首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hirsch, Robert M., 2011. A Perspective on Nonstationarity and Water Management. Journal of the American Water Resources Association (JAWRA) 47(3):436‐446. DOI: 10.1111/j.1752‐1688.2011.00539.x Abstract: This essay offers some perspectives on climate‐related nonstationarity and water resources. Hydrologists must not lose sight of the many sources of nonstationarity, recognizing that many of them may be of much greater magnitude than those that may arise from climate change. It is paradoxical that statistical and deterministic approaches give us better insights about changes in mean conditions than about the tails of probability distributions, and yet the tails are very important to water management. Another paradox is that it is difficult to distinguish between long‐term hydrologic persistence and trend. Using very long hydrologic records is helpful in mitigating this problem, but does not guarantee success. Empirical approaches, using long‐term hydrologic records, should be an important part of the portfolio of research being applied to understand the hydrologic response to climate change. An example presented here shows very mixed results for trends in the size of the annual floods, with some strong clusters of positive trends and a strong cluster of negative trends. The potential for nonstationarity highlights the importance of the continuity of hydrologic records, the need for repeated analysis of the data as the time series grow, and the need for a well‐trained cadre of scientists and engineers, ready to interpret the data and use those analyses to help adjust the management of our water resources.  相似文献   

2.
Ji, Yuhe, Liding Chen, and Ranhao Sun, 2012. Temporal and Spatial Variability of Water Supply Stress in the Haihe River Basin, Northern China. Journal of the American Water Resources Association (JAWRA) 48(5): 999‐1007. DOI: 10.1111/j.1752‐1688.2012.00671.x Abstract: Water resources are becoming increasingly stressed under the influence of climate change and population growth in the Haihe River Basin, Northern China. Assessing the temporal and spatial variability of water supply stress is urgently needed to mitigate water crisis caused by water resource reallocation. Water supply and use data were compiled for the time period of 1998‐2003 in this synthesis study. The Water Supply Stress Index (WSSI) as defined as Water Demand/Water Supply was used to quantitate whether water supply could meet the demand of human activities across the study region. We found a large spatial gradient of water supply stress in the study region, being much higher in the eastern subbasins (ranging from 2.56 to 4.31) than the west subbasins (ranging from 0.56 to 1.92). The eastern plain region not only suffered more serious water supply stress but also had a much higher interannual variability than the western hilly region. The uneven spatial distribution of water supply stress might result from the distribution of land use, population, and climate. Future climate change and rapid economic development are likely to aggravate the existing water crisis in the study region.  相似文献   

3.
Vogel, Richard M., Chad Yaindl, and Meghan Walter, 2011. Nonstationarity: Flood Magnification and Recurrence Reduction Factors in the United States. Journal of the American Water Resources Association (JAWRA) 47(3):464‐474. DOI: 10.1111/j.1752‐1688.2011.00541.x Abstract: It may no longer be reasonable to model streamflow as a stationary process, yet nearly all existing water resource planning methods assume that historical streamflows will remain unchanged in the future. In the few instances when trends in extreme events have been considered, most recent work has focused on the influence of climate change, alone. This study takes a different approach by exploring trends in floods in watersheds which are subject to a very broad range of anthropogenic influences, not limited to climate change. A simple statistical model is developed which can both mimic observed flood trends as well as the frequency of floods in a nonstationary world. This model is used to explore a range of flood planning issues in a nonstationary world. A decadal flood magnification factor is defined as the ratio of the T‐year flood in a decade to the T‐year flood today. Using historical flood data across the United States we obtain flood magnification factors in excess of 2‐5 for many regions of the United States, particularly those regions with higher population densities. Similarly, we compute recurrence reduction factors which indicate that what is now considered the 100‐year flood, may become much more common in many watersheds. Nonstationarity in floods can result from a variety of anthropogenic processes including changes in land use, climate, and water use, with likely interactions among those processes making it very difficult to attribute trends to a particular cause.  相似文献   

