共查询到19条相似文献,搜索用时 78 毫秒
1.
北京市区春夏PM2.5和PM10浓度变化特征研究 总被引:2,自引:0,他引:2
通过对北京市2012年3月~6月PM2.5和PM10实时数据的整理和分析,结果表明,北京市区大气中细颗粒物PM2.5和可吸入颗粒物PM10浓度日变化趋势基本相同,PM2.5和PM10存在显著或极显著的正相关关系;3月~6月,PM2.5浓度随季节变化逐渐升高,PM10的浓度随季节变化先升高后减小;3月~6月PM2.5与PM10日平均浓度分别为62.77μg/m3和133.88μg/m3,分别为国家二级标准的83.69%和89.25%。 相似文献
2.
PM2.5和PM10浓度超标引发的空气质量问题严重影响公众健康,研究PM2.5和PM10浓度对制定有效的污染防控和治理措施具有重要意义.运用时空分析法,分析2018年季度PM2.5和PM10浓度时空分布,并用GWR探究浓度差异的原因.结果表明:(1)PM2.5和PM10的浓度均呈冬春高、夏秋低的季节性规律;四季污染物浓度在胡焕庸线两侧存在显著差异,该线以东地区高浓度聚集在京津冀地区,该线以西地区高浓度聚集在新疆中南部.(2)PM2.5和PM10浓度的Moran’s I在四季均为正,且均在冬季增至最大值;PM2.5和PM10的分布格局基本一致,“高-高”类和“低-低”类集中分布现象明显.(3)各因素对PM2.5和PM10浓度的影响存在较大空间异质性.温度和坡度对PM2.5 相似文献
3.
黄石市夏季昼间大气PM10与PM2.5中有机碳、元素碳污染特征 总被引:3,自引:0,他引:3
2012年7月,对黄石市城区夏季昼间大气颗粒物PM10与PM2.5样品进行采集,并用热/光反射法(TOR)分析其中的有机碳(OC)、元素碳(EC).结果显示,新老城区PM10中OC平均含量分别为14.60μg·m-3和18.70μg·m-3,EC平均含量分别为4.70μg·m-3和11.02μg·m-3;PM2.5中OC平均含量分别为11.89μg·m-3和13.66μg·m-3,EC平均含量分别为2.28μg·m-3和4.96μg·m-3.研究结果表明,夏季昼间黄石市新老城区大气PM10与PM2.5中碳组分浓度变化趋势相同,且老城区大气PM10、PM2.5中的OC和EC含量普遍要比新城区高,且PM10中OC、EC在总碳(TC)的质量分数均高于在PM2.5中,说明黄石市老城区碳污染状况较新城区要严重,其夏季昼间大气粗颗粒物中碳的含量更高.通过对OC/EC及8个碳组分进行探讨,发现黄石市大气颗粒物中OC易形成二次污染,而EC排放以烟炱为主,夏季燃煤和机动车尾气是黄石碳污染的重要污染源,生物质燃烧也具有一定影响. 相似文献
4.
精准预测大气污染颗粒物PM2.5、PM10浓度能为大气污染防治提供科学依据,但目前较多PM2.5和PM10浓度预测在缺少污染源排放清单和能见度数据时,预测精度不高。而目前深度学习模型应用于PM2.5和PM10浓度预测的研究还鲜见报道。基于广州市2015年6月1日—2018年1月10日的空气质量和气象监测历史数据,分别构建了随机森林模型(RF)、XGBoost模型2种传统的机器学习模型和长短时记忆网络(LSTM)、门控循环单元网络(GRU)2种深度学习模型,并对广州市的PM2.5、PM10日均浓度值进行预测。结果表明:在缺少污染源排放清单和能见度数据时,4种模型也能较好地预测PM2.5、PM10日均浓度。根据MSE、RMSE、MAPE、MAE和R2等评价指标,对4个模型的PM2.5、PM10预测效果进行测评,得出深度学习GRU模型预测效果均为最佳,RF模型的预测结果均为最差。相比目前研究及应用较多的RF模型、XGBoost模型、LSTM模型,基于深度学习的GRU模型能更好地预测PM2.5、PM10浓度。 相似文献
5.
文章通过对PM2.5的基本组成、来源与影响因素的分析,构建中国PM2.5全过程管理体系,建立、完善PM2.5削减和控制长效机制,进而实现中国PM2.5管理。 相似文献
6.
