首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Advances in computing processing power and in availability of environmental and biological data have allowed the development and application of comprehensive modeling systems that utilize a holistic, integrated, approach for assessing the interactions of environmental and biological systems across multiple scales of spatiotemporal extent and biological organization. This approach allows mechanism-based environmental health risk assessments in a person-oriented framework, which accounts for simultaneous exposures to contaminants from multiple media, routes, and pathways. The conceptual basis and example applications of the Modeling ENvironment for TOtal Risk (MENTOR), and the DOse–Response Information ANalysis system (DORIAN) are presented.  相似文献   

2.
Journal of Polymers and the Environment - The current scenario of global trends impacts the way in which food is consumed and packed, meaning that change is inevitable and just around the horizon...  相似文献   

3.
Over the past few years, the focus of our research has been to respond to the recognized needs for novel biological processes that are capable of destroying a wide range of biodegradable pollutants and providing the perfect environment for complex interspecies interactions required for the degradation of environmental contaminants. A new biotechnology process called Biological Permeable Barrier (BPB) was developed to provide high microbial density, stable environmental conditions, and protective measures for microbial activities for in‐situ bioremediation of contaminated groundwater. This patented technology (U.S. Patent 6,337,019 ) is based on the creation of a structured matrix, or Bio‐beads, that provides the perfect environment for organic‐degrading microorganisms to establish biofilms capable of destroying the contaminants in water with remarkable stability and control. For over 240 days, the viability and performance of the BPB (Bio‐beads) system were shown for biodegradation of a targeted contaminant, 2,4,6‐ trichlorophenol (TCP), under a variety of operating and stress conditions (Razavi‐Shirazi, 1997 ). Extensive batch experiments were also conducted to obtain necessary data to determine the rate of TCP diffusion into the Bio‐beads, adsorption properties of the Bio‐beads, and substrate‐use rate of the mixed bioculture as free cells and as immobilized cells (Bio‐beads). A simulated model of BPB was also characterized with its porosity, permeability, and compressibility or deformation under typical field conditions. Our extensive research showed that BPB takes advantage of a controlled biotechnology process to overcome the disadvantages and uncertainties associated with conventional biological processes. A summary of our investigation is presented here. © 2002 Wiley Periodicals, Inc.  相似文献   

4.
A New Approach for the Flocculation Mechanism of Chitosan   总被引:2,自引:0,他引:2  
A peak III/I ratio (peak) in pyrene-fluorescence spectrum was used to measure the polarity of microenvironment of chitosan adsorbing pyrene molecules. The authors detected the pyrene-fluorescence spectrum of chitosan with different degrees of deacetylation (DD) and determined the relationship between the flocculation of bentonite colloid and the peak of chitosan with a different molecular weight (MW) and DD. It can be concluded that MW rather than DD plays a key role in the flocculation and that bond bridging rather than charge neutralization dominates the flocculation with chitosan from a microenvironmental structure of view.  相似文献   

5.
Journal of Polymers and the Environment - Coffee is a widely enjoyed beverage and one of the world’s most traded commodities. However, it also generates large amounts of bio-based waste...  相似文献   

6.
Cellulose nanofibers (CNFs) were isolated from sugarcane bagasse (SCB) through the combination of bio-refinery, sulfur-free, and totally chlorine free (TCF) chemo-mechanical pretreatments, with a focus on the optimal design of ozone bleaching parameters based on a response surface methodology (RSM). For this purpose, the most effective parameters in ozone bleaching (temperature, time, and pulp consistency) were set between 40 and 85 °C, 60 and 360 min, and 1–5 wt%, respectively. High-performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FTIR), Kappa number, and scanning electron microscopy (SEM) were used to chemically and morphologically characterize the SCB fibers. The size distribution and morphology of CNFs were also evaluated by dynamic light scattering (DLS) and transmission electron microscopy (TEM). HPLC analysis revealed that percentage of cellulose increased from 41.5 to 91.39% after chemical pretreatments. FTIR and Kappa number analyses also confirmed the successful isolation of cellulose fibers from the SCB fibers after chemical pretreatments. Furthermore, DLS results showed that the hydrodynamic diameter of the isolated cellulose fibers reduced to 268 nm by dint of ultrasonication. Additionally, TEM images confirmed the isolation of CNFs: the average diameter of cellulose fibers decreased to about 28 nm after mechanical steps and the yield of fibrillation was found to be around 99%. According to the obtained results, the applied chemo-mechanical treatment appears to be promising for green and facile isolation of CNFs.  相似文献   

