首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
When steam is injected into soil containing a dense volatile non-aqueous phase liquid contaminant, the DNAPL vaporized within the heated soil region condenses and accumulates ahead of the steam condensation front. If enough DNAPL accumulates, gravitational forces can overcome trapping forces allowing the liquid contaminant to flow downward. By injecting air with steam, a portion of the DNAPL vapor remains suspended in equilibrium with the air, decreasing liquid contaminant accumulation ahead of the steam condensation front, and thus reducing the possibility of downward migration. In a previous work, a theoretical model was developed to predict the optimum injection ratio of air to steam that would eliminate accumulation of DNAPL ahead of the temperature front and thus minimize the potential for downward migration. In this work, the theoretical model is summarized, and an experiment is presented in order to evaluate the optimum injection ratio prediction. In the experiment, a two-dimensional water saturated sand pack is contaminated with a known mass of TCE (DNAPL). The system is then remediated by co-injecting air and steam at the predicted optimum injection ratio, calculated based on the average contaminant soil concentration in the sand pack. Results for the co-injection of air and steam are compared to results for the injection of pure steam or pure air. Injection at the predicted optimum injection ratio for a volumetric average NAPL saturation, reduced accumulation of the contaminant ahead of the condensation front by over 90%, as compared to steam injection alone. This indicates that the optimum injection ratio prediction is a valuable tool for limiting the spreading of DNAPL during steam-enhanced extraction. Injection at the optimum injection ratio resulted in earlier recovery of contaminant than for steam injection alone. Co-injection of steam and air is also shown to result in much higher recovery rates than air injection alone.  相似文献   

2.
Steam injection for remediation of porous media contaminated by nonaqueous phase liquids has been shown to be a potentially efficient technology. There is, however, concern that the technique may lead to downward migration of separate phase contaminant. In this work, a modification of the steam injection technology is presented, where a mixture of steam and air was injected. In two-dimensional experiments with unsaturated porous medium contaminated with nonaqueous phase liquids, it was demonstrated how injection of pure steam lead to severe downward migration. Similar experiments, where steam and air were injected simultaneously, resulted in practically no downward migration and still rapid cleanup was achieved. The processes responsible for the prevention of downward migration when injecting steam-air mixtures were analyzed using a nonisothermal multiphase flow and transport model. Hereby, three mechanisms were identified and it was demonstrated how the effectiveness of these mechanisms depended on the air-to-steam mixing ratio.  相似文献   

3.
An area where a free-product accumulation of trichloroethylene (TCE) dense non-aqueous phase liquid (DNAPL) occurs at the bottom of a 10-m-thick surficial sand aquifer was studied to determine the integrity of the underlying, 20-m-thick, clayey silt aquitard formed of glaciolacustrine sediment. TCE concentration-versus-depth profiles determined from aquitard cores collected at five locations indicated penetration of detectable TCE 2.5 to 3.0 m into the aquitard. Two of the profiles show persistent DNAPL at the aquitard interface, while two others indicate that DNAPL, present initially, was completely dissolved away producing concentration declines at the aquitard interface. The fifth profile suggests shallow DNAPL penetration (<0.5 m) into the aquitard, however, this penetration, which was likely caused by cross-contamination during core collection or cone penetrometry (CPT) of the aquitard interface, did not increase the maximum depth of TCE penetration. Combining the field profiles with one-dimensional model simulations, downward migration of the aqueous TCE front, defined as the EPA MCL of 5 microg/l, which was below the analytical detection limit, was projected to a distance between 4 and 5 m below the top of the aquitard. Using a single set of estimated aquitard parameter values, simulations of aqueous TCE migration into the aquitard provided a good fit to four of the field profiles with a migration time of 35 to 45 years, consistent with the history of TCE use at the site. These simulations indicate aqueous TCE migration is diffusion-dominated with only small advective influence by the downward groundwater velocity of 2 to 3 cm/year or less in the aquitard due to pumping of the underlying aquifer to supply water to the facility in the past 50 years. The applicability of the parameter values was confirmed by in situ diffusion experiments of 1-year duration, in which stainless steel cylinders containing DNAPL were inserted into the aquitard. The diffusion-dominated nature of the profiles indicates that the aquitard provides long-term protection of the underlying aquifer from contamination from this DNAPL zone. Simulations of long-term migration of the TCE solute front indicate breakthrough to the lower aquifer at 1200 years for the no advection scenario and at 500 years if the strong downward hydraulic gradient persists. However, even after breakthrough, the mass flux through the aquitard to the underlying aquifer remains relatively low, and when considered in terms of potential impacts to pumping wells, concentrations are not expected to increase significantly above present-day MCLs. The use of contaminant profiles of different time and distance scales, in addition to hydraulic data, dramatically improves the ability to assess aquitard integrity, and provides improved transport parameter values for estimating contaminant arrival times and fluxes. The apparent lack of deep preferential pathways for TCE migration, such as open fractures, is probably due to the softness of the silty aquitard deposit and minimal physical or chemical weathering of the aquitard provides long-term protection of the underlying aquifer from contamination from this DNAPL zone. Simulations of long-term migration of the TCE solute front indicate breakthrough to the lower aquifer at 1200 years for the no advection scenario and at 500 years if the strong downward hydraulic gradient persists. However, even after the breakthrough, the mass flux through the aquitard to the underlying aquifer remains relatively low, and when considered in terms of potential impacts to pumping wells , concentrations are not expected to increase significantly above present-day MCLs. The use of contaminant profiles of different time and distance scales, in addition to hydraulic data, dramatically improves the ability to assess aquitard integrity, and provides improved transport parameter values for estimating contaminant arrival times and fluxes. The apparent lack of deep preferential pathways for TCE migration, such as open fractures, is probably due to the softness of the silty aquitard deposit and minimal physical or chemical weathering of the aquitard.  相似文献   

