100-1460℃ using a fixed-bed furnace. It was proved that over 99.9% of dioxins could be decomposed and most heavy-metals could be solidified when temperature was 1100-1300℃. The principle integrated experiment was carried out in a fluidized-bed gasification and swirl-melting system. MSW was gasified efficiently at 550-650℃, swirl-melting furnace maintains at 1200-1300℃ stably and over 95% of fly ash could be caught by the swirl-melting furnace. The results provided much practical experience and basic data to develop MSW gasification and melting technology.  相似文献   

14.
城市垃圾焚烧飞灰熔融DSC-DTA实验研究   总被引:16,自引:1,他引:15  
利用高温DSC-DTA热分析仪对国内外2种城市垃圾焚烧飞灰在惰性气氛(N2)和氧化气氛(O2)下的熔融特性进行了研究.在20℃~1450℃的温度范围内采用3种温升速率进行实验.飞灰熔融过程包含多晶转变和熔融相变2种反应,多晶转变发生在480℃~670℃范围内,吸热量20kJ/kg;熔融约发生在1136℃~1231℃,在1174℃达到峰值,熔融相变潜热约700 KJ/kg,整个过程总吸热量约1800 kJ/kg.研究了CaO添加剂对飞灰熔融的影响.最后提出飞灰熔融吸热量的预测模型,模型  相似文献   

15.
城市生活垃圾低污染气化熔融系统研究   总被引:7,自引:0,他引:7  
为彻底消除城市生活垃圾焚烧过程中的二次污染,对流化床气化与旋风燃烧熔融系统进行了研究.我国典型城市生活垃圾流化床气化试验表明,最佳气化温度为600℃左右;对垃圾焚烧飞灰进行熔融特性试验表明,垃圾焚烧飞灰在1 300℃左右、垃圾掺煤焚烧飞灰在1 400℃左右时,能顺利熔融,二分解率99.99%以上,重金属有效固化.结合我国实际,提出了2种气化熔融系统方案:①基于垃圾综合处理的筛上物气化熔融技术方案;②原生垃圾+辅助燃料气化熔融技术方案;并进行相应的热力性能分析,研究表明2种方案都能较好满足气化熔融要求.  相似文献   

16.
Chlorine source is indispensable for polychlorinated dibenzo-p-dioxin and furan (PCDD/F) formation during municipal solid waste (MSW) incineration. Inorganic chlorine compounds were employed in this study to investigate their effects on PCDD/F formation through heterogeneous synthesis on fly ash surfaces. A fly ash sample obtained from a fluidized bed incinerator was sieved to different size fractions which served as the PCDD/F formation sources. The capability of different metal chlorides which facilitate the formation of PCDDs/Fs was found to follow the trends: Na < Mg < K < Al < Ca, when two particle fractions of >177 μm and 104-125 μm were used in the experiments. However, the capability of NaCl, MgCl2 and KCl did not seem much different from each other, whereas CaCl2 and AlCl3 were much more active in PCDD/F formation. NaCl and MgCl2 were relatively effective to produce more PCDDs, while KCl, AlCl3 and CaCl2 generated more PCDFs during heterogeneous reactions occurring on fly ash. 2,3,7,8-TCDF was the most significant contributor to the toxicity of the PCDDs/Fs formed from inorganic chlorine sources. Decreasing the sizes of fly ash particles led to more active formation of PCDDs/Fs when NaCl was used as inorganic chlorine in the experiment. The highest PCDDs/Fs produced from particles with size <37 μm, while the lowest PCDDs/Fs produced from particles with size >177 μm. The toxicity generally increased with decreasing size of the fly ash particles. The formation of PCDDs was mainly facilitated by the two size fractions, 104-125 μm and <37 μm, while formation of PCDFs was favored by the two other size fractions, >177 μm and 53-104 μm.  相似文献   

17.
Considering high-moisture municipal solid waste (MSW) of China, a steam dried MSW gasification and melting process was proposed, the feasibility was tested, and the mass and energy balance was analyzed. Preliminary experiments were conducted using a fixed-bed drying apparatus, a 200 kg per day fluidized-bed gasifier, and a swirl melting furnace. Moisture percentage was reduced from 50% to 20% roughly when MSW was dried by slightly superheated steam of 150°C–350°C within 40 min. When the temperature was less than 250°C, no incondensable gas was produced during the drying process. The gasifier ran at 550°C–700°Cwith an air equivalence ratio (ER) of 0.2–0.4. The temperature of the swirl melting furnace reached about 1240°C when the gasification ER was 0.3 and the total ER was 1.1. At these conditions, the fly ash concentration in the flue gas was 1.7 g·(Nm3)−1, which meant over 95% fly ash was trapped in the furnace and discharged as slag. 85% of Ni and Cr were bound in the slag, as well as 60% of Cu. The mass and energy balance analysis indicates that the boiler heat efficiency of an industrial MSW incineration plant reaches 86.97% when MSW is dried by steam of 200°C. The boiler heat efficiency is sensitive to three important parameters, including the temperature of preheated MSW, the moisture percentage of dried MS Wand the fly ash percentage in the total ash.  相似文献   

18.
为评价医疗垃圾焚烧灰渣对环境的危害性及寻找安全有效的处理方法,利用X-射线荧光光谱仪、X射线衍射仪、扫描电镜、原子吸收光谱仪等仪器分别对回转窑式、固定床式医疗垃圾焚烧炉的布袋飞灰及底渣进行化学成分、物相、微观形貌、重金属含量及渗沥行为等特性分析.结果发现,回转窑式和固定床式布袋飞灰热灼减率分别为31.2%、34.6%,两者Cl、SO3和碱金属含量均较高,主要物相为CaSO4和NaCl,且Cd、Zn、Pb等重金属渗沥浓度均超过危险废物填埋允许限值,其渗沥行为可能与布袋飞灰的不规则多孔海绵状微观形貌有一定关系;2种底渣主要由复杂硅酸盐构成,其渗沥浓度低于危险废物规定的阈值.因此,2种布袋飞灰经预处理后方能进入危废填埋场填埋,2种底渣可按一般工业固废直接填埋.  相似文献   

19.
The effects of different chlorides and operational conditions on the distribution and speciation of six heavy metals (Pb, Zn, Cr, Cu, Mn and Ni) during sludge incineration were investigated using a simulated laboratory tubular-furnace reactor. A thermodynamic equilibrium investigation using the FactSage software was performed to compare the experimental results. The results indicate that the volatility of the target metals was enhanced as the chlorine concentration increased. Inorganic-Cl influenced the volatilization of heavy metals in the order of Pb > Zn > Cr > Cu > Mn > Ni. However, the effects of organic-Cl on the volatility of Mn, Pb and Cu were greater than the effects on Zn, Cr and Ni. With increasing combustion temperature, the presence of organic-Cl (PVC) and inorganic-Cl (NaCl) improved the transfer of Pb and Zn from bottom ash to fly ash or fuse gas. However, the presence of chloride had no obvious influence on Mn, Cu and Ni. Increased retention time could increase the volatilization rate of heavy metals; however, this effect was insignificant. During the incineration process, Pb readily formed PbSiO4 and remained in the bottom ash. Different Pb compounds, primarily the volatile PbCl2, were found in the gas phase after the addition of NaCl; the dominant Pb compounds in the gas phase after the addition of PVC were PbCl2, Pb(ClO4)2 and PbCl2O4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号