4.
Abstract: Assessment of long‐term impacts of projected changes in climate, population, and land use and land cover on regional water resource is critical to the sustainable development of the southeastern United States. The objective of this study was to fully budget annual water availability for water supply (precipitation ? evapotranspiration + groundwater supply + return flow) and demand from commercial, domestic, industrial, irrigation, livestock, mining, and thermoelectric uses. The Water Supply Stress Index and Water Supply Stress Index Ratio were developed to evaluate water stress conditions over time and across the 666 eight‐digit Hydrologic Unit Code basins in the 13 southeastern states. Predictions from two Global Circulation Models (CGC1 and HadCM2Sul), one land use change model, and one human population model, were integrated to project future water supply stress in 2020. We found that population increase greatly stressed water supply in metropolitan areas located in the Piedmont region and Florida. Predicted land use and land cover changes will have little effect on water quantity and water supply‐water demand relationship. In contrast, climate changes had the most pronounced effects on regional water supply and demand, especially in western Texas where water stress was historically highest in the study region. The simulation system developed by this study is useful for water resource planners to address water shortage problems such as those experienced during 2007 in the study region. Future studies should focus on refining the water supply term to include flow exchanges between watersheds and constraints of water quality and environmental flows to water availability for human use.  相似文献   

5.
Galloway, Gerald E., 2011. If Stationarity Is Dead, What Do We Do Now? Journal of the American Water Resources Association (JAWRA) 47(3):563‐570. DOI: 10.1111/j.1752‐1688.2011.00550.x Abstract: In January 2010, hydrologists, climatologists, engineers, and scientists met in Boulder, Colorado, to discuss the report of the death of hydrologic stationarity and the implications this might have on water resources planning and operations in the United States and abroad. For decades planners have relied on design guidance from the Interagency Advisory Committee on Water Data Bulletin 17B that was based upon the concept of stationarity. After 2½ days of discussion it became clear that the assembled community had yet to reach an agreement on whether or not to replace the assumption of stationarity with an assumption of nonstationarity or something else. Hydrologists were skeptical that data gathered to this point in the 21st Century point to any significant change in river parameters. Climatologists, on the other hand, point to climate change and the predicted shift away from current conditions to a more turbulent flood and drought filled future. Both groups are challenged to provide immediate guidance to those individuals in and outside the water community who today must commit funds and efforts on projects that will require the best estimates of future conditions. The workshop surfaced many approaches to dealing with these challenges. While there is good reason to support additional study of the death of stationarity, its implications, and new approaches, there is also a great need to provide those in the field the information they require now to plan, design, and operate today’s projects.  相似文献   

6.
Stakhiv, Eugene Z., 2011. Pragmatic Approaches for Water Management Under Climate Change Uncertainty. Journal of the American Water Resources Association (JAWRA) 47(6):1183–1196. DOI: 10.1111/j.1752‐1688.2011.00589.x Abstract: Water resources management is in a difficult transition phase, trying to accommodate large uncertainties associated with climate change while struggling to implement a difficult set of principles and institutional changes associated with integrated water resources management. Water management is the principal medium through which projected impacts of global warming will be felt and ameliorated. Many standard hydrological practices, based on assumptions of a stationary climate, can be extended to accommodate numerous aspects of climate uncertainty. Classical engineering risk and reliability strategies developed by the water management profession to cope with contemporary climate uncertainties can also be effectively employed during this transition period, while a new family of hydrological tools and better climate change models are developed. An expansion of the concept of “robust decision making,” coupled with existing analytical tools and techniques, is the basis for a new approach advocated for planning and designing water resources infrastructure under climate uncertainty. Ultimately, it is not the tools and methods that need to be revamped as much as the suite of decision rules and evaluation principles used for project justification. They need to be aligned to be more compatible with the implications of a highly uncertain future climate trajectory, so that the hydrologic effects of that uncertainty are correctly reflected in the design of water infrastructure.  相似文献   

