首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Defensive aggregation by Strongylocentrotus droebachiensis has been invoked as the fulcrum for the transformation of macroalgal beds into coralline barrens in the northwest Atlantic. We critically examined some of the mechanisms contributing to aggregation behavior by experimentally manipulating sea urchins, purported predators and food during autumn 1983 and spring 1984 both in the laboratory and field. We utilized several approaches to examine a range of sea urchin responses to the presence of food, tethered predators, caged predators, crushed con-specifics in the field and predators in laboratory tanks. Some of the field cages had the property of allowing free passage to sea urchins while retaining lobsters; this allowed distinctions to be made between artifacts caused by cage walls or topographic barriers and unrestricted behavioral responses of sea urchins. The results falsified the hypothesis that aggregations of S. droebachiensis are elicited by predators. Except in the presence of algae, sea urchins always avoided decapod predators (but not sea stars) and fled from the vicinity of injured conspecifics. However, avoidance behavior was subordinate to feeding responses, demonstrated by mass migrations of sea urchins into cages (with lobsters) to feed on algae. We reaffirmed by observation and manipulation previous studies which showed that sea urchins aggregate only in the presence of food. Two types of sea urchin groupings were delineated: (1) surficial two dimensional associations, often caused by topographic or other features which inhibited dispersal and (2) cohesive three-dimensional aggregations induced by food.  相似文献   

2.
We investigated the effects of food quality and quantity on reproductive maturation and growth of juveniles of Strongylocentrotus droebachiensis (Müller) in a 22 month laboratory experiment in which we fed sea urchins four diets: (1) kelp (Laminaria spp.) for 6 d wk−1 and mussel (Mytilus spp.) flesh for 1 d wk−1 (KM); (2) kelp for 7 d wk−1 (high ration, KH); (3) kelp for 1 d wk−1 (low ration, KL) and (4) no food other than encrusting coralline algae (NF). At their first and second opportunity for reproduction, all sea urchins in the KM and KH treatments, and most in the KL treatment were reproductively mature, whereas all sea urchins in the NF treatment remained immature. Gonad index differed significantly among all fed treatments at first and second reproduction, and was highest in the KM and lowest in the KL treatment. Gonad index was similar in both sexes at first reproduction, but it was higher in females than in males at second reproduction. Diet had little or no effect on the relative abundance of spermatocytes, spermatozoa, or nutritive phagocytes in testes at first and second reproduction. In ovaries, nutritive phagocytes were significantly more abundant in females in the KM and KH treatments than in the KL treatment at first reproduction, and significantly more abundant in unfed (NF) than fed (KM, KH, KL) females at second reproduction. Mean oocyte size was similar in all fed females at first reproduction, but significantly larger in fed than unfed females at second reproduction. Mean ovum size was similar in all fed females in both reproductive periods. Increase in test diameter was greatest in the KM treatment and smallest in the KL treatment; sea urchins in the NF treatment decreased slightly in size. Survival was 95 to 100% in all fed sea urchins but significantly lower in unfed ones. The feeding rate on kelp was significantly greater in the KL than the KM and KH treatments. In the KM treatment, the feeding rate on kelp increased significantly over a 6 d period after mussel flesh was provided. Our results demonstrate that a diet of high food quality and quantity accelerates reproductive maturation and growth rate, and enhances gonad production and survival in juvenile and young adult S. droebachiensis. These findings contribute to our understanding of the reproductive ecology of S. droebachiensis in habitats with differing food supplies (e.g., kelp beds and barrens). Our results also can be used to improve aquacultural practices for sea urchins. Received: 3 June 1998 / Accepted: 2 February 1999  相似文献   