4.
A two-dimensional (2D) laboratory model was used to study effects of gravity on areal recovery of a representative dense non-aqueous phase liquid (DNAPL) contaminant by an alcohol pre-flood and co-solvent flood in dipping aquifers. Recent studies have demonstrated that injection of alcohol and co-solvent solutions can be used to reduce in-situ the density of DNAPL globules and displace the contaminant from the source zone. However, contact with aqueous alcohol reduces interfacial tension and causes DNAPL swelling, thus facilitating risk of uncontrolled downward DNAPL migration. The 2D laboratory model was operated with constant background gradient flow and a DNAPL spill was simulated using tetrachloroethene (PCE). The spill was dispersed to a trapped, immobile PCE saturation by a water flood. Areal PCE recovery was studied using a double-triangle well pattern to simulate a remediation scheme consisting of an alcohol pre-flood using aqueous isobutanol ( approximately 10% vol.) followed by a co-solvent flood using a solution of ethylene glycol (65%) and 1-propanol (35%). Experiments were conducted with the 2D model oriented in the horizontal plane and compared to experiments at the 15 degrees and 30 degrees dip-angle orientations. Injection was applied either in the downward or upward direction of flow. Experimental results were compared to theoretical predictions for flood front stability and used to evaluate effects of gravity on areal PCE recovery. Sensitivity experiments were performed to evaluate effects of the alcohol pre-flood on PCE areal recovery. For experiments conducted with the alcohol pre-flood and the 2D model oriented in the horizontal plane, results indicate that 89-93% of source zone PCE was recovered. With injection oriented downward, results indicate that areal PCE recovery was 70-77% for a 15 degrees dip angle and 57-59% for a 30 degrees dip angle. With injection oriented upward, results indicate that areal PCE recovery was 57-60% at the 30 degrees dip angle, which was similar to PCE recovery for injection in the downward flow direction. Lower areal PCE recovery at greater dip angles in either direction of flow was attributed to DNAPL swelling and migration, flood front instabilities and bypassing of the displaced fluid past the extraction wells during the alcohol pre-flood. Additional results demonstrate that the use of an alcohol pre-flood can be beneficial in improving DNAPL recovery in the horizontal orientation, but pre-flooding may reduce areal recovery efficiency in dip-angle orientations. This study also demonstrates the use of theoretical perturbation (fingering) analysis in predicting NAPL recovery efficiency for flooding processes in remediating aquifers with dip angles.  相似文献   

