首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Abstract: This is the first in a series of three articles designed to establish empirically defined biological indicators and thresholds for impairment for urbanized catchments, and to describe a process by which the biological condition of waterbodies in urbanized catchments can be applied. This article describes alternative gradients of urbanization for assessing and selecting a nationally applicable biological index (article 2 – Purcell et al., this issue ) and defining the potential of biological communities within a gradient of cumulative stressors (article 3 – Paul et al. this issue ). Gradients were designed to represent the most prominent mosaic of stressors found in urban settings. A primary urban gradient was assembled based on readily obtained information of urbanization to include three broad‐scale parameters: percent urban land use/land cover, population density, and road density. This gradient was used as the standard by which alternative urban gradients, which included fine‐scale instream chemical and hydrologic parameters, were assessed. Five alternative gradients were developed to provide numerous environmental management options based on availability of data from water program resources. The urban gradients were developed with the intent that they be applied throughout the country; therefore, data from three different regions of the United States (Mid‐Atlantic, Midwest, and Pacific Coast) were used to validate the urban gradient model. Our study showed that a relatively straightforward stressor gradient consisting of human population density, road density, and urban land use is useful in providing a framework for developing relevant biological indicators and evaluating the potential of biological communities as a basis for assessing attainment of designated aquatic life use.  相似文献   

2.
Brown, Juliane B., Lori A. Sprague, and Jean A. Dupree, 2011. Nutrient Sources and Transport in the Missouri River Basin, With Emphasis on the Effects of Irrigation and Reservoirs. Journal of the American Water Resources Association (JAWRA) 47(5):1034‐1060. DOI: 10.1111/j.1752‐1688.2011.00584.x Abstract: SPAtially Referenced Regressions On Watershed attributes (SPARROW) models were used to relate instream nutrient loads to sources and factors influencing the transport of nutrients in the Missouri River Basin. Agricultural inputs from fertilizer and manure were the largest nutrient sources throughout a large part of the basin, although atmospheric and urban inputs were important sources in some areas. Sediment mobilized from stream channels was a source of phosphorus in medium and larger streams. Irrigation on agricultural land was estimated to decrease the nitrogen load reaching the Mississippi River by as much as 17%, likely as a result of increased anoxia and denitrification in the soil zone. Approximately 16% of the nitrogen load and 33% of the phosphorus load that would have otherwise reached the Mississippi River was retained in reservoirs and lakes throughout the basin. Nearly half of the total attenuation occurred in the eight largest water bodies. Unlike the other major tributary basins, nearly the entire instream nutrient load leaving the outlet of the Platte and Kansas River subbasins reached the Mississippi River. Most of the larger reservoirs and lakes in the Platte River subbasin are upstream of the major sources, whereas in the Kansas River subbasin, most of the source inputs are in the southeast part of the subbasin where characteristics of the area and proximity to the Missouri River facilitate delivery of nutrients to the Mississippi River.  相似文献   

3.
Abstract: In efforts to control the degradation of water quality in Lake Tahoe, public agencies have monitored surface water discharge and concentrations of nitrogen, phosphorus, and suspended sediment in two separate sampling programs. The first program focuses on 20 watersheds varying in size from 162 to 14,000 ha, with continuous stream gaging and periodic sampling; the second focuses on small urbanized catchments, with automated sampling during runoff events. Using data from both programs, we addressed the questions (1) what are the fluxes and concentrations of nitrogen and phosphorus entering the lake from surface runoff; (2) how do the fluxes and concentrations vary in space and time; and (3) how are they related to land use and watershed characteristics? To answer these questions, we calculated discharge‐weighted average concentrations and annual fluxes and used multiple regression to relate those variable to a suite of GIS‐derived explanatory variables. The final selected regression models explain 47‐62% of the variance in constituent concentrations in the stormwater monitoring catchments, and 45‐72% of the variance in mean annual yields in the larger watersheds. The results emphasize the importance of impervious surface and residential density as factors in water quality degradation, and well‐developed soil as a factor in water quality maintenance.  相似文献   

