首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 46 毫秒
1.
高架复合道路噪声声场分布研究   总被引:5,自引:2,他引:5  
盛晔  潘仲麟 《环境污染与防治》2002,24(6):368-369,379
高架复合道路有效地缓解了交通拥挤的问题,但随之也带来了严重的噪声污染,以几何声学和衍射声学为理论基础,利用声级叠加原理,建立了高架复合道路噪声对临街建筑立面影响的预测模式。预测值与实测值基本相符,可直接应用于城市噪声预测。为城市发展规划尤其是城市高架复合道路的发展提供了科学依据。  相似文献   

2.
常青道路景观配置对交通噪声的衰减效果   总被引:1,自引:0,他引:1  
选取重庆市主城区常见的3种道路景观植物——石楠(阔叶类植物)、小叶黄杨(中等叶子类植物)和雪松(针叶类植物),研究常青道路植物对交通噪声的衰减效果。结果表明:(1)在相同排列条件下,3种植物的降噪能力依次为石楠>小叶黄杨>雪松。对单一植物种,植物间交叉排列的绿化带对交通噪声的衰减效果比平行排列好。(2)不同种类植物对噪声的插入损失峰值所处的频段不同。针叶类植物对低频(<500Hz)噪声有很好的衰减效果,阔叶类植物对高频(>2 000Hz)噪声有很好的衰减效果,中等叶子类植物对中频(500~2 000Hz)噪声有很好的衰减效果。(3)选择针叶类植物和较大冠幅的阔叶类植物搭配种植,如雪松和石楠,可有效地提高绿化带对各频段的交通噪声的吸收能力。  相似文献   

3.
为揭示太湖流域农村黑臭河流沉积物中碳、氮、磷营养盐的垂向分布与污染特征,以无锡市周铁镇掌下浜(北段)为例,沿河流上游至下游共采集13个沉积物柱状样,分析总氮(TN)、总磷(TP)、氨氮(NH4+-N)、硝氮(NO3--N)、有机氮(Org-N)、有机碳(TOC)的垂向分布特征,并对沉积物中碳(C)、氮(N)、磷(P)的组分分布进行相关性分析。结果表明:TN、TP、Org-N含量在各点位间变化幅度不同,但均表现出随深度增加减小的趋势,即出现明显的"表层富集"现象,TN、TP、Org-N含量在沉积物中的最大降幅分别为55.82%、69.59%和68.12%;相反,沉积物中NH4+-N含量在垂直距离上呈现随深度加大升高的趋势,上升幅度在25.39%~72.77%;在垂直方向上,NO3--N含量在1号、4号~8号采样点处含量随深度加大而升高,增幅最大为107.51%,在2号、3号和9号~13号采样点处含量随深度增加降低,降幅最大为65.17%;TOC含量呈现随深度增加递减的趋势,含量在13.12~37.52 g·kg-1变化;沉积物中C/N在8.31~19.90之间,均值为13.21,有机物以外源有机质为主;C/P比在12.24~51.84之间,均值为26.71;N/P在1.04~2.86之间,均值为2.02;沉积物中TOC、TN、TP含量两两具有极显著正相关关系(pn=13),表明C、N和P具有同源性。  相似文献   

4.
高架道路声屏障的降噪效果   总被引:4,自引:2,他引:4  
详细介绍了德国RLS 90道路交通噪声预测模型,运用RLS 90模型对具有典型道路参数的高架道路试验段在不同距离、不同高度下进行了辐射噪声和声屏障降噪效果特性的预测计算,并进行了实际测量。结果表明,高架道路对低于其路面高度的近距离区域有显著的噪声遮蔽作用,对于高架道路,声屏障对路面高度附近的区域降噪效果最佳,4 m高声屏障的最大降噪效果达10 dB。结果还表明,采用RLS 90模型得到的高架道路噪声级和声屏障降噪效果计算值和实测数据吻合良好。  相似文献   

5.
道路交通噪声预测模式预测结果的比较   总被引:1,自引:0,他引:1  
为了分析实际环境影响评价中常用的各种公路交通噪声预测模型预测结果之间存在的差异,并验证各预测方式与实测值之间的相符性,通过对选取的高速公路和市政快速公路采用各种预测模型计算比较,并用实际监测值对各模型预测结果进行验证,结果发现,不同的预测方式会造成预测结果之间昼间4~9 dB、夜间5~10 dB的差异,采用2006版规范计算车速和单车噪声源强,距离衰减考虑车流量大小的预测方式得到的预测结果与实测值最为接近。  相似文献   

