首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This study applies green coconut shells as adsorbent for the removal of toxic metal ions from aqueous effluents using column adsorption. The results show that a flow rate of 2 mL/min and a bed height of 10 cm are most feasible. Furthermore, larger amounts of effluent can be treated for removal of single ions. The breakthrough curves for multiple elements gave the order of adsorption capacity: Cu+2 > Pb+2 > Cd+2 > Zn+2 > Ni+2. Real samples arising from the electroplating industry can be efficiently handled.  相似文献   

2.
In recent years, the adsorption of heavy metal cations onto bacterial surfaces has been studied extensively. This paper reports the findings of a study conducted on the heavy metal ions found in mine effluents from a mining plant where Co2+ and Ni2+ bearing minerals are processed. Heavy metal ions are reported to be occasionally present in these mine effluents, and the proposed microbial sorption technique offers an acceptable solution for the removal of these heavy metals. The sorption affinity of microorganisms for metal ions can be used to select a suitable microbial sorbent for any particular bioremediation process. Interactions of heavy metal ions (Co2+ and Ni2+) and light metal ions (Mg2+ and Ca2+) with indigenous microbial cells (Brevundimonas spp., Bacillaceae bacteria and Pseudomonas aeruginosa) were investigated using the Langmuir adsorption isotherm, pseudo second-order reaction kinetics model and a binary-metal system. Equilibrium constants and adsorption capacities derived from these models allowed delineation of the effect of binding affinity and metal concentration ratios on the overall adsorption behaviour of microbial sorbents, as well as prediction of performance in bioremediation systems. Although microbial sorbents used in this study preferentially bind to heavy metal ions, it was observed that higher concentrations (>90 mg/?) of light metal ions in multi-metal solutions inhibit the adsorption of heavy metal ions to the bacterial cell wall. However, the microbial sorbents reduced Ni2+ levels in the mine-water used (93–100% Ni2+ removal) to below the maximum acceptable limit of 350 μg/?, established by the South African Bureau of Standards. Competition among metal ions for binding sites on the biomaterial surface can occur during the bioremediation process, but microbial sorption affinity for heavy metal ions can enhance their remediation in dilute (<5 mg/? heavy metal) wastewaters.  相似文献   

3.
This paper presents a study of cement replacement by sugar cane bagasse ash (SCBA) in industrial scale aiming to reduce the CO2 emissions into the atmosphere. SCBA is a by-product of the sugar/ethanol agro-industry abundantly available in some regions of the world and has cementitious properties indicating that it can be used together with cement. Recent comprehensive research developed at the Federal University of Rio de Janeiro/Brazil has demonstrated that SCBA maintains, or even improves, the mechanical and durability properties of cement-based materials such as mortars and concretes. Brazil is the world’s largest sugar cane producer and being a developing country can claim carbon credits. A simulation was carried out to estimate the potential of CO2 emission reductions and the viability to issue certified emission reduction (CER) credits. The simulation was developed within the framework of the methodology established by the United Nations Framework Convention on Climate Change (UNFCCC) for the Clean Development Mechanism (CDM). The State of São Paulo (Brazil) was chosen for this case study because it concentrates about 60% of the national sugar cane and ash production together with an important concentration of cement factories. Since one of the key variables to estimate the CO2 emissions is the average distance between sugar cane/ethanol factories and the cement plants, a genetic algorithm was developed to solve this optimization problem. The results indicated that SCBA blended cement reduces CO2 emissions, which qualifies this product for CDM projects.  相似文献   