3.
Field observations and manipulative experiments in a nearshore cobble bed (2 to 3 m below mean low water) at Eagle Head, Nova Scotia, Canada, between 1984 and 1986, showed that small juveniles ofStrongylocentrotus droebachiensis (3 to 6 mm diam) sheltering beneath cobbles had a refuge from predators such as rock crabs, small lobsters, and fish. Sea urchins gradually outgrew these refuges and small adults (25 to 30 mm) required larger rocks as shelter from predators, particularly large cancrid crabs. Small juveniles were usually solitary and well dispersed beneath cobbles, whereas small adults tended to aggregate on the undersides and in the interstices of boulders. These aggregations may develop passively as sea urchins accumulate in suitablysized refuges. Chemotaxis experiments indicate that juvenileS. droebachiensis are repelled by waterborne stimuli from conspecifics. In a factorial experiment, effects of the presence of potential predators (rock crabs and lobsters) and/or food (kelp) on the behaviour of large juvenile (10 to 15 mm) and small adult sea urchins were examined in flowing seawater tanks. Both size classes formed exposed feeding aggregations when kelp was provided as food, irrespective of the presence or absence of predators. In the absence of kelp, each size class responded differently to the presence of a predator: juveniles became more cryptic, whereas adults aggregated on the tank sides. Increased movement to the sides of a tank in the presence of a predator may reflect a flight response, since chemotaxis experiments indicated thatS. droebachiensis is repelled by waterborne chemical stimuli from predators. Observational and experimental data suggest that predation at the late juvenile and early adult stages may influence population structure, distribution and abundance ofS. droebachiensis.  相似文献   

4.
Dinitrogen fixation associated with bacteria in the gastrointestinal tract of sea urchins appears to be a widespread phenomenon: sea urchins from the tropics (Diadema antillarum, Echinometra lacunter, Tripneustes ventricosus), the temperature zone (Strongylocentrotus droebachiensis) and the arctic (S. droebachiensis) exhibited nitrogenase activity (C2H2 reduction). Pronounced seasonal variation was found in nitrogenase activity of temperate sea urchins feeding on kelp (Laminaria spp.) and eelgrass (Zostera marina). The mean monthly nitrogenase activity was inversely correlated with the nitrogen content of the sea urchin's food, which varied up to fivefold over the course of a year. The highest rate of nitrogenase activity recorded for a temperate sea urchin during the 14 month sampling period was 11.6g N fixed g wet wt-1 d-1, with a yearly mean activity of 1.36 g N fixed g wet wt-1 d-1. Studies with 15N confirmed the C2H2 reduction results and showed incorporation of microbially-fixed nitrogen into S. droebachiensis demonstrating that N2 fixation can be a source of N for the sea urchin. Laboratory experiments indicated that part of the sea urchin's (S. droebachiensis) normal gastrointestinal microflora is responsible for the observed nitrogenase activity.  相似文献   

5.
Gut analyses of the green sea urchin Strongylocentrotus droebachiensis (O. F. Müller) demonstrated that perennial phaeophytes, mostly fucoids and Alaria esculenta, were predominant in the diet. Ephemeral species, coralline algae and animals, were consumed in smaller amounts when available. Grazing by the urchins is evidently responsible for the dearth of non-coralline sublittoral algae in Newfoundland waters. Lobsters, rock crabs, purple sea stars, other urchins, and a variety of fishes and birds feed on S. droebachiensis, but predation is apparently not effective in limiting the abundance of the urchin.Studies in Biology from the Memorial University of Newfoundland No. 234.Contribution from the Marine Sciences Research Laboratory No. 66.  相似文献   

6.
Like species of sea urchins in Zanzibar and Oregon (USA), Echinometra mathaei (de Blainville) at Rottnest Island, Western Australia, displays variation in the size of Aristotle's lantern relative to the maximum diameter of the test. This variation was associated with local variations in density of urchins at each of two sites in each of two years (1980 and 1981); this association with density was consistent with the proposal that relatively larger lanterns are a response to decreased food availability. Furthermore, variation of relative lantern size associated with local density was similar in magnitude to the variation displayed between sites and between years. This temporal variation demonstrated the plasticity of the relative lantern size over periods as short as 12 mo. Further experimental studies are required before relative length of lanterns can be used as estimates of food availability.  相似文献   

