首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluorescence spectroscopic studies of natural organic matter fractions   总被引:31,自引:0,他引:31  
Chen J  LeBoeuf EJ  Dai S  Gu B 《Chemosphere》2003,50(5):639-647
Because of the well-known molecular complexity and heterogeneity of natural organic matter (NOM), an aquatic bulk NOM was fractionated into well-defined polyphenolic-rich and carbohydrate-rich subfractions. These fractions were systematically characterized by fluorescence emission, three dimensional excitation-emission matrices, and synchronous-scan excitation spectroscopy in comparison with those of the reference International Humic Substances Society soil humic acid and Suwannee River fulvic acid. Results indicate that fluorescence spectroscopy can be useful to qualitatively differentiate not only NOM compounds from varying origins but also NOM subcomponents with varying compositions and functional properties. The polyphenolic-rich NOM-PP fraction exhibited a much more intense fluorescence and a red shift of peak position in comparison with the carbohydrate-rich NOM-CH fraction. Results also indicate that synchronous excitation spectra were able to provide improved peak resolution and structural signatures such as peak positioning, shift, and intensity among various NOM components as compared with those of the emission and excitation spectra. In particular, the synchronous spectral peak intensity and its red shift in the region of about 450-480 nm may be used to indicate the presence or absence of high molecular weight and polycondensed humic organic components, or the multicomponent nature of NOM or NOM subcomponents.  相似文献   

2.
Natural organic matter (NOM) is found in all surface, ground and soil waters. During recent decades, reports worldwide show a continuing increase in the color and NOM of the surface water, which has an adverse affect on drinking water purification. For several practical and hygienic reasons, the presence of NOM is undesirable in drinking water. Various technologies have been proposed for NOM removal with varying degrees of success. The properties and amount of NOM, however, can significantly affect the process efficiency. In order to improve and optimise these processes, the characterisation and quantification of NOM at different purification and treatment processes stages is important. It is also important to be able to understand and predict the reactivity of NOM or its fractions in different steps of the treatment. Methods used in the characterisation of NOM include resin adsorption, size exclusion chromatography (SEC), nuclear magnetic resonance (NMR) spectroscopy, and fluorescence spectroscopy. The amount of NOM in water has been predicted with parameters including UV-Vis, total organic carbon (TOC), and specific UV-absorbance (SUVA). Recently, methods by which NOM structures can be more precisely determined have been developed; pyrolysis gas chromatography-mass spectrometry (Py-GC-MS), multidimensional NMR techniques, and Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). The present review focuses on the methods used for characterisation and quantification of NOM in relation to drinking water treatment.  相似文献   

3.
Her N  Amy G  Chung J  Yoon J  Yoon Y 《Chemosphere》2008,70(3):495-502
Natural organic matter (NOM) characteristics were determined for three ground waters exhibiting different water quality conditions. The water quality of the three feed waters collected at various water table depths was characterized by XAD-8/-4 resin adsorption, high performance size exclusion chromatography with ultraviolet and dissolved organic carbon (DOC) detections, and Fourier transform infrared spectroscopy (FTIR) to determine NOM fractionation, molecular weight, and NOM functional groups, respectively. Systematic studies were conducted to identify potential NOM foulants in ground water for nanofiltration (NF) membrane fouling. The results show that the hydrophobic fraction of NOM in all of the samples was significantly high (71-93%) compared to the hydrophilic (1.7-22.6%) and transphilic (5.3-6.6%) fractions. However, insignificant flux-decline (less than 5%) was observed for the highest DOC (36.9 mg l(-1)) and hydrophobic NOM (93%) containing groundwater compared to the other lesser DOC and hydrophobic NOM containing ground waters. This is presumably due to either higher fractions of hydrophilic and transphilic NOM or inorganic interactions that may be major foulants. Based on FTIR, aromatic foulants were observed at 1662 cm(-1) (CO-NH2 or CO conjugated with aromatic rings) for the fouled NF membrane with the relatively low DOC source waters. The contact angle of the clean membrane (52 degrees ) decreased with fouling up to 42-47 degrees for fouled membranes with the various samples.  相似文献   