5.
Natural remobilization of multicomponent DNAPL pools due to dissolution   总被引:1,自引:0,他引:1  
Mixtures of dense nonaqueous phase liquids (DNAPLs) trapped in the subsurface can act as long-term sources of contamination by dissolving into flowing groundwater. If the components have different solubilities then dissolution will alter the composition of the remaining DNAPL. We theorized that a multicomponent DNAPL pool may become mobile due to the natural dissolution process. In this study, we focused on two scenarios: (1) a DNAPL losing light component(s), with the potential for downward migration; and (2) a DNAPL losing dense component(s), with the potential for upward migration following transformation into a less dense than water nonaqueous phase liquid (LNAPL). We considered three binary mixtures of common groundwater contaminants: benzene and tetrachloroethylene (PCE), PCE and dichloromethane (DCM), and DCM and toluene. A number of physical properties that control the retention and transport of DNAPL in porous media were measured for the mixtures, namely: density, interfacial tension, effective solubility, and viscosity. All properties except density exhibited nonlinear relationships with changing molar ratio of the DNAPL. To illustrate the potential for natural remobilization, we modelled the following two primary mechanisms: the reduction in pool height as mass is lost by dissolution, and the changes in fluid properties with changing molar ratio of the DNAPL. The first mechanism always reduces the capillary pressure in the pool, while the second mechanism may increase the capillary pressure or alter the direction of the driving force. The difference between the rate of change of each determines whether the potential for remobilization increases or decreases. Static conditions and horizontal layering were assumed along with a one-dimensional, compositional modelling approach. Our results indicated that for initial benzene/PCE ratios greater than 25:75, the change in density was sufficiently faster than the decline in pool height to promote DNAPL breakthrough into the adjacent porous medium. In contrast, there was no potential for natural remobilization of a PCE-DCM mixture, primarily because the densities of the components are not sufficiently different. Dissolution of a DCM-toluene mixture decreased the density, reducing the tendency for downward displacement. However, the ultimate transformation from a DNAPL to an LNAPL may induce upward displacement. These results suggest that at sites with DNAPL pools containing a mix of components of sufficiently different densities and relative solubilities, natural remobilization may be an active mechanism, with implications for site evaluation and remediation.  相似文献   

6.
A common aspect of innovative remediation techniques is that they tend to reduce the interfacial tension between the aqueous and non-aqueous phase liquids, resulting in mobilization of the organic contaminant. This complicates the remediation of aquifers, contaminated with Dense Non-Aqueous Phase Liquids (DNAPLs), as they are likely to migrate downwards, deeper into the aquifer and into finer layers. A possible solution is the use of swelling alcohols, which tend to reduce the density difference between the aqueous phase and the DNAPL. To avoid premature mobilization upon the initial contact between the DNAPL and the alcohol, several researchers have proposed the use of vertical upward flow of the alcohol. In this paper, we present an equation, which describes the upward mobilization of both continuous and discontinuous DNAPLs and so the important parameters governing the upward controlled mobilization of the DNAPL. The need and required magnitude of this specific discharge was investigated by conducting four column experiments in which the initial density of the DNAPL and the permeability was varied. It was shown that the required flow velocities increase with the permeability of the porous medium and the initial density difference between the aqueous phase and the DNAPL. Whenever the specific discharge falls below the critical value, the DNAPL moves downward. A second set of column experiments looked at the impact of permeability of porous medium on the solubilization and mobilization of DNAPL during alcohol flooding. Columns, packed with coarse or fine sand, containing a residual trichloroethylene (TCE) or perchloroethylene (PCE) saturation were flushed with the alcohol mixture at a fixed specific discharge rate. The induced pressure gradients in the aqueous phase, which were higher in the fine sand, resulted for this porous medium in extensive mobilization of the DNAPL against the direction of the buoyancy force. The density of the first NAPL coming out of the top of the fine sand was close to that of the pure DNAPL. In the coarser sand, the pressure gradients were sufficient to prevent downward migration of the DNAPL, but upward mobilization was minimal. The predominant removal mechanism in this case was the much slower solubilization.  相似文献   

7.
Even in the absence of mobilization of dense nonaqueous phase liquid (DNAPL), the microemulsion that forms when the surfactant solubilizes a dense contaminant such as trichloroethylene will be more dense than water and tends to migrate downward. This paper addresses the issue of migration with a new concept: surfactant enhanced aquifer remediation at neutral buoyancy. Laboratory results of surfactant remediation in two-dimensional model aquifers show that downward migration of microemulsion containing solubilized dense contaminants can be reduced to an acceptable level, even in the absence of capillary barriers in the aquifer. One model experiment was designed to exhibit a small degree of vertical migration and full capture of the microemulsion at the extraction well. The second experiment was designed to demonstrate the effect of large buoyancy forces that lead to excessive downward migration of the microemulsion. Density measurements of aqueous solutions containing sodium dihexyl sulfosuccinate surfactant, isopropanol, trichloroethylene, and sodium chloride are presented. A companion paper presents the results of the flow and transport calculations needed for this approach to surfactant flooding.  相似文献   