4.
Preston, Stephen D., Richard B. Alexander, Gregory E. Schwarz, and Charles G. Crawford, 2011. Factors Affecting Stream Nutrient Loads: A Synthesis of Regional SPARROW Model Results for the Continental United States. Journal of the American Water Resources Association (JAWRA) 47(5):891‐915. DOI: 10.1111/j.1752‐1688.2011.00577.x Abstract: We compared the results of 12 recently calibrated regional SPARROW (SPAtially Referenced Regressions On Watershed attributes) models covering most of the continental United States to evaluate the consistency and regional differences in factors affecting stream nutrient loads. The models – 6 for total nitrogen and 6 for total phosphorus – all provide similar levels of prediction accuracy, but those for major river basins in the eastern half of the country were somewhat more accurate. The models simulate long‐term mean annual stream nutrient loads as a function of a wide range of known sources and climatic (precipitation, temperature), landscape (e.g., soils, geology), and aquatic factors affecting nutrient fate and transport. The results confirm the dominant effects of urban and agricultural sources on stream nutrient loads nationally and regionally, but reveal considerable spatial variability in the specific types of sources that control water quality. These include regional differences in the relative importance of different types of urban (municipal and industrial point vs. diffuse urban runoff) and agriculture (crop cultivation vs. animal waste) sources, as well as the effects of atmospheric deposition, mining, and background (e.g., soil phosphorus) sources on stream nutrients. Overall, we found that the SPARROW model results provide a consistent set of information for identifying the major sources and environmental factors affecting nutrient fate and transport in United States watersheds at regional and subregional scales.  相似文献   

5.
In the Piedmont of North Carolina, a traditionally water‐rich region, reservoirs that serve over 1 million people are under increasing pressure due to naturally occurring droughts and increasing land development. Innovative development approaches aim to maintain hydrologic conditions of the undisturbed landscape, but are based on insufficient target information. This study uses the hydrologic landscape concept to evaluate reference hydrology in small headwater catchments surrounding Falls Lake, a reservoir serving Raleigh and the greater Triangle area. Researchers collected one year of detailed data on water balance components, including precipitation, evapotranspiration, streamflow, and shallow subsurface storage from two headwater catchments representative of two hydrologic landscapes defined by differences in soils and topographic characteristics. The two catchments are similar in size and lie within the same physiographic region, and during the study period they showed similar water balances of 26‐30% Q, ?4 to 5% ΔS, 59‐65% evapotranspiration, and 9‐10% G. However, the steeper, more elevated catchment exhibited perennial streamflow and nongrowing season runoff ratios (Q/P) of 33%, whereas the flat, low‐lying stream was drier during the growing season and exhibited Q/P ratios of 52% during the nongrowing season. A hydrologic landscape defined by topography and soil characteristics helps characterize local‐scale reference hydrology and may contribute to better land management decisions.  相似文献   

6.
We conducted a 3-year study designed to examine the relationship between disturbance from military land use and stream physical and organic matter variables within 12 small (<5.5 km2) Southeastern Plains catchments at the Fort Benning Military Installation, Georgia, USA. Primary land-use categories were based on percentages of bare ground and road cover and nonforested land (grasslands, sparse vegetation, shrublands, fields) in catchments and natural catchments features, including soils (% sandy soils) and catchment size (area). We quantified stream flashiness (determined by slope of recession limbs of storm hydrographs), streambed instability (measured by relative changes in bed height over time), organic matter storage [coarse wood debris (CWD) relative abundance, benthic particulate organic matter (BPOM)] and stream-water dissolved organic carbon concentration (DOC). Stream flashiness was positively correlated with average storm magnitude and percent of the catchment with sandy soil, whereas streambed instability was related to percent of the catchment containing nonforested (disturbed) land. The proportions of in-stream CWD and sediment BPOM, and stream-water DOC were negatively related to the percent of bare ground and road cover in catchments. Collectively, our results suggest that the amount of catchment disturbance causing denuded vegetation and exposed, mobile soil is (1) a key terrestrial influence on stream geomorphology and hydrology and (2) a greater determinant of in-stream organic matter conditions than is natural geomorphic or topographic variation (catchment size, soil type) in these systems.  相似文献   

