首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
紫外线分解腐植酸的研究   总被引:1,自引:0,他引:1  
通过我们对紫外线照射前后腐植酸(HA)的理化性质进行了较系统的研究。发现光照可使部门HA分解,并使紫外、红外、核磁共振等光谱发生明显改变;短时间辐射(不超过20分钟)可催化自由基的产生;光照氯化后的HA溶液可使总有机物的组成发生明显变化。  相似文献   

2.
新型PHBV吸油材料与传统聚丙烯吸油材料的性能比较研究   总被引:5,自引:0,他引:5  
对以完全生物降解PHVB(β-羟基丁酸和β-羟基戊酸的共聚体)为基材采用不同方法制备的几种材料的吸油性能与常用聚丙烯吸油毡做了对比实验研究并初步探讨了其吸油机理。实验结果表明,成型后的PHBV的吸油速率、吸油率等指标均已接近聚丙烯吸油毡,而保油性优于聚丙烯吸油毡。  相似文献   

3.
淀粉——丙烯酸钠吸水树脂的抑尘性能研究   总被引:2,自引:0,他引:2  
对淀粉--丙烯酸钠合成的吸水树脂工艺,及其吸湿放湿性,吸水保水性,抗蒸发性等抑制路(地)面扬尘的性能进行研究。结果表明,此吸水树脂的合成工艺简单,抑尘性能较好;用它喷洒高扬尘(地)面,能保持有利于抑尘的含水量,增强路(地)面的稳定性,因此可有效抑制粉尘飞扬,且有抑尘时间较长。  相似文献   

4.
从石油污染土壤中筛选出2种优势细菌枯草芽孢杆菌(Bacillus subtillus)和多食鞘氨醇杆菌(Sphingobacterium multivolum)。在实验室条件下7d后。2种菌液对原油降解率分别为69.9%和60.1%。将这2种微生物制成的混合菌液与固体草炭土以0.5:1的比例制备成固体微生物菌剂后,投放到辽河油田石油污染土壤中,进行了现场原油污染土壤的修复实验,并与活性污泥和自然降解相比较。结果表明.现场条件下修复2个月后。固体混合菌剂,活性污泥、自然降解实验对原油降解率分别为73.5%,41.4%和38.5%。固体菌剂的修复效果明显优于活性污泥和自然降解。  相似文献   

5.
同步钝化土壤Cd和As材料的筛选   总被引:7,自引:4,他引:3  
土壤中Cd和As的化学行为相反,导致同时降低土壤Cd和As的有效性成为一个难题.本实验采用先淹水30 d后湿润30 d的培养方法,研究了海泡石(Sep)、铁改性海泡石(IMS)、铁锰改性海泡石(Sep-FM)、钢渣(SS)和铁基生物炭(Fe-Bio)对土壤pH、Eh、孔隙水中Cd和As动态变化及土壤Cd和As形态的影响,旨在筛选出可以同时钝化土壤Cd和As的潜在材料.结果表明,添加Sep、IMS、Sep-FM和SS材料提高土壤pH值,降低Eh值及土壤孔隙水中Cd的质量浓度;而且高剂量IMS(2.5%)和SS(5%)处理土壤孔隙水中As的质量浓度在整个培养期间均低于CK处理.然而添加Fe-Bio则使土壤pH降低和Eh值升高,且仅在湿润条件下降低溶液中Cd和As的质量浓度.所有供试材料均降低土壤可交换态Cd含量,提高可还原态、可氧化态和残渣态Cd含量.高剂量IMS(2.5%)、Sep-FM(2.5%)和SS(5%)处理还降低了土壤中可利用态As含量(非专性吸附态和专性吸附态As)、提高了晶形和非晶形铁铝氧化物结合态As的含量,而1% Fe-Bio处理则提高了土壤非专性吸附态、专性吸附态和残渣态As的含量.总之,高剂量的IMS、Sep-FM和SS能同时钝化土壤中Cd和As,促进其向生物难利用的形态转化,是修复Cd和As复合污染土壤的潜在材料.  相似文献   