7.
Loose-fill packaging sponges were extruded from mixtures of 54–62% hydroxypropylated (HP 5%) amylomaize V (50% amylose) and wheat starches, 17–24% synthetic polymer, 13% water, 7% blowing agent(s), and 0.5% nucleating agent. One product made from 28% HP wheat starch, 28% HP amylomaize V starch, 12% ethylene vinyl alcohol (EVOH) copolymer, 8% polystyrene (PS), and 3% polystyrene maleic anhydride (PSMA) copolymer, plus the other raw materials, had a compressibility and resilience that matched those of expanded polystyrene (EPS), although its bulk density was four times higher. The starchy sponge showed 16% shrinkage in volume at 90% relative humidity and was 2% soluble in excess water, both at 25°C. After aging for 18 months near 25°C, the HP starchy sponge gave only a trace of fines in a simulated shipping test, compared to 20% fines from a biodegradable, starch-based, loose-fill sponge of commerce.  相似文献   

8.
The exact contribution of corporate social responsibility (CSR) to a company as well as to its stakeholders should be measurable in order to be evaluated correctly. The difficult task of measuring the results of CSR has been a matter of significant research both by academics and by practitioners. Some of the literature on corporate social responsibility combines CSR with stakeholder theory introducing corporate social performance. The literature has attempted to describe emerging models of the issues that lead to a coherent model of what would represent corporate social performance. However, it is the case that social aspects are “soft” in nature, therefore being difficult to quantify. Innovated methods of performance measurement such as that of Balanced Scorecard has lately been introduced in some companies in their attempt to include non-financial indicators to give a more balanced and forecasting power to the traditional financial performance assessment system, but the view of corporate social responsibility is rarely taken into account. Furthermore, management frameworks that try to cover social and environmental aspects, such as Global Reporting Initiative, by providing a number of related performance measures, are not able to connect them with corporate strategy and are poor evaluators of cause–effect relationships. In the present paper, a CSR performance measurement framework based on the adoption of the Balanced Scorecard approach is presented. For the development of the proposed framework, the existing assessment of CSR and Corporate Sustainability actions of the Greek companies of different sectors was analysed in order to identify common practices in CSR performance evaluation as well as existing limitations. Taking into account the social indicators suggested by the traditional balanced scorecard views, an extension of its structure is proposed in order to better embody the environmental and social aspects of company performance.  相似文献   

9.
Vapor intrusion (VI) has the potential to affect over 100,000 developed and undeveloped sites in the United States. Vapor intrusion occurs when the migration of volatile chemicals from the subsurface enters overlying buildings. A myriad of adverse health effects have been documented based on the inhalation of volatile chemicals from VI. At a time when most state and federal agencies have yet to set firm standards, the burden of responsibility is often placed on the facility manager to decide how to protect building occupants from volatile organic compounds potentially seeping into buildings. This article outlines a detailed step‐by‐step process for facility managers on how to begin a VI assessment and, when warranted, establish a site‐specific vapor intrusion management system for building occupant protection. This document should be used concurrently with current federal and state guidelines as it pertains to VI. © 2014 Wiley Periodicals, Inc.  相似文献   

10.
Commodore Solution Technologies, Inc. has developed an innovative total systems approach to environmental remediation that utilizes a patented chemistry called Solvated Electron Technology (SETTM). Solvated electron solutions are some of the most powerful reducing agents know. Formed by dissolving alkali and alkaline-earth metals in anhydrous liquid ammonia to produce a solution of metal cations and free electrons, solvated electron solutions are capable of providing reductants of great activity and uniqueness. They provide a highly useful mechanism for the reductive destruction of many organic molecules and are extremely effective in the dehalogenation of halogenated organic compounds. Commodore has received a nation-wide EPA operating permit for the nonthermal destruction of PCBs using this process. The SoLVTM process is a total solution approach that incorporates SETTM with pre-and post-treatments, when necessary, for environmental cleanup. It is applicable to a broad range of substrates including liquids, solids, soils, and job materials. This article presents results from several pilot, field, and commercial validation studies utilizing the SoLVTM process.  相似文献   