8.
A particular problem with the release of dense nonaqueous phase liquids (DNAPLs) into the environment is identifying where the DNAPL is and if it is still moving. This question is particularly important at sites where thousands of cubic meters of DNAPLs were disposed of. To date, results from laboratory models have not been scaled to predict analogous migration at the larger length and time scales appropriate for sites where large volumes of DNAPLs were released. Modified inspectional analysis is a technique for developing scaling relationships through nondimensionalizing the governing equations. It was applied in this study to scale observations of DNAPL migration in a laboratory model to four hypothetical scenarios in the field where large volumes of DNAPL were released. One scenario was compared to a large DNAPL spill site. The length and time scales of DNAPL movement predicted from our analysis are consistent with those predicted from a numerical model of this site. To our knowledge, this is the first application of modified inspectional analysis for release of DNAPLs in a laboratory model. This methodology may prove useful for scaling results from other laboratory investigations of DNAPL migration to field-scale systems.  相似文献   

9.
The composition of chlorinated hydrocarbon DNAPLs (dense non-aqueous phase liquids) from field sites can be substantially different than the material originally purchased for use as a solvent. Waste management practices at the U.S. Department of Energy's (DOE) Savannah River Site (SRS) included co-disposal of a wide range of organic and inorganic wastes. In 1991, a clear, orange-colored DNAPL was found in two wells near the SRS M-area settling basin. Waste effluent from the fuel and target fabrication facilities that were discharged to this settling basin included acids, caustics, metals and chlorinated solvents. The characterization of the SRS DNAPL suggests that numerous constituents partitioned into the DNAPL during its use as a solvent, co-disposal and ultimate migration through the subsurface. Trace constituents in the DNAPL include metals, from processing operations or co-disposal practices and subsurface minerals, high molecular weight hydrocarbons and alkyl esters, and acids. This complex mixture results in DNAPL-water interfacial properties that are substantially different than would be expected from a simple mixture of PCE and TCE. Under conditions when there is a high DNAPL to water volume ratio, a semi-rigid film accumulates on water droplets suspended in the DNAPL. It is concluded that the array of precipitated metal species comprising this film contributes to the interfacial tension that is over an order of magnitude lower than expected for a "clean" PCE/TCE mixture.  相似文献   

10.
表面活性剂强化抽出处理含水层中DNAPL污染物的去除特征   总被引:1,自引:0,他引:1  
为明确表面活性剂强化抽出处理含水层中DNAPL污染物过程中表面活性剂的增强修复效果,及DNAPL自身理化性质和介质孔径的影响,利用数码图像分析技术对1,2-二氯乙烷和四氯乙烯2种DNAPL在石英砂填充的二维砂箱中的抽取迁移过程进行了实验模拟研究,并对抽出水样中DNAPL的浓度进行了测试分析。结果表明,实验条件下加入低浓度(0.18%)的十二烷基苯磺酸钠(SDBS)大幅提高了对弱透水层截留的2种DNAPL聚集体的抽出处理效率。1,2-二氯乙烷在该表面活性剂溶液中的表观溶解度远高于四氯乙烯,因此其短时间内的绝对去除率更高。SDBS强化抽出处理DNAPL的作用机理以增溶作用为主,而其增流作用使DNAPL迁移流动后分布面积增大,增加了与表面活性剂溶液接触的面积,对增溶作用起到促进效果。细粒介质中DNAPL迁移后的最大分布面积较大,因此体系中DNAPL的溶解速率较高。在DNAPL聚集体质量与水力梯度固定的条件下,油水界面张力越低,DNAPL的密度越大,DNAPL垂向迁移的风险就越大。本研究为修复工程中如何依据DNAPL种类与场地多孔介质的情况选择表面活性剂提供了参考。  相似文献   

11.

