首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
以处于污泥膨胀的耐盐脱氮污泥为研究对象,分别采用有效容积为2和240L的SBR装置(编号1#和2#),在进水NH3-N浓度为40—100mg/L,pH为7.45~8.0,溶解氧为3~5mg/L,温度为28~30℃的条件下,分别研究不同NaCl盐度(0、10、20和30g/L)对污泥沉降性的影响。实验结果表明,在NaCl盐度条件下,可以明显改善耐盐脱氮污泥的沉降性。NaCl盐度越高,污泥絮凝体体积减小、丝状菌及原生动物减少趋势越明显,污泥沉降性效果越好。在30g/L盐度时,1#和2#SBR的SV30分别从95%和80%降至53%和30%,SVI分别从185.5和170.8mL/g降至127.3和78.4mL/g。  相似文献   

2.
NaCl盐度对耐盐活性污泥沉降性能及脱氮的影响   总被引:5,自引:3,他引:5  
针对海水冲厕工程的实施,采用序批式活性污泥反应器(SBR)处理实际含盐生活污水,考察了盐度对耐盐活性污泥沉降性能及脱氮效能的影响。研究发现,经过长期盐度驯化后的污泥系统也会出现丝状菌污泥膨胀。在经过10 g/L盐度长期驯化的污泥系统中,污泥容积指数(SVI)随着盐度的升高而降低,盐度升高使丝状菌减少,污泥絮体变小变密实。但是,盐度降低时会引发更严重的污泥膨胀,导致污泥流失。对脱氮性能的研究表明,硝化菌的耐盐能力较强。当盐度由10 g/L改变为0、5、15、20 g/L时,氨氮去除率依然可以维持在99%以上。但亚硝酸盐积累率无论是盐度升高或降低时都升高,这表明驯化后污泥中的亚硝酸氧化菌(NOB)对盐度变化的耐受能力比氨氧化菌(AOB)弱,无论盐度升高或降低都会对其产生较大的影响。  相似文献   

3.
利用序批式活性污泥反应器(SBR)研究NaCl盐度对耐盐脱氮污泥硝化功能的影响,在此基础上考察瞬时盐度冲击对氨氧化细菌(AOB)、亚硝酸氮氧化细菌(NOB)的抑制及恢复情况。实验结果表明,当废水中NaCl浓度为0~50g/L时,AOB几乎没有影响,NOB影响较小。当NaCl浓度为60 g/L时,AOB影响较小,NOB受到一定程度的抑制。当NaCl浓度为70 g/L时,AOB、NOB均受到严重的抑制;耐盐脱氮污泥能够适应NaCl浓度50 g/L的瞬时冲击,盐度降低有利于AOB、NOB的恢复。当耐盐脱氮污泥受到NaCl浓度60 g/L的瞬时冲击时,系统发生"中毒"现象,盐度降低至0 g/L时,AOB、NOB均有不同程度恢复。  相似文献   

4.
在2个相同的SBR中分别驯化普通污泥和耐盐污泥,研究两者在0%、0.9%、1.2%、1.5%和1.8%(W/V)的盐度(NaCl)下对生活污水脱氮性能的差异。SBR运行经过厌氧、好氧、缺氧3个阶段,HRT分别为1、6和1 h。研究结果表明:在每一级盐度下,耐盐污泥的脱氮性能都好于普通污泥。随着盐度的增大,耐盐污泥中氨氮...  相似文献   

5.
针对传统A/O(anaerobic/oxic)工艺中反硝化细菌对有机物的利用效率低、A2N(anaerobic/anoxic-nitrification)工艺工序繁琐和出水氨氮浓度较高的问题,提出了一种泥水分离反应器,将双污泥体系与A/O工艺结合构建A/O双污泥工艺。对工艺运行过程的脱氮性能、微生物群落变化及氮素转化规律进行了研究,根据研究结果评估泥水分离反应器和A/O双污泥工艺在实际应用中的开发潜力,并总结工艺和反应器需要优化的问题,提出解决问题的思路。结果表明:在进水氮负荷为0.11 kg·(m3·d)-1条件下,工艺的氮去除负荷可以达到0.089 kg·(m3·d)-1,NH_4+-N去除率超过95%、COD去除率超过90%,TN去除率达到80%以上,该工艺能够实现长期稳定运行。反硝化过程反应速率是提升A/O双污泥工艺脱氮效率的限速步骤,强化有机物在缺氧池中的接触停留是有机物利用率提高的关键。因此,需要对现有碳源的投加方式、污水的进水方式或工艺的反应器数量进行优化,进一步...  相似文献   