11.
Self-binding ability of the pectin molecules was used to produce pectin films using the compression molding technique, as an alternative method to the high energy-demanding and solvent-using casting technique. Moreover, incorporation of fungal biomass and its effects on the properties of the films was studied. Pectin powder plasticized with 30% glycerol was subjected to heat compression molding (120 °C, 1.33 MPa, 10 min) yielding pectin films with tensile strength and elongation at break of 15.7 MPa and 5.5%, respectively. The filamentous fungus Rhizopus oryzae was cultivated using the water-soluble nutrients obtained from citrus waste and yielded a biomass containing 31% proteins and 20% lipids. Comparatively, the same strain was cultivated in a semi-synthetic medium resulting in a biomass with higher protein (60%) and lower lipid content (10%). SEM images showed addition of biomass yielded films with less debris compared to the pectin films. Incorporation of the low protein content biomass up to 15% did not significantly reduce the mechanical strength of the pectin films. In contrast, addition of protein-rich biomass (up to 20%) enhanced the tensile strength of the films (16.1–19.3 MPa). Lastly, the fungal biomass reduced the water vapor permeability of the pectin films.  相似文献   

12.
Wastes from construction activities constitute nowadays the largest by quantity fraction of solid wastes in urban areas. In addition, it is widely accepted that the particular waste stream contains hazardous materials, such as insulating materials, plastic frames of doors, windows, etc. Their uncontrolled disposal result to long-term pollution costs, resource overuse and wasted energy. Within the framework of the DEWAM project, a web-based Decision Support System (DSS) application - namely DeconRCM - has been developed, aiming towards the identification of the optimal construction and demolition waste (CDW) management strategy that minimises end-of-life costs and maximises the recovery of salvaged building materials. This paper addresses both technical and functional structure of the developed web-based application. The web-based DSS provides an accurate estimation of the generated CDW quantities of twenty-one different waste streams (e.g. concrete, bricks, glass, etc.) for four different types of buildings (residential, office, commercial and industrial). With the use of mathematical programming, the DeconRCM provides also the user with the optimal end-of-life management alternative, taking into consideration both economic and environmental criteria. The DSS's capabilities are illustrated through a real world case study of a typical five floor apartment building in Thessaloniki, Greece.  相似文献   

13.
Emission of low molar mass compounds from different polymeric materials was determined and the results from the volatile analysis were applied to predict the degree of degradation and long-term properties, to determine degradation rates and mechanisms, to differentiate between biotic and abiotic degradation and for quality control work. Solid-phase microextraction and solid-phase extraction together with GC-MS were applied to identify and quantify the low molar mass compounds. Volatiles were released and monitored at early stages of degradation before any matrix changes were observed by e.g. SEC, DSC and tensile testing. The analysis of volatiles can thus also be applied to detect small differences between polymeric materials and their susceptibility to degradation. The formation of certain degradation products correlated with the changes taking place in the polymer matrix, these indicator products could, thus, be analysed to rapidly predict the degree of degradation in the polymer matrix and further to predict the long-term properties and remaining lifetime of the product.  相似文献   

14.
Journal of Polymers and the Environment - In this study, carboxymethyl chitosan with gum Arabic (CG) based novel functional films containing Cinnamomum camphora seeds extract (CCSE) at varying...  相似文献   

15.
Journal of Polymers and the Environment - Chitosan is a naturally occurring biological macromolecule and second most abundant polysaccharide next to cellulose, derived from deacetylation of chitin....  相似文献   

16.
A new efficient method for the chemical decomposition of polyamide 6.6 by the glycolysis and amino-glycolysis processes was proposed. The glycolysis was conducted using the mass excess of ethylene glycol (EG) as a decomposing agent in the presence of a catalyst. Also, a mixture of EG and triethylenetetramine was used as another decomposing agent in the amino-glycolysis process. The described process of decomposition did not require the use of elevated pressure. The hydroxyl and amine numbers, rheology behavior and the presence of characteristic chemical groups in the obtained glycolysates and aminoglycolysates were determined in order to characterize the reaction products. The decomposition products were defined as non-Newtonian fluids that could be described by suitable mathematical models. The conducted studies showed that the properties of the obtained intermediates depend on the mass excess of the decomposing agent used. The resulting semi-products are suitable for reusing in the synthesis of polyurethanes, which has been confirmed by the exemplary synthesis. In the reaction, 10 and 15 wt% of commercial polyol were replaced with the recovered intermediates.  相似文献   