7.
Boosted regression tree (BRT) models were developed to quantify the nonlinear relationships between landscape variables and nutrient concentrations in a mesoscale mixed land cover watershed during base‐flow conditions. Factors that affect instream biological components, based on the Index of Biotic Integrity (IBI), were also analyzed. Seasonal BRT models at two spatial scales (watershed and riparian buffered area [RBA]) for nitrite‐nitrate (NO2‐NO3), total Kjeldahl nitrogen, and total phosphorus (TP) and annual models for the IBI score were developed. Two primary factors — location within the watershed (i.e., geographic position, stream order, and distance to a downstream confluence) and percentage of urban land cover (both scales) — emerged as important predictor variables. Latitude and longitude interacted with other factors to explain the variability in summer NO2‐NO3 concentrations and IBI scores. BRT results also suggested that location might be associated with indicators of sources (e.g., land cover), runoff potential (e.g., soil and topographic factors), and processes not easily represented by spatial data indicators. Runoff indicators (e.g., Hydrological Soil Group D and Topographic Wetness Indices) explained a substantial portion of the variability in nutrient concentrations as did point sources for TP in the summer months. The results from our BRT approach can help prioritize areas for nutrient management in mixed‐use and heavily impacted watersheds.  相似文献   

8.
Abstract: Computer simulation models are used extensively for the development of total maximum daily loads (TMDLs). Specifically, the Hydrological Simulation Program‐FORTRAN (HSPF) is used in Virginia for the development of TMDLs for bacteria impairments. HSPF estimates discharge from a reach using function tables (FTABLES). The FTABLE relates stream stage, surface area, and volume to discharge from a reach. In this study, five FTABLE estimation methods were assessed by comparing their effect on various simulation outputs. Four “field‐based” methods used detailed cross‐sectional data collected via site surveys. A fifth “digital‐based” method used digital elevation data in combination with the Natural Resources Conservation Service Regional Hydraulic Geometry Curves. Sets of FTABLEs created using each method were used in simulations of instream bacteria concentration for a Virginia watershed. Several statistics relating to instream bacteria including long‐term average concentration, die‐off, and the violation rate of Virginia’s bacteria criterion were compared. The pair‐wise Student’s t‐test was used for the comparison. The HSPF simulations that used FTABLES estimated from digitally based data consistently produced significantly higher long‐term average instream fecal bacteria concentrations, significantly lower instream fecal bacteria die‐off, which is related to differences in residence time in the streams, and significantly higher water quality criterion violation rates.  相似文献   

9.
/ Fish and macroinvertebrate assemblage composition, instream habitat features and surrounding land use were assessed in an agriculturally developed watershed to relate overall biotic condition to patterns of land use and channel structure. Six 100-m reaches were sampled on each of three first-order warm-water tributaries of the River Raisin in southeastern Michigan. Comparisons among sites and tributaries showed considerable variability in fish assemblages measured with the index of biotic integrity, macroinvertebrate assemblages characterized with several diversity indexes, and both quantitative and qualitative measurements of instream habitat structure. Land use immediate to the tributaries predicted biotic condition better than regional land use, but was less important than local habitat variables in explaining the variability observed in fish and macroinvertebrate assemblages. Fish and macroinvertebrates appeared to respond differently to landscape configuration and habitat variables as well. Fish showed a stronger relationship to flow variability and immediate land use, while macroinvertebrates correlated most strongly with dominant substrate. Although significant, the relationships between instream habitat variables and immediate land use explained only a modest amount of the variability observed. A prior study of this watershed ascribed greater predictive power to land use. In comparison to our study design, this study covered a larger area, providing greater contrast among subcatchments. Differences in outcomes suggests that the scale of investigation influences the strength of predictive variables. Thus, we concluded that the importance of local habitat conditions is best revealed by comparisons at the within-subcatchment scale. KEY WORDS: Stream; Biomonitoring; Land use; Scale; Habitat; Fish; Macroinvertebrates  相似文献   