7.
Stomach contents of the sea star species Astropecten aranciacus (L.) and A. bispinosus (Otto) consisted of roughly the same sort of prey, mostly bivalves and irregular sea urchins. However, the two predators ingested prey of different size classes. The stomach contents of A. bispinosus reflected the size distribution of the benthic macrofauna, while larger prey was more frequent in the stomach contents of A. aranciacus. As the density of prey in the investigated area is low, A. aranciacus and A. bispinosus are likely to compete for food. Possible mechanisms reducing the effect of competition are discussed.  相似文献   

8.
To determine the effects food ration and feeding regime on growth and reproduction of Strongylocentrotus droebachiensis (Müller), sea urchins in laboratory aquaria were fed kelp (Laminaria longicruris) supplied at either a high (H, ad libidum daily) or a low (L, ad libidum 1 d wk−1) ration in two successive 12-wk intervals during the reproductive period. After 24 wk, urchins fed the high ration continuously (HH) or for the last 12 wk only (LH) had a significantly greater mean gonad index [(gonad weight/total body weight) × 100] and body weight than urchins fed the low ration continuously (LL) or for the last 12 wk only (HL). Urchins in the HL treatment had a significantly greater gonad index than those in the LL treatment; there was no significant difference in gonad index between the LH and HH treatments. Females had a greater gonad index than males in the low ration (LL and HL) treatments at the end of the experiment; there was no significant difference between sexes in the high ration (LH, HH) treatments. Gametogenesis proceeded to maturation in all treatments and some individuals spawned at the end of the experiment. Females in the high ration (HH and LH) treatments had a greater proportion of nutritive phagocytes in their ovaries than females in the low ration treatments, but there was no effect of feeding treatment on oocyte or ovum size. Feeding treatment had no effect on the relative abundance of nutritive phagocytes in the testes, although the proportion of spermatocytes was higher (and that of spermatozoa lower) in the high ration than in the low ration treatments. Urchins in the high ration treatments had a lower mean jaw height index [(jaw height/test diameter) × 100] and greater mean test diameter than those in the low ration treatments at the end of the experiment, although these differences were not statistically significant. Feeding rate on kelp at the end of the experiment was significantly greater for urchins in the low ration than in the high ration treatments. Our experimental results show that even relatively low rations of kelp support somatic and gonadal growth in S. droebachiensis. Increasing the supply of kelp, particularly during the period of active gametogenesis, results in maximal rates of growth and reproduction. These results suggest that populations of S. droebachiensis in barrens may derive a substantial proportion of their nutrition from drift kelp, which may contribute to their persistence in these habitats. They also explain the large body size, high reproductive effort and fecundity of urchins grazing on kelp beds. These findings have important implications for understanding the dynamics of natural populations of S. droebachiensis and for development of effective aquacultural practices. Received: 17 February 1997 / Accepted: 5 March 1997  相似文献   

9.
We monitored the reproductive cycle of Strongylocentrotus droebachiensis (OF Müller) between April 1993 and August 1995 in kelp beds, barren grounds and grazing fronts at both a wave-exposed and a sheltered site along the Atlantic coast of Nova Scotia. Gonad index and histological analyses showed that S. droebachiensis has an annual reproductive cycle that is synchronous across sites and habitats, and between females and males. Spawning occurs in March/April of each year but a small proportion of sea urchins in the study populations also spawned in fall 1995. During most of the year, sea urchins in kelp beds and grazing fronts have a higher gonad index than those in barren grounds. Gonad indices also tended to be higher at the wave-exposed than the sheltered site. Interannual variability in peak gonad index was significant in the barren grounds at the wave-exposed site and in the grazing front at the sheltered site. The gametogenic cycle is characterized by six stages based on the abundance of nutritive and germinal/gametic cells. Nutritive phagocytes are abundant after spawning and replaced by increasing numbers of germinal and gametic cells as the gametogenic cycle progresses. The temporal patterns of abundance of each cell type were similar among habitats indicating that the gonads were qualitatively similar despite large differences in gonadal mass. The quantity of gut contents (ratio of food volume to body volume) was similar among habitats, but the quality (percentage of organic material) tended to be higher in kelp beds and grazing fronts than in barren grounds suggesting that differences in gonad index of S. droebachiensis in different habitats are related to differences in diet. The high density of sea urchins in grazing fronts combined with their high fecundity suggests that they make the greatest contribution, per unit area, to the overall larval pool. Received: 20 May 1997 / Accepted: 21 January 1998  相似文献   