6.
基于生物沸石复合滤料的间歇式脱氮水处理   总被引:1,自引:1,他引:0  
庆承松  鲍韬  陈天虎  陈冬  谢晶晶 《环境科学》2012,33(12):4380-4386
以粒径0.15~0.18 mm的天然沸石粉为主要原料,水泥为黏结剂,制备出粒径4~8 mm的沸石复合滤料(ZCF).对制备的材料进行了空隙率、表观密度、强度等性能测试.优化出复合滤料中m(沸石粉):m(水泥)=7:3,自然条件下养护15 d.利用该ZCF装填实验柱,完成硝化微生物挂膜培养,然后进行间歇式脱氮水处理动态实验,间歇式运行周期分为吸附、生物再生、淋洗共3个阶段.采用上流式进水吸附脱氮,以NH4+-N浓度低于2 mg·L-1为出水标准,出水超标后,排空实验柱中水,鼓风生物再生,用水淋洗滤料后重复沸石吸附-生物再生循环,淋洗液单独进行反硝化处理.结果表明,在模拟实验条件下间歇式运行最佳的周期为:吸附5 d,鼓风生物再生24 h,NH4+-N平均去除率为87.7%,TN平均去除率达51.2%.  相似文献   

7.
王亚坤  张琢  李媛媛  秦晴晴 《环境科学》2023,44(10):5718-5726
磷基材料对土壤Pb有良好的稳定化效果.利用Meta分析法筛选汇总了1997~2022年磷基材料稳定土壤Pb的90篇文献,从土壤性质、稳定化工艺条件和磷基材料类型这3个方面量化分析了磷基材料对土壤Pb的稳定化率、赋存形态转化和对土壤pH的影响.结果表明,从土壤性质来看,土壤碱性越强(pH≥7.5)、土壤ω(Pb)越低(≤500 mg ·kg-1)和土壤ω(有机质)越高(>0.5%)时,越有利于磷基材料对土壤Pb的稳定化,稳定化率分别为75.21%、34.97%和93.12%.从稳定化工艺条件来看,磷基材料添加量较高(≥10%)、含水率较高(>50%)、养护时间较长(≥30d)和养护温度较高(≥40℃)时,更有利于土壤Pb的稳定化,稳定化率可分别达到80.65%、84.98%、79.39%和41.44%.从磷基材料类型来看,可溶性磷基材料对土壤Pb有很高稳定化率(96.24%);其使土壤可交换态Pb和碳酸盐结合态Pb向残渣态Pb转化的转化率达到95.93%;可溶性磷基材料多呈酸性,对土壤pH的降低率为7.27%,难溶性磷基材料多呈碱性,对土壤pH的增加率为3.63%.综上,在土壤pH≥7.5、土壤ω(Pb)≤500 mg ·kg-1、土壤ω(有机质)>0.5%、可溶性磷基材料添加量≥10%、含水率>50%、养护时间≥30 d和养护温度≥40℃时,磷基材料对土壤Pb的稳定化效果较好.可见在实际Pb污染土壤修复过程中,为提高Pb稳定化率,需综合考虑土壤性质、稳定化工艺条件和磷基材料类型等因素的影响.  相似文献   

8.
为研究堆肥对石油污染土壤中不同组分烃的去除作用及土壤微生物群落结构变化的影响,利用重量法和GC-MS测定土壤中总石油烃、烷烃和多环芳烃的含量,采用高通量测序技术研究了堆肥对土壤微生物群落结构和多样性的影响作用.结果表明,向石油污染土壤中施加堆肥进行42d的修复处理,土壤中石油烃、烷烃、多环芳烃去除率分别为(12.4±0.01)%、(10.2±0.01)%、(9.38±0.02)%;自然放置的土壤中3种烃去除率分别为(3.21±0.02)%、(-3.00±0.01)%、(-6.59±0.02)%.自然放置的土壤香农指数、ACE指数和Chao1指数分别为4.30、3489.3和2691.0,加入堆肥进行修复处理后,土壤香农指数、ACE指数和Chao1指数分别增加为5.80、4684.7和3851.8.油污土壤中放线菌门(Actinobacteria)所占丰度由47.3%降低为28.2%,拟杆菌门(Bacteroidetes)丰度由0.78%增加至16.2%.变形菌门(Proteobacteria)丰度为37.4%,修复结束后几乎不变.属水平上,油污土壤中的优势菌属包括原小单孢菌属(promicromonospora)、微小杆菌属(Exiguobacterium)、诺卡氏菌属(Nocardioides)、分支杆菌属(Mycobacterium)、柠檬酸细菌属(Citrobacter).施入堆肥使土壤中的这些优势菌属丰度降低,土壤中出现氮单胞菌属(Azomonas)、藤黄单胞菌属(Luteimonas)、假鞘氨醇杆菌属(Pseudosphingo bacterium)、紫单胞菌属(Parapedobacter)等新菌属.研究结果表明,与自然放置的土壤相比,向石油污染土壤中施入有机堆肥可有效去除土壤中的石油烃、烷烃和多环芳烃.并使土壤微生物群落结构发生明显变化.  相似文献   