10.
Phosphorus leaching in relation to soil type and soil phosphorus content   总被引:6,自引:0,他引:6  
Phosphorus losses from arable soils contribute to eutrophication of freshwater systems. In addition to losses through surface runoff, leaching has lately gained increased attention as an important P transport pathway. Increased P levels in arable soils have highlighted the necessity of establishing a relationship between actual P leaching and soil P levels. In this study, we measured leaching of total phosphorus (TP) and dissolved reactive phosphorus (DRP) during three years in undisturbed soil columns of five soils. The soils were collected at sites, established between 1957 and 1966, included in a long-term Swedish fertility experiment with four P fertilization levels at each site. Total P losses varied between 0.03 and 1.09 kg ha(-1) yr(-1), but no general correlation could be found between P concentrations and soil test P (Olsen P and phosphorus content in ammonium lactate extract [P-AL]) or P sorption indices (single-point phosphorus sorption index [PSI] and P sorption saturation) of the topsoil. Instead, water transport mechanism through the soil and subsoil properties seemed to be more important for P leaching than soil test P value in the topsoil. In one soil, where preferential flow was the dominant water transport pathway, water and P bypassed the high sorption capacity of the subsoil, resulting in high losses. On the other hand, P leaching from some soils was low in spite of high P applications due to high P sorption capacity in the subsoil. Therefore, site-specific factors may serve as indicators for P leaching losses, but a single, general indicator for all soil types was not found in this study.  相似文献   

11.
ABSTRACT: Water quality trading is a voluntary economic process that provides an opportunity for dischargers to reduce the costs associated with meeting a discharge limitation. Trading can provide a cost effective solution for point sources (i.e., wastewater treatment plants) to meet strict effluent limitations set in response to total maximum daily loads (TMDLs). A successful trading program often depends on first determining the trading suitability of a pollutant for a particular watershed. A simple technical approach has been developed to identify sub‐watersheds within the Raritan River Basin, New Jersey, where water quality trading could provide a cost effective and scientifically feasible method for addressing total phosphorus impairments. The methodology presented will serve as a model to conduct similar analyses in other watersheds. The Raritan River Basin was divided into 12 subwatershed‐based study areas. Point‐nonpoint source trading opportunities were examined for each study area by examining the point and nonpoint source total phosphorus loading to impaired water bodies. Of the 12 subwatersheds examined, four had a high potential for implementing a successful trading program. Since instream phosphorus concentrations are closely related to soil erosion, an additional analysis was performed to examine soil erodibility. Recommendations are presented for conducting an economic analysis following the feasibility study.  相似文献   

12.
ABSTRACT: Phosphorus fluxes and water quality functions of a bottomland hardwood and freshwater marsh wetland soil were compared. The effect of soil physicochemical conditions, phosphorus loading rate, and diffusive exchange between soils and the overlying food water column on phosphorus release and retention were studied. The predominantly mineral swamp forest soil displayed greater phosphorus sorption potential than the organic freshwater marsh soil. Moreover, due to its low bulk density (0.11 g cm?3), the freshwater marsh soil surface area required for phosphorus retention is very large compared to the bottomland hardwood wetland soil. For both wetlands, soil redox status affected P release and assimilatory capacity. The more reducing the soils, the smaller their phosphorus retention capacity (greater their release). Phosphorus removal from the overlying water column into the wetland soils followed a first-order kinetic model. Under similar hydrological conditions, phosphorus was found to diffuse 1.2 times faster to the bottom. land hardwood soil than in the freshwater marsh soil. Results indicate that while the bottomland hardwood wetland soil will serve as a sink for phosphorus entering such wetland, phosphorus will be released and exported from the freshwater marsh soil into adjacent ecosystems.  相似文献   

