首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
The toxicity of aluminium to fish is related to interactions between aluminium and the gill surface. We investigated the possible effect of water ionic strength on this interaction. The mortality of brown trout (Salmo trutta L.) exposed to three different degrees of Al polymerisation was compared in water with increased ionic strength (mean 7.31 x 10(-4) M) after additions of the base cations Ca2+, Mg2+, Na+ or K+, and in water with no such addition (mean ionic strength 5.58 x 10(-4) M). Only a very slight ameliorating effect of increased ionic strength was observed, while the degree of Al polymerisation was of major importance in fish mortality. In addition, it was observed that smaller fish survived the Al exposures for a longer time than larger fish. We hypothesise that this is because larger fish are more susceptible to hypoxia than smaller fish.  相似文献   

2.
Cell lines of Etroplus suratensis established in our laboratory were evaluated for their potential use as screening tools for the ecotoxicological assessment of tannery effluent. The cytotoxic effect of tannery effluent in three cell lines derived from eye, kidney and gill tissue of E. suratensis was assessed using multiple endpoints such as Neutral Red (NR) assay, Coomassie Blue (CB) protein assay and Alamar Blue (AB) assay. Acute toxicity tests on fish were conducted by exposing E. suratensis for 96 h to tannery effluent under static conditions. The toxic effect of tannery effluent on the survival of fish was found to be concentration and time dependent. The tannery effluent at the concentration of 15% caused 100% mortality at 96 h whereas the lower concentration (0.5%) caused 13.33% mortality. The cytotoxicity of tannery effluent was found to be similar in the three cell lines tested, independent of the toxic endpoints employed. EC50 values, the effective concentration of tannery effluent resulting in 50% inhibition of cytotoxicity parameters after 48 h exposure to tannery effluent were calculated for eye, kidney and gill cell lines using NR uptake, AB and cell protein assays. Statistical analysis revealed good correlation with r2 = 0.95-0.99 for all combinations between endpoints employed. Linear correlations between each in vitro EC50 and the in vivo LC50 data, were highly significant p < 0.001 with r2 = 0.977, 0.968 and 0.906 for AB50, NR50, and CB50, respectively.  相似文献   

3.
Chlorophyll a (chl a) fluorescence was used to determine the effects of treatments with gaseous HF or aqueous solutions of NaF on the photosynthetic apparatus of spinach prior to the appearance of visible injury. Placing the petioles in 2 mM NaF for 3 h resulted in the accumulation of 240 ppm F in leaf blades. The second oldest leaves of spinach plants accumulated similar concentrations (270 ppm F) when the plants were exposed to gaseous HF at 5 microg F m(-3) for 6 days. These NaF and HF treatments did not result in visible injury nor did they affect Fo, Fm or Fv/Fm. However, during the slow (>2 s) induction kinetics, fluorescence quenching in fluoride-treated leaves increased during the P to S phase and the M peak was no longer resolved. This was due, in part, to increased photochemical quenching. The results are consistent with a reduced ability to develop or maintain a trans-thylakoid proton gradient in chloroplasts containing elevated concentrations of F.  相似文献   

4.
The River Hayle in south-west England is impacted with metals and can be divided into three regions depending on the copper and zinc concentrations: a low-metal upper section; a highly-contaminated middle section and a moderately contaminated lower section. Hayle river water is toxic to metal-naive brown trout, but brown trout are found in the upper and lower regions. The study aimed to evaluate the population genetic structure of River Hayle brown trout and to determine if the highly-contaminated section acts as a chemical barrier to migration. Population genetic analysis indicated that metals were not a barrier to gene flow within the river, but there was a high level of differentiation observed between fish sampled at two sites in the upper region, despite being separated by only 1 km. The metal tolerance trait exhibited by this brown trout population may represent an important component of the species genetic diversity in this region.  相似文献   

5.
Elevated concentrations of arsenic, nickel, and molybdenum in aquatic systems around northern Saskatchewan uranium mines are an environmental concern. Early life stage fathead minnows were used to assess toxicity from several aquatic systems near the Key Lake and Rabbit Lake uranium operations. Hatching success of fish embryos exposed to waters receiving contaminants associated with uranium ore milling was reduced by 32-61% relative to controls. Mortality differed in two lakes receiving mill effluents because of opposing factors influencing metal toxicity (i.e. low pH and high hardness). In one mill receiving water (Fox Lake), larval mortality was 0%, whereas mortality was 85% in water collected from a downstream location (Unknown Lake). Fish embryos exposed to open-pit dewatering effluent receiving waters, or water from a flooded open pit (i.e. pit waters), hatched 26-39% earlier than those exposed to reference or control water. The combination of low water hardness and elevated nickel concentrations in pit waters contributed to the early hatching. Egg hatchability and hatching time were more sensitive indicators of toxicity than 'standard' endpoints, like larval mortality and growth. Current regulatory emphasis on single contaminants and standard toxicological endpoints should be re-evaluated in light of the complex interaction among confounding variables such as pH, hardness. conductivity, and multi-metal mixtures.  相似文献   

6.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号