4.
The biosorption of the heavy metals Cu2+ and Zn2+ by dried marine green macroalga (Chaetomorpha linum) was investigated. The biosorption capacities of the dried alga for copper and zinc were studied at different solution pH values (2–6), different algal particle sizes (100–800 μm) and different initial metal solution concentrations (0.5–10 mM). An optimum pH value of 5 was found suitable for both metal ions biosorption for both metal ions. At the optimum particle size (100–315 μm), biosorbent dosage (20 g/l) and initial solution pH (pH 5), the dried alga produced maximum copper and zinc uptakes values (qmax) of 1.46 and 1.97 mmol/g respectively (according to the Langmuir model). The kinetic data obtained at different initial metal concentrations indicated that the biosorption rate was fast and most of the process was completed within 120 min. This study illustrated an alternative technique for the management of unwanted biological materials using processed algal material. C. linum is one of the fast-growing marine algae in the lake of Tunis and could be utilized as a biosorbent for the treatment of Cu2+ and Zn2+ contaminated wastewater streams.  相似文献   

5.
The present study is targeted on the feasibility of photocatalytic treatment of industrial wastewater containing metal ions. Photoreductive deposition of metal ions using solar energy irradiated TiO2, has been investigated in presence of citric acid as a hole scavenger. Treatment studies have also been performed at pH values 2, 4, 7, 8, and 10 to determine optimum reaction conditions. Results showed that at the pH value of 2, 100% reduction was achieved for Cr(VI) in a minimum time period. A maximum removal of 95.5% was achieved for Ni(II) at the pH value of 10.  相似文献   

6.
Seaweed can be anaerobically digested for the production of energy-rich methane. However, the use of seaweed digestate as a fertilizer may be restricted because of the high heavy metal content especially cadmium. Reducing the concentration of heavy metals in the digestate will enable its use as a fertilizer. In this laboratory-scale study, the potential of seaweed and its leachate in the production of methane were evaluated in batch tests. The effect of removing the heavy metals from seaweed leachate was evaluated in both batch test and treatment in an upflow anaerobic sludge blanket (UASB) reactor. The heavy metals were removed from seaweed leachate using an imminodiacetic acid (IDA) polyacrylamide cryogel carrier. The methane yield obtained in the anaerobic digestion of seaweed was 0.12 N l CH4/g VSadded. The same methane yield was obtained when the seaweed leachate was used for methane production. The IDA-cryogel carrier was efficient in removing Cd2+, Cu2+, Ni2+ and Zn2+ ions from seaweed leachate. The removal of heavy metals in the seaweed leachate led to a decrease in the methane yield. The maximum sustainable organic loading rate (OLR) attained in the UASB reactor was 20.6 g tCOD/l/day corresponding to a hydraulic retention time (HRT) of 12 h and with a total COD removal efficiency of about 81%. Hydrolysis and treatment with IDA cryogel reduced the heavy metals content in the seaweed leachate before methane production. This study also demonstrated the suitability of the treatment of seaweed leachate in a UASB reactor.  相似文献   

7.
ABSTRACT: Strategies for the precipitation and separation of the primary metal ions, Fe(II), Cu(II), Zn(II), Mn(II), and Cd(II) in acid waste waters such as those in tributaries of the upper Sacramento River in northern California, are discussed. The strategies exploit the: (1) differential oxygen and hydrogen peroxide oxidation and precipitation properties of the metal ions as a function of pH, (2) the addition of ions, such as Mg2 + and Cl-, to reduce unfavorable coprecipitation, and (3) the facilitation of oxidation-reduction reactions between metal ions and the stabilization of particular oxidation states. This may be accomplished with specific complexing agents such as thiocyanate, SCN-, and thiourea (TU), S = C(NH2)2 in order to separate copper at low pH as Cu(I) using Fe(II) as a reducing agent.  相似文献   