中小燃煤锅炉PM2.5排放特征实测研究 总被引:1,自引:0,他引:1
中小燃煤锅炉是我国工业和民用部门最主要的供热方式,掌握其一次颗粒物的排放特征对于研究大气PM2.5的来源和控制途径具有重要意义.本研究通过实测中小燃煤锅炉烟气,获得了中小燃煤锅炉PM2.5及以下粒径段的排放因子和分布,并分析了各粒径段的颗粒密度及除尘装置的去除效率.研究发现,PM2.5质量排放因子平均为(0.123±0.061)kg·t-1,PM2.5粒子数的排放因子平均为(3.17±1.65)×105t-1,烟气中70~120 nm粒径段的积聚模态颗粒在质量和数量上都高于其他粒径段.锅炉燃烧负荷是影响锅炉PM2.5排放的重要因素,锅炉的燃烧负荷越低,PM2.5排放将随之降低.实测锅炉的PM2.5排放因子显著低于物料衡算结果,说明采用物料衡算方法可能极大地高估了现有排放清单中工业燃煤锅炉的一次PM2.5排放量. 相似文献
7.
利用膜采样、颗粒在线称重方法和维萨拉气象仪对2004和2006年秋季嘉兴大气中ρ(PM2.5)及气象因子进行了分析.结果表明:2004和2006年秋季ρ(PM2.5)分别为(84.7±62.4)和(89.0±61.5) μg/m3;ρ(PM2.5)占ρ(PM10) 比例为42%~69%;ρ(PM2.5)日均值变化大(16.7~345.7 μg/m3),晴天ρ(PM2.5)约为阴雨天的2倍.ρ(PM2.5)日变化分析表明,晴天呈双峰双谷现象,晚高峰(16:00—20:00)ρ(PM2.5)大于早高峰(06:00—10:00),阴雨天日变化不明显.PM2.5与相对湿度无显著相关性,但在不同相对湿度下PM2.5与能见度呈显著的负指数关系.东北风和西北风是观测期内当地的主导风向,ρ(PM2.5)高值出现在西南风方向,重污染天气过程形成原因复杂. 相似文献
8.
为研究珠江三角洲背景区域大气气溶胶中水溶性离子的特征及其来源,于2007年1月~2008年12月,在鼎湖山利用大流量滤膜采样器采集PM2.5样品,并用离子色谱(IC)分析其中的水溶性离子成分含量.结果表明,PM2.5中总水溶性离子年平均浓度为(36.3±16.4)μg.m-3.其中,3种主要离子SO24-、NH4+和NO3-占总离子浓度的89%;夏季受到来自海洋气团的影响,Na+和Cl-相关性明显增强,相关系数R2为0.91;NO3-/SO24-的平均值为0.32,表明固定源对鼎湖山地区污染的贡献更大;PM2.5中Σ阳离子电荷/Σ阴离子电荷的变化范围为0.44~2.59,平均值是1.03,水溶性离子电荷基本平衡. 相似文献
9.
首先利用回归树分类方法,对采暖期与非采暖期各日进行气象类型划分,识别出易造成重污染天气的气象类型.其次分别在各气象类型内,以污染源排放量为自变量,利用差分自回归滑动平均与支持向量机(ARIMA+SVM)组合方法建立起PM2.5浓度日均值预测模型,并选取2013年01月~2017年06月间,沈阳市区内9个环境监测点PM2.5浓度日均值进行实证分析.结果表明,使用气象分类下的ARIMA+SVM组合模型对PM2.5浓度日均值进行预测,相比于不划分气象类型时的普通机器学习模型,其模型预测值与实测值趋势的吻合度更高,且对峰-谷值的识别能力更强.在采暖期与非采暖期,组合模型均具有平均绝对误差更低、预测正确率更高的优点. 相似文献
10.