In this study, fate and contaminant transport model-driven human health risk indexes were calculated due to the presence of dense non-aqueous phase liquids (DNAPLs) in the subsurface environment of air force base area in Florida, USA. Source concentration data of DNAPLs was used for the calculation of transport model-driven health risk indexes for the children and adult sub-population via direct oral ingestion and skin dermal contact exposure scenario using 10,000 Monte Carlo type simulations. The highest variation in the probability distribution of transformed DNAPL compound (cis-dichloroethene (cis-DCE) > vinyl chloride (VC)) was observed as compared to parent DNAPL (tetrachloroethene (PCE)) based on the 50-year simulation timespan. Transformed DNAPL compounds (VC, cis-DCE) posed the highest risk to human health for a longer duration (up to 15 years) in comparison to parent DNAPL (PCE), as non-carcinogenic hazard quotient varied from 400 to 1100. Carcinogenic health risks were observed as 3-order of magnitude higher than safe limit (HQSafe < 10−6) from 2nd to 5th year timespan and fall in the high-risk zone, indicating the need for a remediation plan for a contaminated site. Variance attribution analysis revealed that concentration, body weight, and exposure duration (contribution percentage – 70 to 95%) were the most important parameters, highlighting the impact of dispersivity and exposure model in the estimation of risk indexes. This approach can help decision-makers when a contaminated site with partial data on hydrogeological properties and with higher uncertainty in model parameters is to be assessed for the formulation of remediation measures.

  相似文献   

12.
13.
The destruction of a carbon tetrachloride DNAPL and a chloroform DNAPL was investigated in reactions containing 0.5 mL of DNAPL and a solution of modified Fenton's reagent (2M H2O2 and 5mM iron(III)-chelate). Carbon tetrachloride and chloroform masses were followed in the DNAPLs, the aqueous phases, and the off gasses. In addition, the rate of DNAPL destruction was compared to the rate of gas-purge dissolution. Carbon tetrachloride DNAPLs were rapidly destroyed by modified Fenton's reagent at 6.5 times the rate of gas purge dissolution, with 74% of the DNAPL destroyed within 24h. Use of reactions in which a single reactive oxygen species (hydroxyl radical, hydroperoxide anion, or superoxide radical anion) was generated showed that superoxide is the reactive species in modified Fenton's reagent responsible for carbon tetrachloride DNAPL destruction. Chloroform DNAPLs were also destroyed by modified Fenton's reagent, but at a rate slower than the rate of gas purge dissolution. Reactions generating a single reactive oxygen species demonstrated that chloroform destruction was the result of both superoxide and hydroxyl radical activity. Such a mechanism of chloroform DNAPL destruction is in agreement with the slow but relatively equal reactivity of chloroform with both superoxide and hydroxyl radical. The results of this research demonstrate that modified Fenton's reagent can rapidly and effectively destroy DNAPLs of contaminants characterized by minimal reactivity with hydroxyl radical, and should receive more consideration as a DNAPL cleanup technology.  相似文献   

14.
The transfer of contaminant mass between the nonaqueous- and aqueous-phases is a process of central importance for the remediation of sites contaminated by dense nonaqueous-phase liquids (DNAPLs). This paper describes a comparison of the results obtained with various alternative DNAPL-aqueous-phase mass transfer models contained in the literature for predicting DNAPL source-zone depletion times in groundwater systems. These dissolution models were largely developed through laboratory column experiments. To gain insight into the implications of various representations of the local-scale kinetic as well as equilibrium DNAPL dissolution processes, aquifer heterogeneity and the complex architecture of a DNAPL source-zone, the aqueous-phase contaminant concentrations and mass fluxes arriving at a down-gradient compliance boundary are analyzed in a conditional stochastic framework. The hydrogeologic setting is a heterogeneous fluvial aquifer in Southwest Germany, referred to as the aquifer analog dataset, that was intensively characterized in three dimensions for hydrogeological parameters that include permeability, effective porosity, grain size, mineralogy and sorption coefficients. By embedding the various dissolution models into the compositional, multiphase flow model, CompFlow, the relative times predicted for complete depletion of a released DNAPL source due to natural dissolution are explored. Issues related to achieving environmental benefits through, for example, partial DNAPL-zone source removal via enhanced remedial technologies are also discussed. In this context, performance metrics in the form of peak aqueous-phase contaminant concentrations and mass fluxes arriving at a down-gradient compliance boundary are compared to each other. This is done for each of the alternative mass transfer models. A significant reduction in the fractional flux at a downstream location from the DNAPL source can be achieved by partial source-zone mass reduction; however, peak concentration levels at the same location remain much higher than the United States Environment Protection Agency (US-EPA) drinking water limits. Although groundwater quality was found to improve more rapidly for the equilibrium dissolution model, it is also shown that dissolution models that promote rapid DNAPL disappearance produce greater prediction uncertainty in the aqueous-phase flux reduction.  相似文献   