7.
Arnell, Nigel W., 2011. Incorporating Climate Change Into Water Resources Planning in England and Wales. Journal of the American Water Resources Association (JAWRA) 47(3):541‐549. DOI: 10.1111/j.1752‐1688.2011.00548.x Abstract: Public water supplies in England and Wales are provided by around 25 private‐sector companies, regulated by an economic regulator (Ofwat) and environmental regulator (Environment Agency). As part of the regulatory process, companies are required periodically to review their investment needs to maintain safe and secure supplies, and this involves an assessment of the future balance between water supply and demand. The water industry and regulators have developed an agreed set of procedures for this assessment. Climate change has been incorporated into these procedures since the late 1990s, although has been included increasingly seriously over time and it has been an effective legal requirement to consider climate change since the 2003 Water Act. In the most recent assessment in 2009, companies were required explicitly to plan for a defined amount of climate change, taking into account climate change uncertainty. A “medium” climate change scenario was defined, together with “wet” and “dry” extremes, based on scenarios developed from a number of climate models. The water industry and its regulators are now gearing up to exploit the new UKCP09 probabilistic climate change projections – but these pose significant practical and conceptual challenges. This paper outlines how the procedures for incorporating climate change information into water resources planning have evolved, and explores the issues currently facing the industry in adapting to climate change.  相似文献   

8.
Kim, Ungtae and Jagath J. Kaluarachchi, 2009. Climate Change Impacts on Water Resources in the Upper Blue Nile River Basin, Ethiopia. Journal of the American Water Resources Association (JAWRA) 45(6):1361‐1378. Abstract: Climate change affects water resources availability of international river basins that are vulnerable to runoff variability of upstream countries especially with increasing water demands. The upper Blue Nile River Basin is a good example because its downstream countries, Sudan and Egypt, depend solely on Nile waters for their economic development. In this study, the impacts of climate change on both hydrology and water resources operations were analyzed using the outcomes of six different general circulation models (GCMs) for the 2050s. The outcomes of these six GCMs were weighted to provide average future changes. Hydrologic sensitivity, flow statistics, a drought index, and water resources assessment indices (reliability, resiliency, and vulnerability) were used as quantitative indicators. The changes in outflows from the two proposed dams (Karadobi and Border) to downstream countries were also assessed. Given the uncertainty of different GCMs, the simulation results of the weighted scenario suggested mild increases in hydrologic variables (precipitation, temperature, potential evapotranspiration, and runoff) across the study area. The weighted scenario also showed that low‐flow statistics and the reliability of streamflows are increased and severe drought events are decreased mainly due to increased precipitation. Joint dam operation performed better than single dam operation in terms of both hydropower generation and mean annual storage without affecting the runoff volume to downstream countries, but enhancing flow characteristics and the robustness of streamflows. This study provides useful information to decision makers for the planning and management of future water resources of the study area and downstream countries.  相似文献   

9.
ABSTRACT: Water from the Missouri River Basin is used for multiple purposes. The climatic change of doubling the atmospheric carbon dioxide may produce dramatic water yield changes across the basin. Estimated changes in basin water yield from doubled CO2 climate were simulated using a Regional Climate Model (RegCM) and a physically based rainfall‐runoff model. RegCM output from a five‐year, equilibrium climate simulation at twice present CO2 levels was compared to a similar present‐day climate run to extract monthly changes in meteorologic variables needed by the hydrologic model. These changes, simulated on a 50‐km grid, were matched at a commensurate scale to the 310 subbasin in the rainfall‐runoff model climate change impact analysis. The Soil and Water Assessment Tool (SWAT) rainfall‐runoff model was used in this study. The climate changes were applied to the 1965 to 1989 historic period. Overall water yield at the mouth of the Basin decreased by 10 to 20 percent during spring and summer months, but increased during fall and winter. Yields generally decreased in the southern portions of the basin but increased in the northern reaches. Northern subbasin yields increased up to 80 percent: equivalent to 1.3 cm of runoff on an annual basis.  相似文献   