8.
In the present work, the adsorption capacity of anthill was investigated as a low‐cost adsorbent to remove the heavy metal ions, lead (II) ion (Pb2+), and zinc (II) ion (Zn2+) from an aqueous solution. The equilibrium adsorption isotherms of the heavy metal ions were investigated under batch process. For the study we examined the effect of the solution's pH and the initial cations concentrations on the adsorption process under a fixed contact time and temperature. The anthill sample was characterized using a scanning electron microscope (SEM), X‐ray fluorescence (XRF), and Fourier transform infrared (FTIR) techniques. From the SEM analysis, structural change in the adsorbent was a result of heavy metals adsorption. Based on the XRF analysis, the main composition of the anthill sample was silica (SiO2), alumina (Al2O3), and zirconia (ZrO2). The change in the peaks of the spectra before and after adsorption indicated that there was active participation of surface functional groups during the adsorption process. The experimental data obtained were analyzed using 2‐ and 3‐parameter isotherm models. The isotherm data fitted very well to the 3‐parameter Radke–Prausnitz model. It was noted that Pb2+ and Zn2+ can be effectively removed from aqueous solution using anthill as an adsorbent.  相似文献   

9.
This case study was developed in view of setting up a demonstration project on “revealing the profitability of clean technology in small-scale electroplating unit”. The research was conducted in a small-scale electroplating shop located in Bangkok. A set of simple in-plant control measures such as dragout recovery, spray rinsing technique and rinse water agitation were implemented. Quantitative data, obtained from the monitoring of wastewater before and after process modifications, have indicated a substantial reduction both in quantity and strength of wastewater generated. Water consumption was reduced by approx. 35% of total rinsing water, which is 19% of total process water consumption. Average metal concentrations in wastewater was reduced 73% for Cr-, 71% for Ni- and 54% for Cu-plating rinse water.  相似文献   

10.
The olive mill waste (OMW) generated from olive oil extraction process constitutes a major environmental concern owing to its high organic and mineral matters and acidic pH. Anaerobic digestion (AD) is a main treatment for reducing the organic matter and toxic substances contained in OMW and generating at the same time, energy in the form of biogas. AD of OMW that contains lignocellulose is limited by the rate of hydrolysis due to their recalcitrant structure. This study is devoted to the effect of Fenton process (FP) pretreatment on olive mill wastewater (OMSW) /olive mill solid waste (OMWW) co-digestion to improve their digestibility and in this way the biogas production. The FP pretreatment was performed in batch mode at 25°C, various H2O2/[Fe2+] ratios (100–1200), catalyst concentration ([Fe2+]) ranging from 0.25 to 2 mM, reaction time varying from 30 to150 min, and different pH (3–11). The best performance was obtained with H2O2/[Fe2+] = 1000, [Fe2+] = 1.5 mM, 120 min, and pH 3. Biochemical methane potential (BMP) tests conducted in batch wise digester and at mesophilic conditions (37 °C) showed that cumulative biogas and methane production were higher without FP treatment, and correspond to 699 and 416 mL/g VS, respectively. However, pre-treated OMSW results into an increase of 24% of methane yield. After 30 days of AD, the methane yield was 63%, 54%, and 48%, respectively, for OMSW treated without iron precipitation, with iron precipitation and untreated OMSW sample.  相似文献   

11.
Although it was indicated through various studies from around the world that resource efficiency can be adapted in metal processing plants, a very limited number of projects could be realized in Turkish metal processing industry so far. In this study it was aimed at investigating process modifications and management practices to increase water and chemical use efficiency thus increasing environmental and economic performance of a metal processing company. As a result of the applications in heat treatment and zinc phosphating processes total water consumption of the company was reduced by 34.1% corresponding to an annual water saving of 18,831 m3. Moreover, total chemical consumption in zinc phosphating as one of the most chemical intensive processes in the company, was decreased by 1401 kg/year (26.1%). Applications in zinc phosphating process led to a significant decrease in the amount of treated wastewater and wastewater treatment sludge which is labelled as hazardous waste according to national legislations. Total wastewater generation was decreased by 3255 m3/year (50.9%) while wastewater treatment sludge was reduced 4656 kg/year (16.9%). Moreover, energy consumption of the company was reduced by 32.647 kW h/year which corresponds to 36% energy saving in water pumping. Implementation cost of the applications were 34,233$ which is calculated to be paid back in 2.3 years. This study is expected to fill a gap in Turkey by demonstrating that environmental performance in metal processing industry could be improved by process modifications and improved management practices resulting in tangible economic gains.  相似文献   