9.
土壤对重金属缓冲性能的研究   总被引:9,自引:1,他引:9       下载免费PDF全文
研究了土壤对锌的缓冲性能,讨论了缓冲能力随土壤固相上的锌量以及溶液中锌离子浓度变化的规律;缓冲能力与土壤中几种主要组分(有机质、CaCO3和氧化物)关系;温度和pH对土壤冲能力的影响。结果表明,随着土壤固相上锌量增加,溶液中锌离子浓度的变大,土壤对锌的缓冲能力明显降低。温度和pH升高,都增加土壤对锌的缓冲能力,石灰性土壤中几种主要组分对锌的缓冲能力的影响顺序耿:CaCO3〉氧化物〉有机质。  相似文献   

10.
冻融对污染场地土壤重金属稳定化性能的影响   总被引:3,自引:0,他引:3       下载免费PDF全文
为了分析冻融对污染场地土壤重金属稳定化性能的影响,采用赤泥和硫化钠作为添加剂,对土壤中的Pb、Zn和Cd进行稳定化处理,并通过模拟冻融过程,分析冻融循环后重金属的浸出毒性、生物可给性、土壤pH和土壤结构的变化,探讨冻融循环对稳定化处理土壤中重金属长期稳定性能的影响. 结果表明:稳定化处理后土壤中Pb、Zn和Cd的浸出毒性比原始供试土壤分别降低了98.5%、99.8%和99.7%. 养护30 d后,稳定化处理土壤中Zn和Cd的生物可给性分别由28.8%、49.5%降至11.5%、21.8%,Pb的生物可给性由52.9%升至57.9%. 经过30 d冻融循环后,冻融土壤中Pb、Zn和Cd的浸出毒性比原始供试土壤中相应重金属质量分数分别增加了4.27、2.47、89.65 mg/L. 经过冻融循环后,土壤中重金属的生物可给性比未冻融土壤略有升高. 随着养护时间和冻融时间的延长,土壤pH呈升高趋势. 不同阶段土壤扫描电镜结果显示,冻融循环致使土壤空隙变大、结构松散,说明冻融循环对稳定化土壤结构有一定损伤. 分析结果表明,冻融过程增加了Pb、Zn和Cd释放的环境风险.   相似文献   

11.
Toxic effects of two agrochemicals on nifH gene in agricultural black soil were investigated using denaturing gradient gel electrophoresis (DGGE) and sequencing approaches in a microcosm experiment. Changes of soil nifH gene diversity and composition were examined following the application of acetochlor, methamidophos and their combination. Acetochlor reduced the nifH gene diversity (both in gene richness and diversity index values) and caused changes in the nifH gene composition. The effects of acetochlor on nifH gene were strengthened as the concentration of acetochlor increased. Cluster analysis of DGGE banding patterns showed that nifH gene composition which had been affected by low concentration of acetochlor (50 mg/kg) recovered firstly. Methamidophos reduced nifH gene richness that except at 4 weeks. The medium concentration of methamidophos (150 mg/kg) caused the most apparent changes in nifH gene diversity at the first week while the high concentration of methamidophos (250 mg/kg) produced prominent effects on nifH gene diversity in the following weeks. Cluster analysis showed that minimal changes of nifH gene composition were found at 1 week and maximal changes at 4 weeks. Toxic effects of acetochlor and methamidophos combination on nifH gene were also apparent. Different nifH genes (bands) responded differently to the impact of agrochemicals: four individual bands were eliminated by the application of the agrochemicals, five bands became predominant by the stimulation of the agrochemicals, and four bands showed strong resistance to the influence of the agrochemicals. Fifteen prominent bands were partially sequenced, yielding 15 different nifH sequences, which were used for phylogenetic reconstructions. All sequences were affiliated with the alpha- and beta-proteobacteria, showing higher similarity to eight different diazotrophic genera.  相似文献   