6.
培养方式对废水脱氮与沼气脱硫污泥驯化影响   总被引:1,自引:0,他引:1  
实验研究了底物、接种污泥和微生物生长方式对猪场废水脱氮和沼气脱硫耦联污泥驯化及活性恢复的影响,以解决快速富集培养废水脱氮与沼气脱硫微生物的问题。研究发现,就脱氮脱硫均达到60%的时间而言,接种厌氧污泥反应器为9 d,比接种好氧污泥反应器(18 d)和不接种污泥加填料反应器(21 d)更短。以含氮含硫废水为底物驯化时,接种厌氧污泥更有利于脱氮脱硫污泥的驯化;而同为接种好氧污泥时,以含氮含硫废水为底物的驯化方式更有利于脱氮脱硫污泥的驯化。污泥活性恢复实验中,以含氮废水+沼气(H2S)为底物培养驯化的污泥,硫转化活性恢复所用的时间为15 d,比含氮含硫废水为底物驯化污泥的活性恢复时间更长。  相似文献   

7.
为研究磁性硅球(Fe_3O_4@SiO_2)对序批式活性污泥反应器(SBR)污水处理系统中脱氮除磷性能的影响,建立了3个相同的SBR(编号依次为1号、2号和3号),在2号和3号反应器中分别投加0.5 g·L~(-1)的纳米Fe_3O_4和Fe_3O_4@SiO_2,1号反应器为不投加任何磁性材料的对照组。结果表明:Fe_3O_4@SiO_2对SBR中的污泥性能有显著的影响,3号反应器在运行20 d时,反应器内活性污泥结构完整,饱满密实,污泥粒径多集中分布在0.3~1.0 mm,颗粒化现象明显,而1号反应器无明显颗粒污泥,2号反应器虽能看到有少部分的颗粒污泥,但分布不均匀;Fe_3O_4@SiO_2对污泥胞外蛋白(PN)、胞外多糖(PS)的含量有促进作用,并能改善污泥的沉降性能,第70天时,3号反应器内PN和PS含量分别为318.89 mg·g~(-1)和28.51 mg·g~(-1),污泥沉降指数(SVI)为35.22 mL·g~(-1),性能优于1号和2号反应器;在除污方面,2号和3号反应器对污水总氮(TN)和总磷(TP)去除率比1号反应器分别提升了10.80%、15.20%和9.40%、12.40%,3号反应器表现出最高的脱氮除磷性能;此外,在典型周期内,3号反应器对氮素及磷的去除速率明显高于1号反应器,在240 min内,1号和3号反应器对TN去除速率分别为4.56 mg·(L·h)~(-1)和5.84 mg·(L·h)~(-1),对TP去除速率分别为0.44 mg·(L·h)~(-1)和0.51 mg·(L·h)~(-1)。由此可见,经SiO2包覆后所制备的Fe_3O_4@SiO_2,提高了其在水体的分散性,增大了与污泥的接触程度,极大促进了污泥经磁聚、吸附作用富集到其表面形成颗粒污泥,并利于脱氮除磷等微生物截留和附着,提高活性污泥反应系统的脱氮除磷效果和去除速率。以上结果可为进一步探索磁性纳米材料对SBR活性污泥脱氮除磷性能影响提供参考。  相似文献   

8.
9.
溶解氧对SBR脱氮性能与脱氮方式的影响   总被引:4,自引:0,他引:4  
通过设置不同溶解氧(DO)浓度(曝气时段DO浓度均值分别为2.0、1.2和0.4 mg/L),研究了SBR的脱氮性能以及脱氮方式。结果表明,低DO条件下SBR可实现良好的脱氮效果,但需延长曝气时间。运行稳定后,各反应器氨氮的去除率均达到94%以上。总氮去除率随DO水平的降低而增高,分别为67%、74%和78%。不同DO浓度下SBR的脱氮方式不尽相同,DO浓度越低,同步硝化反硝化(SND)脱氮效果越明显。DO为2.0、1.2和0.4 mg/L时,SND率分别为31.4%、48.3%和66.8%。典型周期性实验表明,DO为2.0 mg/L时,通过SND现象去除的总氮占进水总氮的比例为7.6%,通过内源反硝化去除的总氮为12.0%;DO为1.2 mg/L时,通过亚硝酸型SND现象去除的总氮为12.2%,通过内源反硝化去除的总氮为8.1%;DO为0.4 mg/L时,通过亚硝酸型SND现象去除的总氮为15.8%,通过内源反硝化去除的总氮为5.0%。  相似文献   