本文在检验PM2.5遥感数据可靠性的基础上,使用标准偏差分析、Hurst指数、Theil-Sen median趋势分析与Mann-Kendall检验和局部空间自相关等方法,在像元尺度上研究了2000~2016年中国PM2.5浓度的分布格局和演变过程.结果表明:①在空间分布上,PM2.5的浓度东部高,多年平均值为30.21μg/m3,西部低,多年平均值为4.37μg/m3,东西两侧差异巨大.西部地区和东北地区PM2.5的浓度整体呈现增长的态势,但西部地区变化较为平缓.PM2.5污染严重的区域分布在人口多且密集,经济较为发达的区域,如华北平原,东北平原,长江中下游平原,四川盆地等地区.②在时间序列上,以2007年为界,PM2.5的年变化趋势可分为两个阶段,从2000~2007期间我国的PM2.5浓度总体呈现上升趋势,年均增长0.95μg/m3,2007~2016年PM2.5浓度呈波动下降趋势,年均下降0.15 μg/m3;③稳定性:PM2.5浓度的稳定性在空间上差异显著,整体呈现出西部较稳定、东部不稳定的分布状态.东部极不稳定区域主要分布在四川盆地,华北平原,东北平原中部,长江中下游平原;④持续性:中国PM2.5持续性特征以弱反持续为主,主要分布在中国东部地区,预测未来PM2.5的变化规律与目前相反.其次弱持续性分布的区域较广,主要分布在山地、高原及高寒地区,说明这一区域未来PM2.5变化趋势与过去的变化趋势相同,但又具有复杂性和反复性.⑤人口暴露分析:分析不同PM2.5浓度级别上的人口百分比,发现2016年中国有52%的人口生活在PM2.5浓度年平均值为35 μg/m3以上的环境中,还有14.38%的人暴露在PM2.5年均浓度值为60 μg/m3以上的环境中. 相似文献
11.
降水和风对大气PM2.5、PM10的清除作用分析 总被引:2,自引:0,他引:2
对合肥2015—2017年的降水、风和PM_(2.5)、PM_(10)浓度观测数据统计研究发现,降水对PM_(2.5)、PM_(10)有一定的清除作用,尤其在秋冬季节.秋冬季节小雨、中雨分别导致PM_(2.5)和PM_(10)浓度降低23.1%、40.4%和32.0%、63.7%.雨日PM_(2.5)/PM_(10)比例上升8.4%,表明降水对PM_(10)清除作用更显著.降水前后PM_(2.5)浓度变化与降水前PM_(2.5)浓度、降水强度、降水时长密切相关.当降水强度大于4 mm·h~(-1)或PM_(2.5)初始浓度高于115μg·m~(-3)时,降水对PM_(2.5)产生明显清除作用;而降水强度小于1 mm·h~(-1)或PM_(2.5)初始浓度低于115μg·m~(-3)时由于吸湿增长作用极易造成PM_(2.5)浓度反弹升高;且持续3 h以上雨强介于1~4 mm·h~(-1)的降水也对PM_(2.5)产生清除作用.降水前后PM_(10)浓度变化与初始浓度密切相关,而与雨强相关性较弱.当PM_(10)初始浓度大于50μg·m~(-3),降水就对PM_(10)产生明显清除作用,且PM_(10)初始浓度越高,降水后PM_(10)浓度下降越多.风速大于2 m·s~(-1)可显著降低PM_(2.5)浓度,因此,当风速大于4 m·s~(-1)时合肥较少出现中度及以上污染,但易造成地面起尘,使PM_(10)浓度不降反升.合肥冬季严重污染主要出现在西北风向,夏季中度以上污染天气较少,主要出现在风速低于3 m·s~(-1)的东南风向. 相似文献
12.
基于2013—2015年南昌市9个空气环境监测点的连续数据,分析了空气PM_(2.5)、PM_(10)质量浓度(以下简称浓度)的时空变异规律,并以景观格局指数为定量指标,研究了监测点的两种颗粒物浓度与其周边500 m半径、1000 m半径缓冲区的土地利用状况的关系.结果表明:(1)南昌市3年来PM_(2.5)和PM_(10)浓度逐年显著降低.(2)通过聚类分析,9个监测站依据颗粒物污染可分为4大类,表现出一致的城乡梯度差异.(3)在斑块类型水平上,PM_(2.5)和PM_(10)浓度与500、1000 m半径缓冲区的C-PLAND(建筑用地覆盖率)、C-SHDI(建筑用地多样性指数)显著正相关,与1000m缓冲区的F-ED(林地边界密度)显著正相关;与F-PLAND(林地覆盖率)、C-Fi(建筑用地分离度指数)、F-MPS(林地平均斑块面积)显著负相关.在景观水平上,PM_(2.5)和PM_(10)浓度在500 m缓冲区与LPI(最大斑块所占景观比例)显著负相关;与1000 m缓冲区的MPS(平均斑块面积)显著负相关.景观格局指数直接反映土地利用状况,它与PM_(2.5)和PM_(10)浓度的相关性,表现出生态学中典型的"源汇景观"关系. 相似文献
13.