4.
Elemental analysis, Fourier transform infrared coupled to attenuated total reflectance (FTIR-ATR) and solid-state cross polarization with magic angle spinning-13C-nuclear magnetic resonance (CPMAS 13C NMR) spectroscopies were used to compare the chemical features of water-soluble organic compounds (WSOC) from atmospheric aerosols with those of aquatic humic and fulvic acids. The influence of different meteorological conditions on the structural composition of aerosol WSOC was also evaluated. Prior to the structural characterisation, the WSOC samples were separated into hydrophobic acids and hydrophilic acids fractions by using a XAD-8/XAD-4 isolation procedure. Results showed that WSOC hydrophobic acids are mostly aliphatic (40–62% of total NMR peak area), followed by oxygenated alkyls (15–21%) and carboxylic acid (5.4–13.4%) functional groups. Moreover, the aromatic content of aerosol WSOC samples collected between autumn and winter seasons is higher (∼18–19%) than that of samples collected during warmer periods (∼6–10%). The presence of aromatic signals typical of lignin-derived structures in samples collected during low-temperature conditions highlights the major contribution of wood burning processes in domestic fireplaces into the bulk chemical properties of WSOC from aerosols. According to our investigations, aerosol WSOC hydrophobic acids and aquatic fulvic and humic acids hold similar carbon functional groups; however, they differ in terms of the relative carbon distribution. Elemental analysis indicates that H and N contents of WSOC hydrophobic acids samples surpass those of aquatic fulvic and humic acids. In general, the obtained results suggest that WSOC hydrophobic acids have a higher aliphatic character and a lower degree of oxidation than those of standard fulvic and humic acids. The study here reported suggests that aquatic fulvic and humic acids may not be good models for WSOC from airborne particulate matter.  相似文献   

5.
Natural pumice particles were used as granular support media and coated with iron oxides to investigate their adsorptive natural organic matter (NOM) removal from waters. The impacts of natural pumice source, particle size fraction, pumice dose, pumice surface chemistry and specific surface area, and NOM source on the ultimate extent and rate of NOM removal were studied. All adsorption isotherm experiments were conducted employing the variable-dose completely mixed batch reactor bottle-point method. Iron oxide coating overwhelmed the surface electrical properties of the underlying pumice particles. Surface areas as high as 20.6m(2)g(-1) were achieved after iron coating of pumice samples, which are above than those of iron coated sand samples reported in the literature. For all particle size fractions, iron coating of natural pumices significantly increased their NOM uptakes both on an adsorbent mass- and surface area-basis. The smallest size fractions (<63 microm) of coated pumices generally exhibited the highest NOM uptakes. A strong linear correlation between the iron contents of coated pumices and their Freundlich affinity parameters (K(F)) indicated that the enhanced NOM uptake is due to iron oxides bound on pumice surfaces. Iron oxide coated pumice surfaces preferentially removed high UV-absorbing fractions of NOM, with UV absorbance reductions up to 90%. Control experiments indicated that iron oxide species bound on pumice surfaces are stable, and potential iron release to the solution is not a concern at pH values of typical natural waters. Based on high NOM adsorption capacities, iron oxide coated pumice may be a promising novel adsorbent in removing NOM from waters. Furthermore, due to preferential removal of high UV-absorbing NOM fractions, iron oxide coated pumice may also be effective in controlling the formation of disinfection by-products in drinking water treatment.  相似文献   

6.
Guan XH  Shang C  Chen GH 《Chemosphere》2006,65(11):2074-2081
The role of phenolic groups in the interaction of natural organic matter (NOM) with metal hydroxides was investigated with ATR-FTIR spectroscopy and adsorption tests by employing a series of dihydroxybenzoic acids (DHBAs) as the NOM surrogates and aluminum hydroxide as the adsorbent. All DHBAs examined in this study were found to be adsorbed on aluminum hydroxide by forming inner-sphere complexes. Carboxylic groups governed the complexation of DHBAs with aluminum hydroxide at low pH or in cases when the two hydroxyl groups were not adjacent to each other and neither of them was ortho to the carboxylic group. The involvement of the phenolic groups, ortho to another phenolic group or ortho to the carboxylic groups, in the complexation increased with increasing pH as the deprotonation of phenolic groups was easier at higher pH. The presence of phenolic groups increased the electron density of the carboxylic groups and facilitated the inner-sphere complexation of the carboxylic groups with metal hydroxide. The correlation between the pKa values and the amount of organic acid adsorbed on the aluminum hydroxide revealed that the adsorption of DHBAs at acidic pH was largely dependent on the surface chelate formation rather than on the electronic effect.  相似文献   