15.
A soil core, obtained from a contaminated field site, contaminated with a mixture of volatile and semivolatile organic compounds (VOC and SVOC) was subjected to air and steam flushing. Removal rates of volatile and semivolatile organic compounds were monitored during flushing. Air flushing removed a significant portion of the VOC present in the soil, but a significant decline in removal rate occurred due to decreasing VOC concentrations in the soil gas phase. Application of steam flushing after air flushing produced a significant increase in contaminant removal rate for the first 4 to 5 pore volumes of steam condensate. Subsequently, contaminant concentrations decreased slowly with additional pore volumes of steam flushing. The passage of a steam volume corresponding to 11 pore volumes of steam condensate reduced the total VOC concentration in the soil gas (at 20 degrees C) by a factor of 20 to 0.07 mg/l. The corresponding total SVOC concentration in the condensate declined from 11 to 3 mg/l. Declines in contaminant removal rates during both air and steam flushing indicated rate-limited removal consistent with the persistence of a residual organic phase, rate-limited desorption, or channeling. Pressure gradients were much higher for steam flushing than for air flushing. The magnitude of the pressure gradients encountered during steam flushing for this soil indicates that, in addition to rate-limited contaminant removal, the soil permeability (2.1 x 10(-9) cm2) would be a limiting factor in the effectiveness of steam flushing.  相似文献   

16.
Direct pumping and enhanced recovery of coal tar and creosote dense, non-aqueous phase liquids (DNAPLs) from the subsurface have had mixed results because these DNAPLs are viscous fluids that can potentially alter aquifer wettability. To improve the inefficiencies associated with waterflooding, the research presented here considered the use of a polymer solution that can be added to the injected flood solution to increase the viscosity and decrease the velocity of the flooding solution. Results from one-dimensional, vertically oriented laboratory column experiments that evaluate the recovery of coal-derived DNAPL with both water and polymer flooding solutions are presented. The final DNAPL saturation remaining in the column was assessed in water and oil-wet systems for three viscous DNAPLs. Adding polymer to increase the aqueous solution viscosity did not have a significant impact in water-wet systems. A final DNAPL saturation of approximately 19% was achieved for both water and polymer floods. In contrast, the addition of polymer significantly improved recovery in oil-wet systems. The final saturation was over 40% in oil-wet systems after waterflooding, but approximately 19% with a polymer flushing solution. Although the final saturation produced with polymer flooding was similar between the oil- and water-wet systems, differences in the relative permeability and distribution of DNAPL in the porous matrix caused the DNAPL recovery to be much slower in the oil-wet system.  相似文献   

17.
A numerical model (Queen's University Multi-Phase Flow Simulator, QUMPFS) was used to assess the rate of trichloroethylene (TCE) dense, non-aqueous phase liquid (DNAPL) migration through fractured clay, with special attention focused on the influence of interbedded sand lenses. The presence of these sand lenses was found to increase the time required for the non-wetting phase to migrate through the full 30 m vertical extent of the clay sequence from a few days to several years. Applied vertical hydraulic gradients were found to be moderately influential in systems consisting solely of fractured clays, yet one of the dominant factors controlling speed of vertical migration when sand lenses were present. Larger displacement pressure of the sands relative to that of the fractures leads to slower DNAPL migration rates, due to the delays that occur during build-up of capillary pressures. Dissolution of DNAPL and subsequent matrix diffusion of the aqueous phase has little effect on the rate of DNAPL migration through systems consisting of fractured clay only, yet slows the rate of migration in systems containing sand lenses. In all cases examined, the rate of DNAPL loading to the lower aquifer far exceeded the rate of aqueous phase mass loading. It was also found that DNAPL reaches the lower aquifer at approximately the same time as the aqueous phase plumes even for systems experiencing downward groundwater flow due to the attenuation of the aqueous phase through matrix diffusion.  相似文献   