12.
It is well known that dilute sulfuric acid pretreatment of the lignicellulosisc biomass is an effective approach used for the production of the ethanol. However, there are less studies on the biogas production from the pretreated lignocellulosics and hardly data available on the codigestion of cattle manure with the pretreated lignocellulosisc material. The aim of this study was to evaluate biomethane production potential of codigestion of cattle manure with dilute acid pretreated lignocellulosic biomass. Sugarcane bagasse and rice husk was pretreated with dilute sulfuric acid or phosphoric acid at 121°C for 20 minutes and subsequently subjected to anaerobic digestion alone or codigested with cattle manure.

The results showed that codigestion of 1% phosphoric acid pretreated rice husk with cattle manure led to the highest methane production of 115 Nmlg?1VS while monodigestion of cattle manure and phosphoric acid pretreated rice husk produced 98 and 87 Nmlg?1VS, respectively. An inhibition was observed in anaerobic digestion of sulfuric acid pretreated rice husk and sugarcane bagasse during monodigestion and codigestion with cattle manure.

The study concludes that dilute phosphoric acid pretreated lignocellulosics like sugarcane bagasse and rice husk can be used as a cosubstrate with cattle manure in anaerobic digestion for enhanced methane production. Dilute sulfuric acid pretreatment, which is effective method for the bioethanol production, causes inhibition during anaerobic digestion of the pretreated lignocellulosics.  相似文献   

13.
Three Egyptian industrial wastewater management programmes   总被引:1,自引:0,他引:1  
A pre-treatment programme for wastewater from factories, representing three main industrial sectors in Egypt, has been developed. The first case study was a factory producing potato-chips. Wastewater discharged from this factory was characterized by high values of BOD, SS and oil and grease (6000 mgO2 l–1, 6577 mg l–1 and 119 mg l–1 respectively). Chemical treatment using lime and lime aided by polyelectrolyte achieved good results. Residual values of BOD and SS after treatment were 97 mg l–1 and 49 mg l–1, respectively. Oil and grease concentrations were reduced by 91 percent. Treatment via activated sludge at a detention time of 4 hrs produced good quality effluent. The second case study was an automobile company, representing the metal finishing industry. Analyses of wastewater samples from the degreasing, phosphating and painting departments, as well as the end-of-pipe effluent were conducted. The end-of-pipe effluent contained high concentrations of oil and grease (366 mg l–1), phosphorous (111 mg l–1) and zinc (81 mg l–1). Chemical treatment of end-of-pipe wastewater using ferric chloride aided by lime, produced high quality effluent. The third sector was the chemical industry. For this purpose a paint factory was selected. Characteristics of raw wastewater varied widely according to the production rate. Average values of COD and BOD were 1950 mg l–1 and 683 mg l–1. Oil and grease ranged from 63 to 1624 mg l–1. Chemical treatment using ferric chloride in combination with lime at the optimum operating conditions achieved good results. Residual values after treatment of COD, BOD and oil and grease reached 120, 36 and 8.6 mg l–1, respectively. An engineering design for each case study has been prepared.  相似文献   