13.
Modeling diffuse phosphorus (P) loss may indicate management strategies to minimize P loss from agricultural sources. An empirical model predicting flow-weighted phosphorus concentrations (MRP) was derived using data collected from 35 Irish river catchments. Monitoring records of riverine P and stream flow data were used to calculate MRP values averaged for the years 1991-1994. These data were modeled using land use, soil type, and soil P data. Soil type in catchments was described using soil survey classifications weighted according to their P desorption properties from laboratory results. Soil test P concentrations for the studied watersheds were obtained from a national database. Soil P levels were weighted based on the results of field experiments measuring P losses in overland flow from fields at different soil test P levels. The 35 catchments were statistically clustered into two populations (A and B) based on differences in soil type, specifically, soil hydrology. Catchments in Cluster A had predominantly poorly drained soils and comparatively higher MRP concentrations (0.03-0.17 mg L(-1)) than Cluster B areas (0.01-0.7 mg L(-1)) with mostly well-drained soils. Regression equations derived for A and B type catchments predicted MRP values with 68 and 62% of the variation explained in the models, respectively. Data extracted for the rest of the country were applied to the models to delineate areas at risk on a national scale. While the models were only moderately accurate they highlighted the influence of land management, specifically, high production grassland receiving high P inputs, in conjunction with the effect of soil type and soil hydrology on the transport of P to surface waters.  相似文献   

14.
ABSTRACT: Under the Clean Water Act (CWA) program, the Texas Commission on Environmental Quality (TCEQ) listed 110 stream segments in the year 2000 with pathogenic bacteria impairment. A study was conducted to evaluate the probable sources of pollution and characterize the watersheds associated with these impaired water bodies. The primary aim of the study was to group the water bodies into clusters having similar watershed characteristics and to examine the possibility of studying them as a group by choosing models for total maximum daily load (TMDL) development based on their characteristics. This approach will help to identify possible sources and determine appropriate models and hence reduce the number of required TMDL studies. This in turn will help in reducing the effort required to restore the health of the impaired water bodies in Texas. The main characteristics considered for the classification of water bodies were land use distribution within the watershed, density of stream network, average distance of land of a particular use to the closest stream, household population, density of on‐site sewage facilities (OSSFs), bacterial loading from different types of farm animals and wildlife, and average climatic conditions. The climatic data and observed instream fecal coliform bacteria concentrations were analyzed to evaluate seasonal variability of instream water quality. The grouping of water bodies was carried out using the multivariate statistical techniques of factor analysis/principal component analysis, cluster analysis, and discriminant analysis. The multivariate statistical analysis resulted in six clusters of water bodies. The main factors that differentiated the clusters were found to be bacterial contribution from farm animals and wildlife, density of OSSFs, density of households connected to public sewers, and land use distribution.  相似文献   

15.
Anning, David W., 2011. Modeled Sources, Transport, and Accumulation of Dissolved Solids in Water Resources of the Southwestern United States. Journal of the American Water Resources Association (JAWRA) 47(5):1087‐1109. DOI: 10.1111/j.1752‐1688.2011.00579.x Abstract: Information on important source areas for dissolved solids in streams of the southwestern United States, the relative share of deliveries of dissolved solids to streams from natural and human sources, and the potential for salt accumulation in soil or groundwater was developed using a SPAtially Referenced Regressions On Watershed attributes model. Predicted area‐normalized reach‐catchment delivery rates of dissolved solids to streams ranged from <10 (kg/year)/km2 for catchments with little or no natural or human‐related solute sources in them to 563,000 (kg/year)/km2 for catchments that were almost entirely cultivated land. For the region as a whole, geologic units contributed 44% of the dissolved‐solids deliveries to streams and the remaining 56% of the deliveries came from the release of solutes through irrigation of cultivated and pasture lands, which comprise only 2.5% of the land area. Dissolved‐solids accumulation is manifested as precipitated salts in the soil or underlying sediments, and (or) dissolved salts in soil‐pore or sediment‐pore water, or groundwater, and therefore represents a potential for aquifer contamination. Accumulation rates were <10,000 (kg/year)/km2 for many hydrologic accounting units (large river basins), but were more than 40,000 (kg/year)/km2 for the Middle Gila, Lower Gila‐Agua Fria, Lower Gila, Lower Bear, Great Salt Lake accounting units, and 247,000 (kg/year)/km2 for the Salton Sea accounting unit.  相似文献   