10.
The gonads of sea urchins undergo large changes in mass during their gametogenic cycle. In addition, they have relatively low aerobic capacities and are poorly perfused by the circulatory system and thus are continually hypoxic or anoxic. The present study of Strongylocentrotus droebachiensis investigates seasonal changes in the relationships among mass of the ovaries, pH and PO2 of the perivisceral coelomic fluid which bathes the ovaries, and partitioning of ovary energy metabolism into its anaerobic and aerobic components. S. droebachiensis were collected at Blue Hill Falls, Maine, USA, from August 1982 to March 1984. We found that from 76 to 92% of the heat dissipated by isolated ovaries of the sea urchin S. droebachiensis derives from anaerobic energy metabolism at partial pressures of oxygen prevailing in vivo. Ovaries from S. droebachiensis have the capacity to produce large amounts of lactate under imposed anoxia, but lactate accounts for only 37% of the total anoxic heat dissipation, which suggests that other end products of anaerobiosis are present. Seasonal changes in pH and PO2 of the perivisceral coelomic fluid can be explained by a complex relationship among changes in temperature, reproductive condition, and anaerobic and aerobic metabolism in the ovaries, gut and body wall. Seasonal changes in the buffering capacity of the perivisceral coelomic fluid must be determined before the effects of respiratory and metabolic acid production on the acid-base status of the coelomic fluid can be fully understood.  相似文献   

11.
Migrating feeding aggregations (or fronts) of sea urchins can dramatically alter subtidal seascapes by destructively grazing macrophytes. While direct effects of urchin fronts on macrophytes (particularly kelps) are well documented, indirect effects on associated fauna are largely unknown. Secondary aggregations of predators and scavengers form around fronts of Strongylocentrotus droebachiensis in Nova Scotia. We recorded mean densities of the sea stars Asterias spp. (mainly A. rubens) and Henricia sanguinolenta of up to 11.6 and 1.7 individuals 0.25 m−2 along an urchin front over 1 year. For Asterias, mean density at the front was 7 and 15 times greater than in the kelp bed and adjacent barrens, respectively. There was strong concordance between locations of peak density of urchins and sea stars (Asterias r = 0.98; H. sanguinolenta r = 0.97) along transects across the kelp–barrens interface, indicating that sea star aggregations migrated along with the urchin front at rates of up to 2.5 m per month. Size–frequency distributions suggest that Asterias at the front were drawn from both the barrens (smaller individuals) and the kelp bed (larger individuals). These sea stars fed intensively on mussels on kelp holdfasts and in adjacent patches. Urchin grazing may precipitate aggregations of sea stars and other predators or scavengers by incidentally consuming or damaging mussels and other small invertebrates, and thereby releasing a strong odor cue. Consumption of protective holdfasts and turf algae by urchins could facilitate feeding by these consumers, which may obtain a substantial energy subsidy during destructive grazing events.  相似文献   

12.
The rocky subtidal community off the Atlantic coast of Nova Scotia has historically undergone a cyclical transition between Laminaria-dominated kelp beds and sea urchin-dominated barrens. Since the introduction of the invasive alga Codium fragile ssp. tomentosoides, a third community state has emerged: Codium-dominated algal beds. We conducted a 42-week feeding experiment in the laboratory, which mimicked the quantity and quality of food available to urchins (Strongylocentrotus droebachiensis) in each of these community states. Feeding rate, growth, reproduction, and survival of urchins fed either Laminaria longicruris or C. fragile ad libidum, or L. longicruris 2 days per month, were measured. Although the ad libidum feeding rate on C. fragile was higher than that on kelp, energy intake was lower. Urchins in the ad libidum kelp treatment were larger and had larger gonads than those in the C. fragile treatment. Urchins fed kelp infrequently exhibited little somatic and gonadic growth over the course of the experiment. Regression analysis revealed that urchin performance on these diets was strongly related to energy intake. Diet treatment had no effect on survival or gonad maturation. Although urchins can consume substantial amounts of C. fragile, it appears that they cannot, or do not, feed quickly enough to compensate for its lower nutritional value. Our results suggest that, although urchins feeding on C. fragile are capable of surviving, growing, and reproducing, the replacement of kelp by C. fragile in some areas might negatively affect urchin populations as they continue to repopulate the shallow subtidal zone.  相似文献   