14.
The water disinfecting behavior of silver-modified clinoptilolite–heulandite rich tuff (ZSAg) as an antibacterial agent against coliform microorganisms from water in a continuous mode was investigated. Silver recovery from the disinfected effluents by the sodium-modified clinoptilolite–heulandite rich tuff (ZSNa) was also considered. Escherichia coli (ATCC 8739) and total coliform microorganisms, as indicators of microbiological contamination of water, were chosen to achieve the disinfection of synthetic wastewater or municipal wastewater. Ammonium (NH4+) and chloride (Cl) ions were added to the synthetic wastewater as an interfering chemical species on the disinfection processes. The antibacterial activity of the ZSAg as a bactericide was measured by the coliform concentration as evaluated by the APHA method. The amount of silver in the disinfected effluents was determined using atomic absorption spectroscopy. The inactivation of the ZSAg was calculated from the breakthrough curves based on the model reported by Gupta et al. It was found that when the silver concentration in the effluent is less than 0.6 μg/mL, the bacterial survival percentage increased and the volume of disinfected water diminished. The total silver amounts found in the effluent at the end of the disinfection processes varied depending on the water treated (synthetic or municipal wastewater). The presence of NH4+ ions in synthetic wastewater influent notably improved the disinfected water volume (zero NVC/100 mL), in comparison to the disinfection of the same influent without NH4+ ions. A contrary water disinfection behavior was observed in the presence of Cl ions. The silver recovery does not depend on the mass of the sodium zeolitic bed according with the wastewater to be treated (synthetic or municipal wastewater) and the presence of NH4+ or Cl ions in the influent also influenced the silver recovery from wastewater. The ZSNa did not have antibacterial activity. Therefore the amount of bactericide agent (silver-modified natural zeolite), coliform microorganisms from water (E. coli or consort of coliform microorganisms) as well as the water quality (synthetic wastewater or municipal wastewater) influenced both the disinfection process and the silver recovery in a column system.  相似文献   

15.
本文通过某制约厂青霉素车间排放手大量灭活性产黄青霉菌对溶液中铅的吸附研究,发现该菌体对金属离子吸附有较强的选择性,尤其对铅离子高于其它金属离子。而且被吸附的铅离子能被重新洗脱回收。  相似文献   

16.
Lindehoff, Elin, Edna Granéli, and Patricia M. Glibert, 2010. Influence of Prey and Nutritional Status on the Rate of Nitrogen Uptake by Prymnesium parvum (Haptophyte). Journal of the American Water Resources Association (JAWRA) 46(1):121-132. DOI: 10.1111/j.1752-1688.2009.00396.x Abstract: We studied how the specific nitrogen (N) uptake rates of nitrate (NO3), urea, and the amino acids, glutamic acid and glycine, by Prymnesium parvum were affected by (1) the change from N-deficient status to N-sufficient status of the P. parvum cells, (2) presence of prey from a natural Baltic Sea plankton community, and (3) the composition of prey as affected by additions of terrestrial originated dissolved organic matter (DOM) or inorganic nutrients. Nitrogen-deficient P. parvum (16 μM NO3 and 4 μM PO4, molar N:P ratio of 4:1) were mixed with a natural Baltic plankton community and given PO43− and (1) NO3 (control) or (2) high molecular weight DOM, >1 kDa concentrated from sewage effluent (+DOM), in a molar N:P ratio of 9-10:1. With additions of 15N-enriched substrates, rates of N uptake from NO3, urea, and the amino acids glycine and glutamic acid were measured every 24 h for 72 h. Initial N-deficient P. parvum were highly toxic (3.7 ± 0.9 × 10−4 mg Sap equiv/cell) and toxic allelochemicals were released into the medium causing the natural plankton community to lyse. Rates of N uptake differed between the “control” and the “+DOM” treatments over time; total (sum of the N substrates measured) absolute uptake rates (ρcell, fmol N/cell/h) at ambient culture conditions were significantly higher (ANOVA, p < 0.05) in the more toxic “control” treatments compared with the “+DOM” treatments after 48 h. In the “control” treatment, the total ρcell increased significantly (ANOVA, p < 0.01) from time 0 to 48 h, while in the “+DOM” treatment there was no significant increase. Released organic nutrients from the lysed plankton cells may have increased uptake rates of amino acids and urea by P. parvum. All uptake rates declined in all treatments by 72 h. Total dissolved N uptake rates at ambient culture conditions were estimated to make up about 10% of the N P. parvum are potentially capable of ingesting from particulate prey.  相似文献   