基于虚拟撞击原理的固定源PM10/PM2.5采样器的研制 总被引:1,自引:3,他引:1
目前我国尚无固定源PM2.5采样标准方法,现有商业化的固定源PM2.5采样器在使用中存在明显不足,因此本研究开发了一种固定源PM10/PM2.5双级虚拟撞击采样器.经实验室标定,该采样器切割效率曲线优于国际标准ISO 7708:1995对采样器的规定,采样器横截面直径为74 mm,满足我国固定源采样口尺寸要求.采样器既可以安装滤膜,也可以安装滤筒,适用于不同浓度的烟尘采样.虚拟撞击器的切割点与次流所占比值呈负相关,比值减小时,切割点增大.为降低颗粒物损失,虚拟撞击器喷嘴距收口的距离至少应为喷嘴直径的1.5~2倍. 相似文献
14.
以海口市为例,研究了我国典型热带沿海城市——海口市环境空气颗粒物的污染特征和主要来源.2012年春季和冬季在海口市区4个采样点同步采集了环境空气中PM10和PM2.5样品,同时采集了多种颗粒物源样品,并使用多种仪器分析方法分析了源与受体样品的化学组成,建立了源化学成分谱.使用CMB(化学质量平衡)模型对海口市大气颗粒物进行源解析.结果表明:污染源贡献具有明显的季节特点,并存在一定的空间变化.冬季城市扬尘、机动车尾气尘、二次硫酸盐和煤烟尘是海口市PM10和PM2.5中贡献较大的源,在PM10和PM2.5中贡献率分别为23.6%、16.7%,17.5%、29.8%,13.3%、15.7%和13.0%、15.3%;春季机动车尾气尘、城市扬尘、建筑水泥尘和二次硫酸盐是海口市PM10和PM2.5中贡献较大的源,在PM10和PM2.5中贡献率分别为27.5%、35.0%,20.2%、14.9%,12.8%、6.0%和9.5%、10.5%.冬季较重的颗粒物污染可能来自于华南内陆地区的区域输送,特别是,本地排放极少的煤烟尘和二次硫酸盐受区域输送的影响更为显著. 相似文献
15.
乌鲁木齐市是“丝绸之路经济带”关键节点城市,为了解乌鲁木齐市2015—2018年空气污染状况,利用2015年1月1日—2018年12月23日乌鲁木齐市7个国控空气质量监测站的ρ(PM2.5)、ρ(PM10)监测数据,基于ArcGIS空间分析平台,分析乌鲁木齐市PM2.5、PM10的时空分布特征.结果表明:ρ(PM2.5)从2015年(66.60 μg/m3)到2016年(76.93 μg/m3)呈上升趋势,在2016—2018年呈单一下降趋势;ρ(PM10)从2015年(132.74 μg/m3)到2016年(125.93 μg/m3)呈下降趋势,在2016—2018年呈单一上升趋势.2015—2018年工业活动集中的乌鲁木齐市边缘各区的ρ(PM2.5)、ρ(PM10)平均值比城市中心(商业区、居民区)分别高11.28、7.17 μg/m3,说明工业集中地区的大气环境质量受污染影响明显.此外,2015—2018年乌鲁木齐市大气污染呈季节性和北高南低的区域性分布特征.气象因子分析表明,ρ(PM2.5)、ρ(PM10)均与相对湿度呈正相关,与降雨量、风速等气象因素呈负相关.2015—2018年,乌鲁木齐市大气中ρ(PM2.5)/ρ(PM10)呈先增后降的趋势,冬季以PM2.5污染为主,其他季节以PM10污染为主.研究显示,2015—2018年乌鲁木齐市空气污染状况变化与地形、气象条件、城市化建设均有一定的关系. 相似文献
16.