16.
ABSTRACT: Identifying phosphorus (P) source areas and transport pathways is a key step in decreasing P loading to natural water systems. This study compared the effects of two modeled runoff generation processes ‐ saturation excess and infiltration excess ‐ on total phosphorus (TP) and soluble reactive phosphorus (SRP) concentrations in 10 catchment streams of a Catskill mountain watershed in southeastern New York. The spatial distribution of runoff from forested land and agricultural land was generated for both runoff processes; results of both distributions were consistent with Soil Conservation Service‐Curve Number (SCS‐CN) theory. These spatial runoff distributions were then used to simulate stream concentrations of TP and SRP through a simple equation derived from an observed relation between P concentration and land use; empirical results indicate that TP and SRP concentrations increased with increasing percentage of agricultural land. Simulated TP and SRP stream concentrations predicted for the 10 catchments were strongly affected by the assumed runoff mechanism. The modeled TP and SRP concentrations produced by saturation excess distribution averaged 31 percent higher and 42 percent higher, respectively, than those produced by the infiltration excess distribution. Misrepresenting the primary runoff mechanism could not only produce erroneous concentrations, it could fail to correctly locate critical source areas for implementation of best management practices. Thus, identification of the primary runoff mechanism is critical in selection of appropriate models in the mitigation of nonpoint source pollution. Correct representation of runoff processes is also critical in the future development of biogeochemical transport models, especially those that address nutrient fluxes.  相似文献   

17.
Abstract: Nitrate‐nitrogen (NO3‐N) concentrations in stream water often respond uniquely to changes in inter‐annual conditions (e.g., biological N uptake and precipitation) in individual catchments. In this paper, we assess (1) how the spatial distribution of NO3‐N concentrations varies across a dense network of nonnested catchments and (2) how relationships between multiple landscape factors [within whole catchments and hydrologically sensitive areas (HSAs) of the catchments] and stream NO3‐N are expressed under a variety of annual conditions. Stream NO3‐N data were collected during two synoptic sampling events across >55 tributaries and two synoptic sampling periods with >11 tributaries during summer low flow periods. Sample tributaries drain mixed land cover watersheds ranging in size from 0.150 to 312 km2 and outlet directly to Cayuga Lake, New York. Changes in NO3‐N concentration ratios between each sampling event suggest a high degree of spatial heterogeneity in catchment response across the Cayuga Lake Watershed, ranging from 0.230 to 61.4. Variations in NO3‐N concentrations within each of the large synoptic sampling events were also high, ranging from 0.040 to 8.7 mg NO3‐N/l (March) and 0.090 to 15.5 mg NO3‐N/l (October). Although Pearson correlation coefficients suggest that this variability is related to multiple landscape factors during all four sampling events, partial correlations suggest percentage of row crops in the catchments as the only similar factor in March and October and catchment area as the only factor during summer low flows. Further, the strength of the relationships is typically lower in the HSAs of catchment. Advancing current understanding of such variations and relationships to landscape factors across multiple catchments – and under a variety of biogeochemical and hydrological conditions – is important, as (1) nitrate continues to be employed as an indicator of regional aquatic ecosystem health and services and (2) a unified framework approach for understanding individual catchment processes is a rapidly evolving focus for catchment‐based science and management.  相似文献   