10.
Waage, Marc D. and Laurna Kaatz, 2011. Nonstationary Water Planning: An Overview of Several Promising Planning Methods. Journal of the American Water Resources Association (JAWRA) 47(3):535‐540. DOI: 10.1111/j.1752‐1688.2011.00547.x Abstract: Climate change is challenging the way water utilities plan for the future. Observed warming and climate model projections now call into question the stability of future water quantity and quality. As water utilities cope with preparing for the large range of possible changes in climate and the resulting impacts on their water systems, many are searching for planning techniques to help them consider multiple possible conditions to better prepare for a different, more uncertain, future. Many utilities need these techniques because they cannot afford to delay significant decisions while waiting for scientific improvements to narrow the range of potential climate change impacts. Several promising methods are being tested in water utility planning and presented here for other water utilities to consider. The methods include traditional scenario planning, classic decision making, robust decision making, real options, and portfolio planning. Unfortunately, for utilities vulnerable to climate change impacts, there is no one‐size‐fits‐all planning solution. Every planning process must be tailored to the needs and capabilities of the individual utility.  相似文献   

11.
Brown, Casey, William Werick, Wendy Leger, and David Fay, 2011. A Decision‐Analytic Approach to Managing Climate Risks: Application to the Upper Great Lakes. Journal of the American Water Resources Association (JAWRA) 47(3):524‐534. DOI: 10.1111/j.1752‐1688.2011.00552.x Abstract: In this paper, we present a risk analysis and management process designed for use in water resources planning and management under climate change. The process incorporates climate information through a method called decision‐scaling, whereby information related to climate projections is tailored for use in a decision‐analytic framework. The climate risk management process begins with the identification of vulnerabilities by asking stakeholders and resource experts what water conditions they could cope with and which would require substantial policy or investment shifts. The identified vulnerabilities and thresholds are formalized with a water resources systems model that relates changes in the physical climate conditions to the performance metrics corresponding to vulnerabilities. The irreducible uncertainty of climate change projections is addressed through a dynamic management plan embedded within an adaptive management process. Implementation of the process is described as applied in the ongoing International Upper Great Lakes Study.  相似文献   

12.
Jin, Xin and Venkataramana Sridhar, 2012. Impacts of Climate Change on Hydrology and Water Resources in the Boise and Spokane River Basins. Journal of the American Water Resources Association (JAWRA) 48(2): 197‐220. DOI: 10.1111/j.1752‐1688.2011.00605.x Abstract: In the Pacific Northwest, warming climate has resulted in a lengthened growing season, declining snowpack, and earlier timing of spring runoff. This study characterizes the impact of climate change in two basins in Idaho, the Spokane River and the Boise River basins. We simulated the basin‐scale hydrology by coupling the downscaled precipitation and temperature outputs from a suite of global climate models and the Soil and Water Assessment Tool (SWAT), between 2010 and 2060 and assess the impacts of climate change on water resources in the region. For the Boise River basin, changes in precipitation ranged from ?3.8 to 36%. Changes in temperature were expected to be between 0.02 and 3.9°C. In the Spokane River region, changes in precipitation were expected to be between ?6.7 and 17.9%. Changes in temperature appeared between 0.1 and 3.5°C over a period of the next five decades between 2010 and 2060. Without bias‐correcting the simulated streamflow, in the Boise River basin, change in peak flows (March through June) was projected to range from ?58 to +106 m3/s and, for the Spokane River basin, the range was expected to be from ?198 to +88 m3/s. Both the basins exhibited substantial variability in precipitation, evapotranspiration, and recharge estimates, and this knowledge of possible hydrologic impacts at the watershed scale can help the stakeholders with possible options in their decision‐making process.  相似文献   