10.
厌氧氨氧化耦合异养反硝化的脱氮性能及污泥性状   总被引:1,自引:0,他引:1  
通过连续实验和血清瓶批式实验研究了厌氧氨氧化耦合异养反硝化的代谢特性。在pH 7.8、温度25℃左右、水力停留时间1.5 h和苯酚浓度18.82 mg/L的条件下,耦合反应器能长期稳定运行。结果表明,NH+4-N、NO-2-N去除率高达100%,TN去除率为87.51%。消耗的NH+4-N、NO-2-N与生成的NO-3-N之比为1∶1.49∶0.12,平均总氮容积负荷为2.53 kg/(m3·d),平均总氮去除负荷可达2.26 kg/(m3·d)。系统内异养反硝化与厌氧氨氧化存在协同和竞争关系,总氮的去除是异养反硝化菌和厌氧氨氧化菌共同作用的结果。耦合系统中ANAMMOX对TN去除贡献率达到86.72%,异养反硝化对TN去除贡献率达到13.28%(其中以NO-2-N为电子受体的反硝化比例为7.16%,以NO-3-N为电子受体的反硝化比例为5.89%)。污泥性状研究表明,颗粒污泥存在3种形式:一种是ANAMMOX颗粒污泥;一种是苯酚反硝化颗粒污泥;一种是ANAMMOX菌外面包裹苯酚反硝化菌的颗粒污泥。另外,颗粒污泥的无机组分较高。污泥扫描电镜照片显示厌氧氨氧化菌为球状,反硝化菌为短杆状。  相似文献   

11.
以耐盐反硝化污泥(DAS)和反硝化复合菌剂(DBA)为菌源,启动序批式生物膜系统(SBBRs)处理高硫酸盐含氮废水。结果表明,以相对低盐度(1%:12.5 g·L−1 SO42−和5 g·L−1 NaCl)启动系统,在不同菌源和载体条件下SBBRs启动时间均较短(6~11 d),其中以DAS为菌源、载体污泥浸制预处理均能缩短启动周期。提升SO42-质量浓度至25 g·L−1 (盐度2%)和37.5 g·L−1 (盐度3%)后,各装置的硝氮去除率均可维持90%以上,其中3%盐度下悬浮填料系统反硝化完全(>98%),显著高于生物绳系统(91.1±11.7)%。理论TOC/TN比为1.4~7,系统总氮去除率均稳定保持90%以上。优选TOC/TN值为2的实验室内处理石化厂高硫酸盐(2.7%)高氮(TN≈200 mg·L−1)废水,系统适应驯化后可获得稳定高效的总氮去除率,且悬浮填料去除率(>99%)与稳定性均优于生物绳(>90%)。系统硝酸盐还原途径以反硝化为主,且无显著硝酸盐异化还原为氨和硫酸盐还原作用。  相似文献   

12.
在上流式污泥床反应器(USB)内,接种好氧活性污泥,以甲醇为碳源,NO-3为电子受体,经过40多d培养,得到良好的反硝化颗粒污泥,粒径2~3 mm,MLSS为36 g/L,氮去除速率和COD去除速率分别在0.15 g NO3-N/(g VSS·d)和0.8 g COD/(g VSS·d)。当负荷提高至6.44 g NO3-N/(L·d)继续运行1周后,观察到反应器内颗粒污泥出现上浮,浓度降低,颗粒粒径多数在3~5 mm,外观呈乳白色。为恢复反应器稳定运行,当负荷降至3.86 g NO3-N/(L·d)时,上浮现象减轻,当负荷降至2.57 g NO3-N/(L·d)时,上浮现象消失,颗粒污泥密度由不稳定时的1.0018 g/cm3提高到1.0126 g/cm3,颗粒粘连现象基本消失,污泥氮去除速率在0.19 g NO3-N/(g VSS·d),连续运行30 d,系统保持稳定。分析认为,颗粒污泥表面微生物生长速度过快是导致不稳定的主要因素,较长的泥龄有利于系统稳定。  相似文献   