18.
Soil erosion is a Europe-wide problem, causing both loss of soil fertility and pollution due to nutrient transport into water bodies. This process is particularly important in the Mediterranean area, where the climate, characterised by long periods of drought followed by intense precipitation, favours soil erosion. Research carried out in this field has amply described this process, showing that climate and land use/land cover (LU/LC) are the two main factors regulating this phenomenon. However, the interaction between these factors is complex and experimental research is needed to understand the nutrient loads deriving from different land uses. This paper shows the results of a long-term monitoring project carried out in the Lake Vico basin (central Italy), using high resolution data and runoff samples to determine the phosphorus (P) export from four different LU/LC classes resulting from the same climatic event. The results highlight the fundamental role that LU/LC plays in terms of phosphorus load. Furthermore, the results appear to indicate that the maximum rainfall registered for 30′ (I 30, max), rather than the total quantity of precipitation, has the greatest effect on levels of erosion, and consequently on the migration of nutrients rather than the total quantity of precipitation can affect on erosion and therefore the migration of nutrients. These data could contribute to scientific planning support for land management choices aimed at controlling water pollution from non-point pollution sources.  相似文献   

19.
Fish, habitat, and water chemistry data were collected from 98 streams in the midwestern United States, an area dominated by intense cultivation of row crops, in order to identify important water‐quality stressors to fish communities. We focused on 10 stressors including riparian disturbance, riparian vegetative cover, instream fish cover, streambed sedimentation, streamflow variability, total nitrogen, total phosphorus, minimum dissolved oxygen, pesticides, and bed sediment contaminants. Fish community response variables included a measure of observed/expected taxonomic completeness; species‐specific tolerances to nitrogen, phosphorus, dissolved oxygen, and water temperature; the percent of species classified as macrohabitat generalists; and an index of pesticide toxicity to fish. Multivariate analysis indicated that total nitrogen was the most important stressor, signifying that fish communities were responding to total nitrogen despite relatively high levels common to an agricultural setting. Individually, fish taxonomic completeness decreased with increasing streambed sedimentation, whereas fish community tolerance to total phosphorus increased with increasing streambed sedimentation, riparian disturbance, and total nitrogen. These findings underscore the importance of multiple biological response metrics to better understand the effects of water‐quality stressors on fish communities and highlight the complex relations between total phosphorus and fish communities.  相似文献   

20.
Stream sediments play a large role in the transport and fate of soluble reactive phosphorus (SRP) in stream ecosystems, and equilibrium P concentrations (EPC 0) of benthic sediments at which P is neither adsorbed nor desorbed are often related to stream water SRP concentrations. This study evaluated (i) the variation among water chemistry and sediment-P interactions among streams draining catchments that varied in the land use; (ii) the relations between SRP concentration, sediment EPC 0, and other measured abiotic factors (e.g., particle size distribution, slope of linear sorption isotherms, etc.) in the stream sediments; and (iii) the use of the traditional Mehlich-3 (M3) soil extraction on stream sediments to elucidate other abiotic factors (e.g, M3P, P saturation ratio, etc.) related to SRP concentration in stream sediments. Stream water and sediments were sampled at 22 selected Ozark streams in northwest Arkansas during fall 2003 and spring 2004. Nitrate-N concentrations in the water column (r = 0.69) and modified P saturation ratios (PSR mod) ) of the benthic sediments (r = 0.79) at the selected streams increased with an increase in percent pasture in the catchments, whereas SRP concentration (r = -0.56) and Mehlich-3-extractable P (M3P) content (r = -0.47) decreased with an increase in the percent forested area. Soluble reactive P concentrations in the stream water were positively correlated to sediment EPC 0 (r = 0.51), although sediment EPC(0) was generally greater than SRP. The M3 soil extraction was useful in identifying abiotic factors related to SRP concentrations in the selected streams, in particular SRP concentrations were positively correlated to M3P contents (r = 0.50) and PSR mod (r = 0.71) of the benthic sediments. Thus, M3P and EPC 0 estimates from stream sediments may be valuable yet simple indicators of whether benthic sediments act as sinks or sources of P in fluvial systems, as well as estimating changes in stream SRP concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号