7.
Li CW  Korshin GV 《Chemosphere》2002,49(6):629-636
In this study, the complexation of Tb3+ with natural organic matter (NOM) was studied by the method of time-resolved fluorescence spectroscopy. In the presence of NOM, the excitation of Tb3+ was observed in a wide range of wavelengths, for which virtually no excitation of free Tb3+ took place. The pseudo-quantum yield spectra (excitation intensity normalized by corresponding light absorbance values) had a maximum at 282 nm. This indicated that the excitation of NOM-bound Tb3+ proceeds through energy transfer from aromatic groups in NOM. The concentration of the metal-binding sites (C(L)) was determined by titration with Tb3+ and was found to range from 0.21% to 0.83% of total moles of organic carbon. The actual number of the carbon atoms that comprise these functionalities was hypothesized to be at least seven times higher. The C(L) values were well correlated with the reactivity of NOM with chlorine quantified by total organic halogen formation potential and with the contribution of polyhydroxyaromatic moieties determined by pyrolysis-GC/MS method. The correlation of C(L) with the contributions of aromatic and carboxylic moieties in NOM determined by 13C NMR was poor. Based on the data, it was concluded that the metal binding functionalities in NOM are closely associated with halogen attack sites.  相似文献   

8.
Zhang T  Lu J  Ma J  Qiang Z 《Chemosphere》2008,71(5):911-921
Fluorescence spectra were applied to investigate the structural changes of four dominant dissolved natural organic matter (DOM) fractions of a filtered river water before and after ozonation and catalytic ozonation. The ozonation and catalytic ozonation with synthetic goethite (FeOOH) and cerium dioxide (CeO(2)) were carried out under normal conditions, i.e. pH 7, reaction time of 10 min, and ozone/DOC ratio of about 1. The fluorescence spectra were recorded at both excitation-emission matrix (EEM) and synchronous scanning modes. EEM results reveal that ozonation of these DOM fractions causes a significant decrease of the aromaticity of humic-like structures and an increase of electron withdrawing groups, e.g., carboxylic groups. The catalysts can further improve the destruction of the humic-like structures in catalytic ozonation. Synchronous spectra reveal that ozonation of hydrophobic acid and hydrophilic acid (HIA) yields a significant amount of by-products with low aromaticity and low molecular weight. Catalytic ozonation enhances substantially the formation of these by-products from HIA and improves the destruction of highly polycyclic aromatic structures for all examined DOM fractions.  相似文献   

9.

Introduction

The removal of natural organic matter (NOM) from water is becoming increasingly important in order to prevent the formation of carcinogenic disinfection by-products. The inadequate removal of NOM has a bearing on the capacity of the other treatment processes to remove organic micro-pollutants or inorganic species that may be present in the water. New methods are therefore currently being sought to effectively characterise NOM and also to ensure that it is sufficiently removed from drinking water sources.

Methodology

Nitrogen- and palladium-co-doped TiO2 was synthesised by a modified sol?Cgel method and evaluated for its photocatalytic degradation activity on NOM fractions under simulated solar radiation. The photocatalyst was characterised by FT-IR, Raman, XRD, DRUV?Cvis, SEM, TEM, EDS, XPS and TGA. FT-IR confirmed the presence of OH groups on thermally stable, nearly spherical anatase nanoparticles with an average diameter of 20?nm. PdO species appeared on the surface of the TiO2 as small uniformly dispersed particles (2 to 3?nm). A red shift in the absorption edge compared to commercial anatase TiO2 was confirmed by DRUV?Cvis. In order to gain a better insight into the response of NOM to photodegradation, the NOM was divided into three different fractions based on its chemical nature.

Results and discussion

Photodegradation efficiencies of 96, 38 and 15?% were realised for the hydrophobic, hydrophilic and transphilic NOM fractions, respectively. A reasonable mechanism was proposed to explain the photocatalytic degradation of the NOM fractions. The high photocatalytic activity could be attributed to the larger surface area, smaller crystalline size and synergistic effects of the co-dopants N and Pd in the TiO2 crystal.  相似文献   