13.
Non-indigenous ascidians are known to significantly alter the structure and composition of benthic communities and adversely affect shellfish aquaculture by fouling both the cultured species and the infrastructure. The ability of these species to persist in new locations and their current and potential distributions are dependent upon physiological tolerances to environmental factors and biotic resistance to competition and predation. Despite significant data on global invasion patterns, potential biotic resistance to non-indigenous ascidians is poorly understood. We identified potential predators of four non-indigenous ascidians (Styela clava, Botryllus schlosseri, Botrylloides violaceus, and Didemnum vexillum) in British Columbia (BC), Canada in order to: (1) assess the potential for biotic interference to limit the establishment and/or spread of these ascidian species in BC, and (2) identify candidate species to be used as ascidian biofouling control agents in shellfish aquaculture. Using a series of single- and multiple-choice laboratory experiments, potential benthic predators (including various species of molluscs, echinoderms, and arthropods) were offered non-indigenous ascidians as prey. The sea urchins Strongylocentrotus droebachiensis and Strongylocentrotus franciscanus, the sea stars Dermasterias imbricata and Evasterias troschelii, the nudibranch Hermissenda crassicornis, and the crabs Cancer productus and Carcinus maenas were found to consume one or more species of non-indigenous ascidians in single-choice experiments. However, when provided a choice, all predators chose their respective preferred food over ascidians. Thus, predation alone is unlikely to prevent large-scale establishment and spread of non-indigenous ascidians in BC, but it may have the potential to significantly reduce localized populations of ascidians. Green sea urchins, S. droebachiensis, were found to be efficient grazers of all four ascidian species, consuming 12.7 ± 5.14 cm2 (mean ± SD) of adult B. violaceus over a 3-day period, 15 ± 3.7 juvenile colonies of B. violaceus over a 2-day period, and 63 ± 28.8 juvenile colonies of B. schlosseri over a 2-day period. Using sea urchins as biological control organisms may significantly reduce ascidian fouling in shellfish aquaculture.  相似文献   

14.
C. Lang  K. H. Mann 《Marine Biology》1976,36(4):321-326
In St. Margaret's Bay, Nova Scotia, Canada, there are large areas in which sea urchins (Strongylocentrotus droebachiensis) have eliminated beds of kelp (Laminaria spp.). Sites were identified where destruction of kelp beds had taken place 1, 2, 3, 3.5 and 4 years ago. With increase of time since kelp disappearance, the sea urchins showed decreased growth rate, reduced gonad size, but an increase in numbers resulting from high recruitment rates in the first two years after kelp bed destruction. These sea urchin populations, by their browsing, effectively prevent the regeneration of kelp. There is, as yet, no evidence of the sea urchin populations being starved out to allow the kelp to return.  相似文献   