12.
The effects of arbuscular mycorrhizal (AM) fungus (Glomus mosseae) and phosphorus (P) addition (100 mg/kg soil) on arsenic (As) uptake by maize plants (Zea mays L.) from an As-contaminated soil were examined in a glasshouse experiment.Non-mycorrhizal and zero-P addition controls were included.Plant biomass and concentrations and uptake of As,P,and other nutrients,AM colonization,root lengths,and hyphal length densities were determined.The results indicated that addition of P significantly inhibited root colonization and development of extraradical mycelium.Root length and dry weight both increased markedly with mycorrhizal colonization under the zero-P treatments,but shoot and root biomass of AM plants was depressed by P application.AM fungal inoculation decreased shoot As concentrations when no P was added,and shoot and root As concentrations of AM plants increased 2.6 and 1.4 times with P addition,respectively.Shoot and root uptake of P,Mn,Cu,and Zn increased,but shoot Fe uptake decreased by 44.6%,with inoculation, when P was added.P addition reduced shoot P,Fe,Mn,Cu,and Zn uptake of AM plants,but increased root Fe and Mn uptake of the nonmycorrhizal ones.AM colonization therefore appeared to enhance plant tolerance to As in low P soil,and have some potential for the phytostabilization of As-contaminated soil,however,P application may introduce additional environmental risk by increasing soil As mobility.  相似文献   

13.
Several main metabolites of benzo[a]pyrene (BaP) formed by Penicillium chrysogenum, Benzo[a]pyrene-1,6-quinone (BP 1,6- quinone), trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene (BP 7,8-diol), 3-hydroxybenzo[a]pyrene (3-OHBP), were identified by high-performance liquid chromatography (HPLC). The three metabolites were liable to be accumulated and were hardly further metabolized because of their toxicity to microorganisms. However, their further degradation was essential for the complete degradation of BaP. To enhance their degradation, two methods, degradation by coupling Penicillium chrysogenum with KMnO4 and degradation only by Penicillium chrysogenum, were compared; Meanwhile, the parameters of degradation in the superior method were optimized. The results showed that (1) the method of coupling Penicillium chrysogenum with KMnO4 was better and was the first method to be used in the degradation of BaP and its metabolites; (2) the metabolite, BP 1,6-quinone was the most liable to be accumulated in pure cultures; (3) the effect of degradation was the best when the concentration of KMnO4 in the cultures was 0.01% (w/v), concentration of the three compounds was 5 mg/L and pH was 6.2. Based on the experimental results, a novel concept with regard to the bioremediation of BaP-contaminated environment was discussed, considering the influence on environmental toxicity of the accumulated metabolites.  相似文献   

14.
Sorption of chlorotoluron in ammonium sulfate, urea and atrazine multi-solutes system was investigated by batch experiments. The results showed application of nitrogen fertilizers to the soil could affect the behavior of chlorotoluron. At the same concentration of N, sorption of chlorotoluron decreased as the concentration of atrazine increased on the day 0 and 6 in soil, respectively. The sorption of chlorotoluron increased from 0 to 6 d when soils were preincubated with deionized water, ammonium sulfate and urea solution for 6 d. That indicated incubation time was one of the most important factors for the sorption of chlorotoluron in nitrogen fertilizers treatments. The individual sorption isotherms of chlorotoluron in rubbery polymer and silica were strictly linear in single solute system, but there were competition sorption between pesticides or between pesticides and nitrogen fertilizers. That indicated the sorption taken place by concurrent solid-phase dissolution mechanism and sorption on the interface of water-organic matter or water-mineral matter.  相似文献   