13.
污泥膨胀状态下原生动物群落结构分析   总被引:5,自引:0,他引:5  
系统研究了丝状菌膨胀与非丝状菌膨胀2种典型污泥状态下原生动物的群落结构特征及其演变规律。伴随丝状菌的大量增殖,原生动物总量相应减少,匍匐型纤毛虫及有壳类肉足虫数量迅速上升,占据明显的优势地位,典型原生动物为斜管虫(Chilodonella sp.)、小轮毛虫(Trochilia minuta)以及匣壳虫(Centropyxis sp.);非丝状菌污泥膨胀对原生动物总量及种群结构影响较小,伴随粘性菌胶团的大量出现,各功能类群的比例变化较小,但原生动物总量持续增加,其中菌食性纤毛虫呈线性增加,典型原生动物为钟虫(Vorticella sp.)。  相似文献   

14.
周晓华  潘杨  陈茜茜  邓猛  郑莹 《环境工程学报》2016,10(10):5643-5647
采用新型脱氮除磷工艺-污泥转移SBR处理生活污水,主反应器因长时间处于低污泥负荷0.09~0.15 kg·(kg·d)-1,引起了丝状菌污泥膨胀;通过采取提高进水负荷及静态进水等方式,提高主反应器内的污泥负荷0.21~0.39 kg·(kg·d)-1使其污泥膨胀得以控制及恢复。考察在此过程中,EPS的变化对活性污泥沉降性能的影响。结果表明在污泥膨胀及恢复过程中PS/PN与SVI值呈明显正相关性,R2分别为0.886 7、0.867 3;在污泥膨胀时EPS总量与SVI值呈正相关性;在恢复过程中,EPS总量与SVI值之间线性相关性不强。影响活性污泥沉降性能的关键因素是EPS中多糖与蛋白质的相对含量。  相似文献   

15.
颗粒污泥沉降动力学模型研究   总被引:1,自引:0,他引:1  
通过分析颗粒污泥沉降过程的特点,采用颗粒物质干涉沉降规律对颗粒污泥沉降过程进行描述·结合Allen阻力公式,建立了颗粒污泥沉降动力学模型,并用实验和文献数据对模型的可靠性进行了验证,模型预测值误差不超过土8%.应用模型对好氧颗粒污泥沉降速度的模拟实验表明,一般好氧颗粒污泥沉降速度在5~120 m/h,沉降速度随好氧颗粒污泥粒径和密度的增大而增加,沉降过程雷诺数(Re)在1~100,处于Allen阻力区.  相似文献   

16.
以驯化好的反硝化除磷污泥为研究对象,通过批式实验考察了NO2--N和NaCl浓度对反硝化除磷率及N2O释放的影响。当进水亚硝酸盐的浓度由15 mg·L-1升高至25和40 mg·L-1时,除磷率由68.81%±0.5%降至66.25%±1%和62.88%±0.8%,TN的去除率由90.6%±0.7%降至74.55%±1.5%和51.65%±2%,N2O释放量分别为4.82、13.83和17.06 mg。当NaCl质量分数为0%、0.5%、1%和2%时,TN的去除率由74.55%±1%降至68%±2%、64.2%±1%和54.3%±2.5%,除磷率由66.37%±1.5%降至61.29%±1%、50.47%±2%和36.7%±0.5%,N2O-N转化率为41.1%±2%、41.4%±2.5%、48.94%±0.6%和51.03%±2%。因此,NO2--N和NaCl质量分数的升高均会降低脱氮除磷效率,但增加了N2O释放量;兼顾脱氮除磷效率前提下,NO2--N为25 mg·L-1、NaCl质量分数为1%是N2O释放量增加的优化条件。  相似文献   

17.
采用城市生活污水配水同时启动两组ASBR,R1接种好氧硝化污泥,R2按2∶1混合接种短程硝化和厌氧氨氧化污泥,研究2个ANAMMOX反应器启动的可行性及其差异。实验结果表明,R1和R2均可成功启动ANAMMOX,R1需130 d,R2仅需73 d;稳定期R1和R2反应器NH4+-N、NO2--N和TN去除率分别达95.30%、91.30%、76.28%和96.2%、98.3%、90.1%,且周期内NH4+-N、NO2--N和NO3--N降解规律相似;R1和R2反应器发生的主要反应为厌氧氨氧化,但同时存在反硝化作用;2组反应器稳定运行后污泥颜色、形态及微生物组成相似,经SEM观察多为球状菌。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号