10.
We have characterised two kinds of municipal landfill leachates derived from 'old' and 'young' municipal waste landfills on the basis of the molecular weight distribution of the constituents, taking into account that the great variety of leachate constituents prevents any evaluation of the fate and of the role played by each component in the environmental impact. In the sample S1 (old leachate), the constituents were distributed over a wider range of molecular weights; high molecular weight fractions were present. In sample S2 (young leachate), the fractions are actually narrower at the lower molecular weights. The high molecular weight fractions of old leachates are found to be complex structures formed by condensed nuclei of carbons substituted by functional groups containing nitrogen, sulphur and oxygen atoms; the low molecular weight fractions of leachates are, instead, characterised by linear chains substituted by oxygenated functional groups such as carboxyl and/or alcoholic groups. After characterising each fraction we studied the role played by these fractions in the soil's capability for retaining heavy metals [copper (Cu) and cadmium(Cd)]. The Cd uptake increases only on the soil treated with sample S1 characterised by a higher pH value and by the presence of high molecular weight fractions. The Cu uptake also increases on the soil treated with sample S2, characterised by the sole presence of low molecular weight fractions. On the other hand, the metal adsorption tests performed on soil treated with the single fractions show that the amount of Cu and Cd retained by soil treated with the high molecular weight fractions of sample does not increase after 72 h of treatment and that the amount of Cu retained by the low molecular weight fractions of sample S1 and by the fractions of sample S2 increases, but does not justify the amount retained by soil treated with the total leachates.  相似文献   

11.
Hur J  Lee BM 《Chemosphere》2011,83(11):1603-1611
The heterogeneity of copper binding characteristics for dissolved organic matter (DOM) fractions was investigated based on the fluorescence quenching of the synchronous fluorescence spectra upon the addition of copper and two-dimensional correlation spectroscopy (2D-COS). Hydrophobic acid (HoA) and hydrophilic (Hi) fractions of two different DOM (algal and leaf litter DOM) were used for this study. For both DOM, fluorescence quenching occurred at a wider range of wavelengths for the HoA fractions compared to the Hi fractions. The combined information of the synchronous and asynchronous maps derived from 2D-COS provided a clear picture of the heterogeneous distribution of the copper binding sites within each DOM fraction, which was not readily recognized by a simple comparison of the changes in the synchronous fluorescence spectra upon the addition of copper. For the algal DOM, higher stability constants were exhibited for the HoA versus the Hi fractions. The logarithms of the stability constants ranged from 4.8 to 6.1 and from 4.5 to 5.0 for the HoA and the Hi fractions of the algal DOM, respectively, depending on the associated wavelength and the fitted models. In contrast, no distinctive difference in the binding characteristics was found between the two fractions of the leaf litter DOM. This suggests that influences of the structural and chemical properties of DOM on copper binding may differ for DOM from different sources. The relative difference of the calculated stability constants within the DOM fractions were consistent with the sequential orders interpreted from the asynchronous 2D-COS. It is expected that 2D-COS will be widely applied to other DOM studies requiring detailed information on the heterogeneous nature and subsequent effects under a range of environmental conditions.  相似文献   

12.
Organic aerosol chemical markers from normalized concentrations of independent measurements of mass fragments (using Aerosol Mass Spectrometry, AMS) are compared to bond-based functional groups (from Fourier Transform Infrared spectroscopy, FTIR) during eight field projects in the western hemisphere. Several field projects show weak correlations between alcohol group fractions and m/z 60 fractions, consistent with the organic hydroxyl groups and the fragmentation of saccharides, but the weakness of the correlations indicate chemical differences among the relationships for ambient aerosols in different regions. Carboxylic acid group fractions and m/z 44 fractions are correlated weakly for three projects, with correlations expected for aerosols dominated by di-acid compounds since their fragmentation is typically dominated by m/z 44. Despite differences for three projects with ratios of m/z 44 to m/z 57 fragments less than 10, five projects showed a linear trend between the project-average m/z 44 to m/z 57 ratio and the ratio of acid and alkane functional groups. While this correlation explains only a fraction of the fragment and bond variability measured, the consistency of this relationship at multiple sites indicates a general agreement with the interpretation of the relative amount of m/z 44 as a carboxylic acid group marker and m/z 57 as an alkane group marker.  相似文献   

13.
Organic matter has a great influence over the fate of inorganic colloids in surface waters. The chemical nature and structure of natural organic matter (NOM) will be an important factor in determining whether colloids will be stabilised or destabilised by NOM. Under environmentally relevant conditions, the ubiquitous fulvic acids are likely to be responsible for coating and imparting a negative charge to colloids. If the adsorbed polyelectrolyte coating produces an increase in absolute surface potential, it will act to stabilise colloids in the water column. On the other hand, colloidal organic carbon, especially chain-like structures, has been shown to be involved in the aggregation of inorganic colloids through the formation of bridges. It is highly probable that both adsorption and bridging flocculation are occurring simultaneously in the natural aquatic environment. The importance of each process depends directly on the nature and concentration of organic matter in the system and indirectly on the productivity of the lake, its hydrological pathways, temporal variations, temperature, etc. The present paper reports such results and emphasises the need to discriminate the different kinds of NOM.  相似文献   