15.
Laogang landfill near Shanghai is the largest landfill in China, and receives about 10000 t of daily garbage per day, Samples of topsoil and plants were analyzed to evaluate mercury pollution from the landfill. For topsoil samples, there were significant correlations among total mercury (HgT), combinative mercury (Hgc) and gaseous mercury (HgG), and content of total organic carbon (TOC), but, no significantly relationship was found between Hg content and filling time. Hg content changes in vertical profiles with time showed that the average Hgv of profiles 1992, 1996, and 2000 was similar, but their average HgG was quite different. HgT was significantly correlated with Hgc in profile 1992 and 2000, and Hgv was significantly correlated with Hg6 in profile 1996. HgG/Hgv ratio in profile samples decreased in the order of (HgG,/HgT)1992〉(HgG/HgT)1996〉〉(HgG/HgT)2000. A simple outline of Hg release in landfill could be drawn: with increasing of filling time, degradation undergoes different biodegradation, accordingly, gaseous mercury goes through small, more, and small proportion to total mercury. Distribution of Hg in plants was inhomogeneous, following the order of leaf〉root〉stem. The highest value of leaf may be associated with higher atmospheric Hg from landfill. Ligneous plants (e.g. Phyllostachys glanca, Prunus salicina and Ligustrum lucidum) are capable of enriching more Hg than herbaceous plants.  相似文献   

16.
Phytoremediation is a potential cleanup technology for the removal of heavy metals from contaminated soils.Bidens maximowicziana is a new Pb hyperaccumulator,which not only has remarkable tolerance to Pb but also extraordinary accumulation capacity for Pb.The maximum Pb concentration was 1509.3 mg/kg in roots and 2164.7 mg/kg in overground tissues.The Pb distribution order in the B. maximowicziana was:leaf>stem>root.The effect of amendments on phytoremediation was also studied.The mobility of soil Pb and the Pb concentrations in plants were both increased by EDTA application.Compared with CK(control check),EDTA application promoted translocation of Pb to overground parts of the plant.The Pb concentrations in overground parts of plants was increased from 24.23-680.56 mg/kg to 29.07-1905.57 mg/kg.This research demonstrated that B.maximowicziana appeared to be suitable for phytoremediation of Pb contaminated soil,especially,combination with EDTA.  相似文献   

17.
Decomposition of alachlor by ozonation and its mechanism   总被引:1,自引:0,他引:1  
Decomposition and corresponding mechanism of alachlor, an endocrine disruptor in water by ozonation were investigated. Results showed that alachlor could not be completely mineralized by ozone alone. Many intermediates and final products were formed during the process, including aromatic compounds, aliphatic carboxylic acids, and inorganic ions. In evoluting these products, some of them with weak polarity were qualitatively identified by GC-MS. The information of inorganic ions suggested that the dechlorination was the first and the fastest step in the ozonation of alachlor.  相似文献   

18.
The influence of the nonionic surfactant Tween 80 on pentachlorophenol (PCP) oxidation catalyzed by horseradish peroxidase was studied. The surfactant was tested at concentrations below and above its critical micelle concentration (CMC). Enhancement of PCP removal was observed at sub-CMCs. The presence of Tween 80 in the reaction mixture reduced enzyme inactivation which occurred through a combination of free radical attack and sorption by precipitated products. A simple first-order model was able to simulate time profiles for enzyme inactivation in the presence or absence of Tween 80. At supra-CMCs, the surfactant caused noticeable reductions in PCP removal, presumably through micelle partitioning of PCP which precluded the hydrophobic PCP molecule from interacting with the enzyme.  相似文献   

19.
In this study an effort has been made to use plant polyphenol oxidases; potato (Solanum tuberosum) and brinjal (Solanum melongena), for the treatment of various important dyes used in textile and other industries. The ammonium sulphate fractionated enzyme preparations were used to treat a number of dyes under various experimental conditions. Majority of the treated dyes were maximally decolorized at pH 3.0. Some of the dyes were quickly decolorized whereas others were marginally decolorized. The initial first hour was sufficient for the maximum decolorization of dyes. The rate of decolorization was quite slow on long treatment of dyes. Enhancement in the dye decolorization was noticed on increasing the concentration of enzymes. The complex mixtures of dyes were treated with both preparations of polyphenol oxidases in the buffers of varying pH values. Potato polyphenol oxidase was significantly more effective in decolorizing the dyes to higher extent as compared to the enzyme obtained from brinjal polyphenol oxidase. Decolorization of dyes and their mixtures, followed by the formation of an insoluble precipitate, which could be easily removed simply by centrifugation.  相似文献   

20.
RemovalofheavymetalsfromsewagesludgebylowcostingchemicalmethodandrecyclinginagricultureWuQitang,NyirandegePascasie,MoCehuiF...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号