13.
Kiang, Julie E., J. Rolf Olsen, and Reagan M. Waskom, 2011. Introduction to the Featured Collection on “Nonstationarity, Hydrologic Frequency Analysis, and Water Management.”Journal of the American Water Resources Association (JAWRA) 47(3):433‐435. DOI: 10.1111/j.1752‐1688.2011.00551.x  相似文献   

14.
Woznicki, Sean A. and A. Pouyan Nejadhashemi, 2011. Sensitivity Analysis of Best Management Practices Under Climate Change Scenarios. Journal of the American Water Resources Association (JAWRA) 48(1): 90‐112. DOI: 10.1111/j.1752‐1688.2011.00598.x Abstract: Understanding the sensitivity of best management practices (BMPs) implementation as climate changes will be important for water resources management. The objective of this study was to determine how the sensitivity of BMPs performance vary due to changes in precipitation, temperature, and CO2 using the Soil and Water Assessment Tool. Sediment, total nitrogen, and total phosphorus loads on an annual and monthly basis were estimated before and after implementation of eight agricultural BMPs for different climate scenarios. Downscaled climate change data were obtained from the National Center for Atmospheric Research Community Climate System Model for the Tuttle Creek Lake watershed in Kansas and Nebraska. Using a relative sensitivity index, native grass, grazing management, and filter strips were determined to be the most sensitive for all climate change scenarios, whereas porous gully plugs, no‐tillage, and conservation tillage were the least sensitive on an annual basis. The monthly sensitivity analysis revealed that BMP sensitivity varies largely on a seasonal basis for all climate change scenarios. The results of this research suggest that the majority of agricultural BMPs tested in this study are significantly sensitive to climate change. Therefore, caution should be exercised in the decision‐making processes.  相似文献   

15.
Polebitski, Austin S. and Richard N. Palmer, 2012. Analysis and Predictive Models of Single‐Family Customer Response to Water Curtailments During Drought. Journal of the American Water Resources Association (JAWRA) 1‐12. DOI: 10.1111/j.1752‐1688.2012.00691.x Abstract: This research investigates customer response to demand management strategies during two drought periods in the City of Seattle. An analysis of customer response to voluntary water curtailments is conducted using k‐means clustering to identify like groups of customers and behavior patterns. The clustering method identified important variables (household income, lot size, living space, and family size) useful in determining customer response to water curtailments. Ordinary least squares and spatial lag regression models are estimated using the first and second principal components of variables identified in the clustering analysis. Larger values of income, lot size, and living space enhanced water reductions whereas larger family size tended to reduce the effectiveness of curtailments. Projections of changes in Seattle’s built environment and demographics between 2000 and 2030 were obtained from an urban simulation model (UrbanSim) and were processed through the regression models to investigate changes in future curtailment effectiveness. This research found that increasing household size hardened demands (decreased curtailment effectiveness) whereas decreasing household size increased per‐capita curtailment effectiveness. These results suggest that changes in the number of residents within a home is likely to be the most important factor in determining future curtailment effectiveness.  相似文献   

16.
Water resource management is becoming increasingly challenging in northern China because of the rapid increase in water demand and decline in water supply due to climate change. We provide a case study demonstrating the importance of integrated watershed management in sustaining water resources in Chifeng City, northern China. We examine the consequences of various climate change scenarios and adaptive management options on water supply by integrating the Soil and Water Assessment Tool and Water Evaluation and Planning models. We show how integrated modeling is useful in projecting the likely effects of management options using limited information. Our study indicates that constructing more reservoirs can alleviate the current water shortage and groundwater depletion problems. However, this option is not necessarily the most effective measure to solve water supply problems; instead, improving irrigation efficiency and changing cropping structure may be more effective. Furthermore, measures to increase water supply have limited effects on water availability under a continuous drought and a dry‐and‐warm climate scenario. We conclude that the combined measure of reducing water demand and increasing supply is the most effective and practical solution for the water shortage problems in the study area.  相似文献   