17.
Dilute acid pretreatment and steam pretreatment were evaluated for maximum sugars release and ethanol production from sweet sorghum bagasse (SSB). The fermentation potential of the condensate and hydrolysate obtained from steam pretreatment (10 kg/cm2, 10 minutes) and dilute acid hydrolysis (1% (w/w) sulphuric acid, 25% substrate loading) respectively, was checked with Pichia stipitis NCIM 3497 and Debaryomyces hansenii sp. Ethanol production and yield using acid hydrolysate was higher with Debaryomyces hansenii sp. (28.4 g/L and 0.37 g/g respectively) as compared with Pichia stipitis NCIM 3497 (21.9 g/L and 0.29 g/g respectively).  相似文献   

18.
Waste from wastewater treatment plants (WWTP) for Helianthus annuus L. production may be a viable solution to obtain biodiesel. This study achieved two objectives: assess the agronomical viability of waste (wastewater and sludge) from the Alcázar de San Juan WWTP in central Spain for H. annuus L. production; use H. annuus L. seeds grown in this way to obtain biodiesel. Five study plots, each measuring 6 m × 6 m (36 m2), were set up on the agricultural land near the Alcázar de San Juan WWTP. Five fertilizer treatment types were considered: drinking water, as the control; treated wastewater; 10 t ha?1 of air-dried sewage sludge; 20 t ha?1 of air-dried sewage sludge; 0.6 t ha?1 of commercial inorganic fertilizer. Soil, irrigation water, sewage sludge, crop development and fatty acid composition in achenes oil were monitored. The 20 t ha–1 dose of sewage sludge proved effective to grow H. annuus L. with similar results to those grown with a commercial fertilizer. However, precautions should be taken when irrigating with wastewater because of high salinity and nutrient deficiency. Sunflower oil was composed mostly of linoleic and oleic acid. The remaining fatty acids were linolenic, estearic, nervonic, palmitoleic, and palmitic.  相似文献   

19.
The present work reports the use of living cells of the marine microalga Tetraselmis suecica for the biosorption of cadmium ions. For a better understanding of the biosorption characteristics, three fractions of removed cadmium (total, bioadsorbed and intracellular) were measured in the cells after 24 and 72 h of exposure to different initial cadmium concentrations (0.6–45 mg L?1). Both the Langmuir and Freundlich models were suitable for describing the sorption of cadmium ions by this microalga. The maximum sorption capacity was estimated to be 40.22 mg Cd g?1 after 72 h using the Langmuir sorption model. In the lower cadmium concentrations, metal removed intracellularly was higher than that removed on the microalgal cell surface. Therefore, the intracellular fraction contributed more to the total removed cadmium than the fraction bioadsorbed to the cellular surface. The results showed that the cadmium removal capacity using living biomass could be much more effective than with non-living biomass due to the intracellular bioaccumulation. According to the microorganism selected and its tolerance to the toxic effect of the metal, the cadmium content in the intracellular fraction can become very significant, just like it happened with Tetraselmis.  相似文献   

20.
Phytoremediation of dairy effluent by constructed wetland technology   总被引:1,自引:0,他引:1  
Constructed wetlands are artificial wastewater treatment systems consisting of shallow ponds or channels which have been planted with aquatic plants and which rely upon natural microbial, biological, physical and chemical process to treat wastewater and are gaining acceptance in the recent years as a viable option for the treatment of industrial effluents and removal of toxic components. In this study, an attempt was made to compare the efficiency of aquatic macrophytes like Typha sp., Eichhornia sp., Salvinia sp., Pistia sp., Azolla sp. and Lemna sp. to treat the effluents from dairy factory, under laboratory conditions in constructed wetlands. The biological oxygen demand and chemical oxygen demand of dairy effluent were reduced up to 65.4–83.07% and 70.4–85.3%, respectively, after treatment with constructed wetland technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号