14.
Metal complexation by natural ligands is important for metal transport and distribution in surface and ground water. The goal of the work was to study the ligand exchange rate for two important metal ions in natural aquatic systems (Al, Fe) was determined using EDTA and natural organic matter (NOM) of humic type as ligands. After adding EDTA to a solution containing metal-NOM complexes, these complexes dissociated and metal-EDTA complexes were formed. Metal-NOM complexes were separated from metal-EDTA complexes with the help of size-exclusion chromatography and detected by on-line inductively coupled plasma-mass spectrometry (ICP-MS). Injecting the samples into the system over time after addition of EDTA allowed us to measure the rate of the exchange of NOM by EDTA. The experiments could be well described with a first-order rate law assuming that the dissociation of the metal-NOM complexes is the rate-determining step. The exchange rate of Fe was found to be faster than that of Al. This corresponds well with the exchange rate of water molecules from the coordination sphere of the metal ions, which is also faster for Fe than for Al. Furthermore, the UV and the fluorescence signal of the chromatograms were measured. The results indicate that no disaggregation of NOM molecules took place, although about 75-85% of the aggregate-forming metal ions exchanged NOM by EDTA in their coordination sphere. This suggests clearly the fundamental role of NOM in colloidal transport of metals and in their bioavailability.  相似文献   

15.
Veterinary antimicrobials are emerging environmental contaminants of concern. In this study, the sorption of enrofloxacin (ENR) onto humic acids (HAs) extracted from three Brazilian soils was evaluated. HAs were characterized by elemental analysis and solid 13C nuclear magnetic resonance spectroscopy. The sorption of ENR onto HAs was at least 20-fold higher than onto the soils from which they were separated. Ionic and cation bridging are the primary interactions involved. The interactions driven by cation exchange are predominant on HAs, which appear to have abundant carboxylic groups and a relatively high proportion of H-bond donor moieties with carbohydrate-like structures. Interactions explained by cation bridging and/or surface complexation on HAs are facilitated by moieties containing conjugated ligands, significant content of oxygen-containing functional groups, such as phenolic-OH or lignin-like structures. HAs containing electron-donating phenolic moieties and carboxylic acid ligand groups exhibit a sorption mechanism that is primarily driven by strong metal binding, favoring the formation of ternary complexes between functional groups of the organic matter and drugs.  相似文献   

16.
The fate of dissolved organic matter (DOM) during subsurface wetland treatment of wastewater effluent in a hot, semi-arid environment was examined. The study objectives were to (1) discern changes in the character of dissolved organics as consequence of wetland treatment (2) establish the nature of wetland-derived organic matter, and (3) investigate the impact of wetland treatment on the formation potential of trihalomethanes (THMs). Subsurface wetland treatment produced little change in DOM polarity (hydrophobic-hydrophilic) distribution. Biodegradation of labile effluent organic matter (EfOM) and internal loading of wetland-derived natural organic matter (NOM) together produced only minor changes in the distribution of carbon moieties in hydrophobic acid (HPO-A) and transphilic acid (TPI-A) isolates of wetland effluent. Aliphatic carbon decreased as a percentage of total carbon during wetland treatment. The ratio of atomic C:N in wetland-derived NOM suggests that its character is determined by microbial activity. Formation of THMs upon chlorination of HPO-A and TPI-A isolates increased as a consequence of wetland treatment. Wetland-derived NOM was more reactive in forming THMs and less biodegradable than EfOM. For both HPO-A and TPI-A fractions, relationships between biodegradability and THM formation potential were similar among EfOM and NOM isolates; the less biodegradable isolates exhibited greater THM formation potential.  相似文献   