17.
Sanford, Ward E. and David L. Selnick, 2012. Estimation of Evapotranspiration Across the Conterminous United States Using a Regression with Climate and Land‐Cover Data. Journal of the American Water Resources Association (JAWRA) 1‐14. DOI: 10.1111/jawr.12010 Abstract: Evapotranspiration (ET) is an important quantity for water resource managers to know because it often represents the largest sink for precipitation (P) arriving at the land surface. In order to estimate actual ET across the conterminous United States (U.S.) in this study, a water‐balance method was combined with a climate and land‐cover regression equation. Precipitation and streamflow records were compiled for 838 watersheds for 1971‐2000 across the U.S. to obtain long‐term estimates of actual ET. A regression equation was developed that related the ratio ET/P to climate and land‐cover variables within those watersheds. Precipitation and temperatures were used from the PRISM climate dataset, and land‐cover data were used from the USGS National Land Cover Dataset. Results indicate that ET can be predicted relatively well at a watershed or county scale with readily available climate variables alone, and that land‐cover data can also improve those predictions. Using the climate and land‐cover data at an 800‐m scale and then averaging to the county scale, maps were produced showing estimates of ET and ET/P for the entire conterminous U.S. Using the regression equation, such maps could also be made for more detailed state coverages, or for other areas of the world where climate and land‐cover data are plentiful.  相似文献   

18.
19.
Anticipating changes in hydrologic variables is essential for making socioeconomic water resource decisions. This study aims to assess the potential impact of land use and climate change on the hydrologic processes of a primarily rain‐fed, agriculturally based watershed in Missouri. A detailed evaluation was performed using the Soil and Water Assessment Tool for the near future (2020–2039) and mid‐century (2040–2059). Land use scenarios were mapped using the Conversion of Land Use and its Effects model. Ensemble results, based on 19 climate models, indicated a temperature increase of about 1.0°C in near future and 2.0°C in mid‐century. Combined climate and land use change scenarios showed distinct annual and seasonal hydrologic variations. Annual precipitation was projected to increase from 6% to 7%, which resulted in 14% more spring days with soil water content equal to or exceeding field capacity in mid‐century. However, summer precipitation was projected to decrease, a critical factor for crop growth. Higher temperatures led to increased potential evapotranspiration during the growing season. Combined with changes in precipitation patterns, this resulted in an increased need for irrigation by 38 mm representing a 10% increase in total irrigation water use. Analysis from multiple land use scenarios indicated converting agriculture to forest land can potentially mitigate the effects of climate change on streamflow, thus ensuring future water availability.  相似文献   

20.
Alessa, Lilian, Mark Altaweel, Andrew Kliskey, Christopher Bone, William Schnabel, and Kalb Stevenson, 2011. Alaska’s Freshwater Resources: Issues Affecting Local and International Interests. Journal of the American Water Resources Association (JAWRA) 47(1):143‐157. DOI: 10.1111/j.1752‐1688.2010.00498.x Abstract: The State of Alaska faces a broad range of freshwater challenges including limited resource access in rural communities, increasing freshwater use, and a pressing need to better understand and prepare for climate‐driven change. Despite these significant issues, Alaska is relatively water‐rich and far more equipped to address its water resource concerns compared with other regions of the world. Globally, simultaneous and rapid water stresses have influenced and complicated conflicts and are motivating nations to develop markets and trade as one of the primary means to manage their needs for this resource. This paper presents these interacting issues in the context of Alaska’s relationship with a world undergoing significant social and ecological changes that affect freshwater supplies. We present the challenges faced by Alaska in the context of a larger global perspective, and briefly explore the relative effects these issues have on local, regional, and global scales. We present the argument that Alaska needs to develop more robust institutions and policies that can alleviate both household concerns and ensure that Alaska plays a significant role in the international freshwater arena for its long‐term resilience.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号