17.
The ability of near‐surface disposal facility cover designs to meet percolation performance criteria can be influenced by naturally occurring climatic mechanisms as well as anthropogenic forcing. This study was conducted to determine the effect of climate‐induced events on percolation based, probabilistic distributions derived from historical climate data. Water balance predictions were evaluated using the HELP model, employing several variations of degradation in a traditional RCRA disposal facility cover design over a 100‐year simulation period. Results demonstrated that changes in precipitation and temperature can influence performance. The analysis also revealed that when both precipitation and temperature are increased, warmer temperatures tend to offset some of the impact from greater precipitation. ©2015 Wiley Periodicals, Inc.  相似文献   

18.
Sustainable material management (SMM) has been initiated by the Organization for Economic Cooperation and Development (OECD) in 2005. SMM is an approach to promote resource conservation, reducing negative environmental impacts and preserving the natural capital of material and the balance of economic efficiency and social equity. Life cycle assessment and material flow analysis have been widely used to estimate the environmental impacts for resource consumption, but economic development has not been taken into account. Before 1984, improper garbage disposal was not an important issue in Taiwan. But over the past three decades, the Taiwan Government has accomplished not only waste disposal but also resource recycling, which are conducive to the essence of SMM. This study is the first research project to develop a SMM conceptual model for policy and strategy in Taiwan. SMM is the suitable waste management concept for the next era. This study reviewed the policy and strategy that has been applied in Taiwan’s waste management, and compares the efficiency of waste management policy in Taiwan with the concept of SMM. A case study of the waste flow will be used to prove that the sustainable material policy can be a suitable management system to achieve sustainable development. This study will open a new chapter of research on global SMM for Taiwan.  相似文献   

19.
The substance class of inert organic-chemical stressors (IOCS) describes organic-chemical (macro-) molecules, which demonstrate a high level of persistence upon entry in the ecosystem, and whose degradation is limited. These synthetically produced organic-chemical macromolecules, which are often derived from the polymerization of different monomers, are, in the form of plastics, indispensable in the everyday world. They enter the environmental compartments and cause great damage due to primary (industry, cosmetic, washing of textile), and secondary (degradation) entry. If these particles get into aquatic systems, this has fatal consequences for the ecosystem such as the death of marine animals, or bioaccumulation. Wastewater treatment plants are reaching their limits and require innovative ideas for the sustainable removal of microplastic. This article examines a new approach to the removal of polymers from aquatic systems (lab scale) by using sol–gel induced agglomeration reactions to form larger particle agglomerates. These enlarged agglomerates can be separated much more easily from the wastewater, since they float on the water surface. Separation systems, e.g. sand trap can easily be used. A further advantage is that the agglomeration can be carried out completely independently of the type, size, and amount of the trace substance concentration as well as of the external influences (pH value, temperature, pressure). Thus, this new type of particle separation can not only be used in sewage treatment plants, but can also be transferred to decentralized systems (e.g. implementation in industrial processes).

Graphical Abstract

  相似文献   

20.
A Microsoft Excel spreadsheet‐based design tool has been developed to assist remediation professionals in the design of injection systems for distributing soluble substrate (SS) to enhance in situ anaerobic bioremediation. The user provides site data, design parameters, and unit‐cost information to generate estimates of remediation‐system cost and steady‐state contact efficiency (CESS) for various designs. CESS is estimated from a nonlinear regression equation that includes terms for the SS injection concentration (CI), minimum substrate concentration (CMIN), groundwater travel time between rows of injection wells (TT), SS half‐life (TH), substrate reinjection time interval (TR), and pore volumes of substrate solution injected (PV). With this tool, users can quickly compare the relative costs and performance of different injection alternatives and identify the best design for their specific site conditions. The design process embodied in the tool includes: (1) entering injection‐well configuration and unit costs for well installation, injection, and substrate; (2) determining treatment‐zone dimension; (3) selecting trial injection‐well spacing, time period between substrate reinjection, and injection pore volume; and (4) estimating contact efficiency and capital and life‐cycle costs. This process is then repeated until a final design is selected. In most cases, injection costs increase with increasing CESS. However, the best (highest) ratio of CESS to injection cost typically occurs for CESS in the range of 70 to 80 percent. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号