17.
Proton nuclear magnetic resonance (1H-NMR), UV absorbance and excitation-emission matrix (EEM) fluorescence spectroscopy were used to define the chemical characteristics of chromophoric dissolved organic matter (CDOM) in whole and C18 extracted rainwater. The average total recovery of fluorescence determined from the sum of extract and filtrate fractions relative to the whole was 86% suggesting that 14% of fluorescent CDOM in rainwater is comprised of very hydrophobic material that cannot be eluted from the column. Half the fluorescence of rainwater was recovered in the filtrate fraction which is important because it suggests that 50% of the chromophoric material present in precipitation is relatively hydrophilic. The average spectral slope coefficient was smaller in extracted samples (16.3 ± 9.0 μm?1) relative to whole samples (18.9 ± 2.8 μm?1) suggesting that the extracted material contains larger molecular weight material. Approximately one-third of the total dissolved organic carbon (DOC) in rainwater exists in the extract fraction suggesting that a large percentage of the uncharacterized DOC in rainwater can be accounted for by these hydrophobic macromolecular species. The fluorescence of extracted samples is strongly correlated with total NMR integration and is most sensitive to aromatic protons suggesting that molecules in this region are the most important in controlling the optical properties of rainwater. The lower removal efficiency of CDOM in rainwater relative to surface waters or the water-soluble fraction of aerosols during solid phase extraction (SPE) suggests that rainwater contains significantly more hydrophilic chromophoric compounds which are compositionally different than found in these other aquatic matrices.  相似文献   

18.
This study aims to develop a high-efficiency radical oxidation process for enhancing the dewaterability of waste activated sludge (WAS). Radical scavenging studies combined with electron paramagnetic resonance (EPR) were carried out for the direct radical identification and effectiveness evaluation of radical oxidation. The results indicated that Fe(II)-activated CaO2 can pose a superior effect on dewatering WAS due to its distinctive capacity of stable ?OH production and the high reaction efficiency of regulated-released ?OH with water-holding organics. The mechanism for the enhanced dewatering performance was also explored. The rupture of sludge colloidal flocs and the reduction of hydrophilic functional groups in loosely bound extracellular polymeric substances (LB-EPS) were found to be mainly responsible for the release of interstitial water and improved dewaterability, respectively. In addition, an inference about the relationship between interfacial water and zeta potential of different EPS fractions was established by the simultaneous measurement of the binding affinities of Ca2+ and Fe2+/Fe3+ for EPS and bound water content. All these results provide the direct evidence that Fe(II)-activated CaO2 is a promising pretreatment reagent for sludge disposal.

Implications: Fe(II)-activated CaO2 was first proposed to be highly effective in enhancing the dewaterability of waste activated sludge. Electron paramagnetic resonance (EPR) spectroscopy provided the direct evidence for the specific advantages of CaO2, especially the capacity of durable and efficacious ?OH production leading to the excellent conditioning performance.  相似文献   

19.
The purpose of this study was to compare the molecular size distribution (MSD) of natural organic matter (NOM) in raw waters (RW) and drinking waters (DW), and to find out the differences between MSD after different water treatment processes. The MSD of NOM of 34 RW and DW of Finnish waterworks were determined with high-performance size-exclusion chromatography (HPSEC). Six distinct fractions were generally separated from water samples with the TSK G3000SW column, using sodium acetate at pH 7 as an eluent. Large and intermediate humic fractions were the most dominant fractions in surface waters (lakes and rivers), while in artificially recharged groundwaters and natural groundwaters intermediate and small fractions predominated. Water treatment processes removed the two largest fractions almost completely shifting the MSD towards smaller molecular size in DW. Granular activated carbon (GAC) filtration, ozonation, and their combination reduced all humic fractions compared to the conventional treatment. Humic fractions correlated with total organic carbon (TOC) content and chemical oxygen demand, this being especially true in RW. The results demonstrate that the HPSEC method can be applied for a qualitative and also for rough estimate quantitative analyzes of NOM directly from RW and DW samples without sample pretreatment.  相似文献   

20.
Molecular modelling has been used to investigate the interactions of various heavy metals, in order to understand and possibly to control the nature and behaviour of metals, especially in the aquatic environment. The interactions of copper, cadmium, lead and zinc with organic acids were studied using density functional theory (DFT) calculations. Carboxylic acid was used as a model molecule. The structure of each metal carboxylate was optimized and the vibrational spectrum calculated. The results indicate that there is a shift in the calculated vS(C=O) of metal carboxylates compared with that of carboxylic acid. It was also found that hexaaqua structures of both cadmium and zinc are stable whereas those of copper and lead are not. Furthermore, dipole moment calculations indicate that cadmium carboxylate dihydrate is more representative of cadmium interactions in the aquatic environment. Moreover, hexaaquo cadmium could further interact with surrounding molecules in the aquatic environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号