18.
Zhao B  Zhu L  Yang K 《Chemosphere》2006,62(5):772-779
Efforts to remediate the dense nonaqueous phase liquids (DNAPLs) by mobilizing them face with risks of driving the contaminants deeper into aquifer zones. This spurs research for modifying the approach for in situ remediation. In this paper, a novel solubilization of DNAPLs by mixed nonionic and anionic surfactant, Triton X-100 (TX100) and sodium dodecylbenzene sulfonate (SDBS), was presented and compared with those by single ones. Given 1:40 phase ratio of DNAPL:water (v/v) and the total surfactant concentration from 0.2 to 10gl(-1), mixed TX100-SDBS at the total mass ratios of 3:1, 1:1 and 1:3 exhibited significant solubilization for the DNAPLs, trichloroethene (TCE), chlorobenzene (CB) and 1,2-dichlorobenzene (1,2-DCB). The solubilization extent by mixed TX100-SDBS was much larger than by single TX100 and even larger than by single SDBS at the ratios of 1:1 and 1:3, respectively. TX100 partitioning into the organic phase dictated the solubilization extent. The TX100 losses into TCE, CB and 1,2-DCB phases were more than 99%, 97% and 97% when single TX100 was used. With SDBS alone, no SDBS partitioned into DNAPLs was observed and in mixed systems, SDBS decreased greatly the partition loss of TX100 into DNAPLs. The extent of TX100 partition decreased with increasing the amount of SDBS. The mechanism for reduction of TX100 partition was discussed. TX100 and SDBS formed mixed micelles in the solution phase. The inability of SDBS to partition into DNAPLs and the mutual affinity of SDBS and TX100 in the mixed micelle controlled the partitioning of TX100 into DNAPL phase. The work presented here demonstrates that mixed nonionic-anionic surfactants would be preferred over single surfactants for solubilization remediation of DNAPLs, which could avoid risks of driving the contaminants deeper into aquifers and decrease the surfactant loss and remediation cost.  相似文献   

19.
Two-dimensional chamber studies were conducted to determine qualitative and quantitative performance of cosolvents targeted at pooled dense non-aqueous phase liquid (DNAPL) (perchlorethylene, PCE) residing above a fine-grain capillary barrier. Downward mobilization of DNAPL, up gradient along an overriding cosolvent front, was observed. This produced significant pooling above a fine-grain layer that in some cases lead to entry into the capillary barrier beneath. Entry pressure calculations using physical and hydrogeologic parameters provided an excellent prediction of breakthrough of DNAPL into the capillary barrier. Calculations predict approximately 0.5 m of DNAPL would be necessary to enter a Beit Netofa clay, under extreme cosolvent flooding conditions (100% ethanol). Gradient injection of cosolvent did not appear to provide any benefit suggesting a rapid decrease in interfacial tension (IFT) compared to the rate of DNAPL solubilization. Use of a partitioning alcohol (tertiary butyl alcohol, TBA) resulted in DNAPL swelling and reduced entry into the capillary barrier. However, the trapping of flushing solution, containing PCE, could potentially lead to longer remediation times.  相似文献   

20.
While the capability of nanoscale zero-valent iron (NZVI) to dechlorinate organic compounds in aqueous solutions has been demonstrated, the ability of NZVI to remove dense non-aqueous phase liquid (DNAPL) from source zones under flow-through conditions similar to a field scale application has not yet been thoroughly investigated. To gain insight on simultaneous DNAPL dissolution and NZVI-mediated dechlorination reactions after direct placement of NZVI into a DNAPL source zone, a combined experimental and modeling study was performed. First, a DNAPL tetrachloroethene (PCE) source zone with emplaced NZVI was built inside a small custom-made flow cell and the effluent PCE and dechlorination byproducts were monitored over time. Second, a model for rate-limited DNAPL dissolution and NZVI-mediated dechlorination of PCE to its three main reaction byproducts with a possibility for partitioning of these byproducts back into the DNAPL was formulated. The coupled processes occurring in the flow cell were simulated and analyzed using a detailed three-dimensional numerical model. It was found that subsurface emplacement of NZVI did not markedly accelerate DNAPL dissolution or the DNAPL mass-depletion rate, when NZVI at a particle concentration of 10g/L was directly emplaced in the DNAPL source zone. To react with NZVI the DNAPL PCE must first dissolve into the groundwater and the rate of dissolution controls the longevity of the DNAPL source. The modeling study further indicated that faster reacting particles would decrease aqueous contaminant concentrations but there is a limit to how much the mass removal rate can be increased by increasing the dechlorination reaction rate. To ensure reduction of aqueous contaminant concentrations, remediation of DNAPL contaminants with NZVI should include emplacement in a capture zone down-gradient of the DNAPL source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号