15.
Field sampling and laboratory experiments examined whether ultraviolet radiation (UVR) affects the reproduction or the accumulation of mycosporine-like amino acids (MAAs) and ascorbic acid in ovaries of the green sea urchin Strongylocentrotus droebachiensis (Müller). Ovaries of sea urchins sampled across a depth gradient (0.5–10 m) in March 1998 did not differ in their gonadal index, or in concentrations of MAAs, or ascorbic acid. Concentrations of MAAs and ascorbic acid in ovaries were higher in sea urchins collected from a kelp bed compared with those collected from a community of crustose coralline algae. The concentrations of MAAs in ovaries varied seasonally, peaking in March, when sea urchins had high gonadal indices just before spawning. Ovaries of sea urchins maintained on controlled diets from October 1997 to April 1998 accumulated significantly higher concentrations of MAAs when fed a diet rich in MAAs than did ovaries of sea urchins fed an alga lacking MAAs, but the gonadal indices did not differ between diets. Sea urchins accumulated principally one MAA, shinorine, but not others that were available in high concentrations in their diet. Neither the gonadal index nor the ovarian concentrations of MAAs were affected by daily exposure of adult urchins to UVR for 6 months. Concentrations of ascorbic acid in ovaries did not differ among diets or UV-treatments. The percentages of nutritive phagocytes and gametic cells were not affected by diet or UVR, and did not co-vary with concentrations of MAAs or ascorbic acid in ovaries. These data support previous demonstrations that female sea urchins accumulate MAAs from their diet of macroalgae, but further show that the accumulation is selective for specific MAAs, particularly shinorine, and that adult S. droebachiensis do not accumulate MAAs in their ovaries or eggs in response to UV-exposure. These are also the first experimental studies to address whether MAAs are affected by or regulate gametogenesis, and indicate that they do not. Received: 5 May 2000 / Accepted: 29 September 2000  相似文献   

16.
Interactions between the predatory sea star Pycnopodia helianthoides (Brandt, 1835) and two of its natural prey, the sea urchins Strongylocentrotus purpuratus (Stimpson, 1857) and S. franciscanus (Agassiz, 1863), are examined with regard to predator preference, predator diet, and prey defenses. The sea star is able to detect both species of sea urchin upstream in a Y-trough, but does not consistently choose one over the other (i.e., no preference). However, when the sea star is presented with equal numbers of similar-sized specimens of the two species of sea urchin, its diet is markedly nonrandom, since S. purpuratus is eaten almost 98% of the time. The defensive responses of the two species of sea urchin differ in form and effectiveness. S. franciscanus employs its long spines as defensive weapons, pinching the rays of an attacking sea star. This defensive response is more effective than the pedicellarial response used by S. purpuratus. The nonrandom diet of the predator seems to result primarily from prey defensive responses that differ in effectiveness, rather than from an intrinsic, behavioral preference of the predator at an earlier stage in the predator/prey interaction.  相似文献   

17.
Changing lobster abundance and the destruction of kelp beds by sea urchins   总被引:1,自引:0,他引:1  
In a study area in Nova Scotia, Canada, abundance of the lobster Homarus americanus decreased by nearly 50% in 14 years. The lobster is a major predator of sea urchins, and during the past 6 years the sea urchin Strongylocentrotus droebachiensis has destroyed 70% of the beds of Laminaria spp. in the area. Implications for management are discussed.  相似文献   

18.
Juvenile red sea urchins, Strongylocentrotus franciscanus, aggregate under adult conspecifics, whereas sympatric juvenile green sea urchins, Strongylocentrotus droebachiensis, are typically more solitary and dispersed. Neither the potential advantage of juvenile sheltering nor the differences in post-settlement behavior between the two species has been demonstrated experimentally, but may be related to protection from predators and/or hydrodynamics. In predation experiments, juvenile vulnerability differed in the two species as the seastar Pycnopodia helianthoides consistently chose juvenile S. franciscanus over S. droebachiensis (100% vs. 0%). When associated with adults, juvenile mortality decreased dramatically in S. franciscanus (90% alone vs. 5% with adults), but very little in S. droebachiensis (85% vs. 75%). Not surprisingly, juvenile behavioral responses in the two species reflect this difference in vulnerability. Juvenile S. franciscanus sheltered under adults when predation risk was high, but not when risk was low (44% vs. 13%), whereas sheltering in S. droebachiensis was infrequent and not related to predation risk (7% for high risk versus 5% for low risk). From a hydrodynamic perspective, the presence of an adult led to the creation of a hydrodynamic refuge for juveniles, where average water velocities were reduced by > 60% around the adult urchin. Again, striking differences in sheltering rate were apparent in S. franciscanus (52% vs. 13% for high flow and low flow, respectively), but not S. droebachiensis (5% for high flow versus 4% for low flow). Sheltering behavior was also species-specific as juveniles did not shelter at high rates under adults of the opposite species (≤ 16%). A field survey confirmed these finding in that juvenile S. franciscanus abundance was associated with both adults and water motion (R 2 = 0.80, P = 0.008, best-subsets regression). These results suggest that sheltering confers juvenile S. franciscanus with a degree of protection from predators and water motion, and that species-specific differences in this post-settlement behavior may be related to the differences in the protection afforded by adults.  相似文献   