实验研究了添加蒸汽和雾化水2种不同烟气调节方式下,操作参数对燃煤可吸入颗粒物凝结长大脱除特性的影响.用电称低压冲击器(ELPI)实时测量脱除前后颗粒数浓度和粒径分布情况.结果表明,蒸汽在颗粒表面凝结能有效促进燃煤PM2.5的脱除;颗粒的分级脱除效率随粒径的增大呈上升的趋势,特别是对于粒径<0.3 μm的颗粒,当蒸汽添加量为0.1 kg/m3,随粒径从0.03 μm增加到0.3 μm,脱除效率提高了60%以上;添加蒸汽时,脱除效率与调节室入口烟气温度无关;而添加雾化水,脱除效率则随调节室入口烟气温度的升高而显著增大,温度从136℃升高到256℃,脱除效率提高了30%以上.烟气温度较高时,利用雾化液滴的蒸发能替代添加蒸汽实现燃煤PM2.5的高效脱除. 相似文献
17.
为探究临沂市PM2.5和PM10中元素的污染特征及来源,于2016年12月至2017年10月对临沂市环境空气中PM2.5和PM10进行了同步采样.利用电感耦合等离子体质谱仪(ICP-MS)和电感耦合等离子体发射光谱仪(ICP-OES)测定了其中的23种元素,并采用富集因子法和PMF法分析其来源.结果表明,采样期间临沂市PM2.5和PM10中主要元素为Si、Ca、Al、Fe、K、Na和Mg,分别占所测元素的质量分数为92.93%和94.61%. 18种元素(除Ti、Ni、Mo、Cd和Mg)的浓度水平在冬春季最高,夏秋季最低.其中Si、Al、Ca、K和Na表现为春季浓度最高,主要分布在粗颗粒中;Cu、Zn、Pb和Sb表现为冬季浓度最高,主要分布在细颗粒中.富集因子结果表明Cd、Sb和Bi元素富集程度显著,主要受燃煤、工业生产、垃圾焚烧等人为源共同影响.PMF源解析结果表明,临沂市PM2.5中元素来源主要有燃煤和铜冶炼的混合源、市政垃圾焚烧... 相似文献
18.
燃煤工业锅炉可吸入颗粒物的排放特征 总被引:8,自引:5,他引:8
利用基于荷电低压捕集器(ELPI)的颗粒物排放稀释采样系统,在8个燃煤工业锅炉的除尘器进、出口进行了烟气可吸入颗粒物(PM10)和细微颗粒物(PM2.5)的现场测试. 粒径分布结果表明,在所测粒径范围(0.03~10 μm)内,燃煤工业锅炉产生和排放PM10的粒数浓度和质量浓度均出现1个峰值,峰值粒径大约在0.12~0.20 μm范围内. PM2.5中碳组分和硫酸盐的含量较高,其中有机碳(OC)和元素碳(EC)含量分别为3.7%~21.4%和4.2%~24.6%,硫酸盐含量则在1.5%~55.2%之间. 在无控条件下,燃用原煤的层燃炉的PM10和PM2.5排放因子分别为0.13~0.65 kg·t-1和0.08~0.49 kg·t-1,燃用型煤的链条炉分别为0.24 kg·t-1和0.22 kg·t-1,而循环流化床的PM2.5排放因子为1.14 kg·t-1,明显高于链条炉. 由于耗煤量大,同时现有除尘设备的效率较低,燃煤工业锅炉可能成为我国最重要的PM10排放源,是今后重点控制的对象. 相似文献
19.
2005年四季在北京市不同功能区9个采样点采集大气PM10和PM2.5样品,并对其中有机物污染水平、分布特征及不同功能区PM10和PM2.5中有机物的相关性进行了探讨.结果表明,市区PM10和PM2.5中有机物年均值分别为41.39 μg/m3和34.84 μg/m3,是对照区十三陵的1.44倍和1.26倍;冬季有机物污染最严重,分别为春季的1.15、 1.82倍,秋季的2.06、 2.26倍,夏季的4.53、 6.26倍.不同季节PM2.5与PM10中EOM的比值超过0.60, 并呈现一定季节差异.各功能区有机污染表现出工业区(商业区)>居民区(交通区、对照区)的变化趋势,且不同功能区PM2.5中EOM对PM10中EOM的影响程度各异.有机组分的年均值有非烃>沥青质>芳烃>饱和烃的变化规律,而污染源的季节性排放是造成有机物组分季节变化的主要原因. 相似文献