19.
Large populations of sea urchins, Strongylocentrotus droebachiensis (Müller), destroyed kelp beds along the Atlantic coast of Nova Scotia in the 1960's and 1970's. The origin of these large sea urchin populations is not understood. We have investigated the potential influence of variable growth and development of the planktonic larvae of sea urchins (in response to temperature and food abundance) on recruitment of benthic juveniles. The adult sea urchins were collected at Sandy Cove, Digby County, Nova Scotia, Canada, in December 1986. Temperature strongly affected larval size and the growth of the echinus rudiment within the range 3° to 9°C, and larvae grew most rapidly at 14°C. Food abundance had a smaller effect on larval growth, and these effects were apparent only at high temperature. Larvae fed the same concentration of two different algal food species grew and developed similarly. Correspondence between spring temperature variation and qualitative variation in sea urchin recruitment, as well as strong temperature effects on larval growth in culture, and the occurrence of a large, positive temperature anomaly in June 1960, all suggest that temperature effects on larval growth and development may have led to intense sea urchin recruitment in 1960 and the appearance of large adult populations 4 to 6 yr later. This result invites further research.  相似文献   

20.
K. Sivertsen 《Marine Biology》1996,126(4):703-714
The incidence, occurrence and distribution of the nematode Echinomermella matsi (Jones and Hagen) in its host, the echinoid Strongylocentrotus droebachiensis Müller, were examined in Norwegian waters from Nordmre (63° N) to the Russian border (70° N) in a range of habitats (e.g. kelp cover and community type) from 1982 to 1992. The results are used to examine the likely influence of the parasite on fitness (individual growth and gonad production) and its potential in regulating the population size of its echinoid host. The nematode infections are restricted to areas between Vikna (Vega) and middle Troms, with the highest prevalence (40 to 88% infected) in the Bodø area, the focus of the distribution. The prevalence rates are similar on kelp beds and barren grounds. No difference in growth rates between infected and noninfected sea urchins was found. Nematode-infected sea urchins in kelp bed populations had gonads weighing about one-sixth of those of equivalent uninfected individuals. This indicates that nematodes are really parasites causing reduced reproductive capacity. Areas with high prevalence (>40% infected) of nematodes had low sea urchin densities. High nematode intensities were found in the areas with high prevalence. The mean abundance in high prevalence areas was highest (eight nematodes) in the 4-to 7-yr-old age group and decreased to zero among the oldest age groups. The ratio of variance/mean abundance was also highest among 5-to 8-yr-old sea urchins. At highly and slightly infected locations, the relationships between the log of the variance and the log of the mean abundance of parasites were 1.35 and 1.69, respectively. Measurements of the frequency distribution of nematodes in sea urchins and the corresponding estimates of the negative binomial distribution showed significantly higher counts in estimated than observed subpopulations exceeding 20 nematodes per sea urchin. These results may explain nematode-induced sea urchin mortality. The low density of the host in the Bodø area, which had high prevalence, may be a result of increased host mortality caused by nematodes, by lower recruitment because of reduced gonad production, or by other factors. Low prevalence among older sea urchins may be caused by nematodeinduced host mortality or by cycles in infection. However, studies on the life cycle of the nematode and long term investigations of host density and nematode intensity/prevalence will be needed before any true conclusions can can be drawn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号