6.
借助多功能动态生理检测仪、现场道路交通噪声信号采集系统及室内道路交通噪声信号回放系统等精密仪器设备,研究了道路交通噪声对人体心电的短时影响,并运用统计学、时间序列理论对噪声影响心电指标的规律进行了分析,提出了一种解释道路交通噪声影响人体心电指标规律及确定噪声安全阈值的理论方法。结果表明,不同噪声声压级对心电低频(LF)、高频(HF)之比(LF/HF)时间序列的自相关系数衰减速率影响不同,声压级越高,LF/HF时间序列的自相关系数衰减到0.500时的速率越慢,经历的延迟期越长;当道路交通噪声超过43dB时,有可能对人体心电状态造成潜在的影响。  相似文献   

7.
BACKGROUND, AIMS AND SCOPE: Over the last few years there has been extensive research for new indicators providing information about deposition resulting from road traffic and tunnel experiments received special attention in emission research. Mosses have been used for the estimation of atmospheric heavy metal and PAH depositions for more than three decades, although they were used only a few times for estimating ambient air pollution caused by traffic. In the current study, the suitability of using a moss species for monitoring road traffic emissions inside a tunnel was evaluated. This was a first-time ever attempt to use plants (mosses) as bioindicators in a tunnel experiment. Specifically, two relevant questions were examined: 1) Do mosses accumulate toxic substances derived from road traffic emissions under the extremely adverse conditions which can be found in a tunnel, and 2) Which substances can mainly be attributed to road traffic emissions and therefore be taken as efficient and reliable indicators for motor vehicles? METHODS: For the first time a biomonitor (the moss species Hylocomium splendens (Hedwig) B.S.G.) was used in a road tunnel experiment to analyse emissions from road traffic. Moss samples were exposed for four weeks in wooden frames (size 10 cm x 10 cm), covered by a thin plastic net with a mesh size of 1 cm x 1 cm. 17 elements, mainly heavy metals, and the 16 EPA-PAHs together with coronene were analysed by ICP-AES, AAS and GC-MSD. RESULTS: Enrichment factors, calculated by comparing post-experiment concentrations to those of a background site, were high for most PAHs, especially benzo(g,h,i)perylene (150.7), coronene (134.7), benzo(a)anthracene (125.0), indeno(1,2,3-c,d)pyrene (79.8), chrysene (78.1), pyrene (69.6) and benzo(b)-fluoranthene (67.4), and among the other elements for Sb (73.1), Mo (59.6), Cr (33.9), As (24.1), Cu (19.6), and Zn (17.1). All these substances can thus be taken as indicators for road traffic pollution. Concentrations were also significantly higher in the tunnel mosses for all investigated substances than along busy roads outside tunnels. Cluster analysis revealed groups of substances which could sensibly be attributed to various sources (abrasion processes, Diesel combustion) and enrichment in the various particle size classes. DISCUSSION: The extreme high concentrations in the analysed moss samples from inside the tunnel were due to higher concentrations in the ambient tunnel air, and the fact that already deposited chemical substances are not lost by rain, as well as efficient uptake capacities even under the extremely adverse conditions in a tunnel. In accordance with previous studies our results suggest that PAHs are better indicators for emissions from the burning process than heavy metals. CONCLUSIONS: As in open fields, mosses are suitable indicators for monitoring traffic emissions in tunnels. In addition to biomonitoring in open fields, in tunnel experiments mosses are even better indicators, because the confounding effects of other sources of pollution and the 'noise' in the accumulation process (e.g. washout through wet deposition) are minimised. The results of our study demonstrate the usefulness of mosses for surveying heavy metals and PAH emissions and deposition arising from road traffic sources, even under the extremely adverse conditions of the tunnel environment. RECOMMENDATION: It can be considered that biomonitors like mosses are a suitable alternative to technical particle filters inside tunnels. They are easy to handle, low in costs and valuable information regarding traffic emissions can be obtained. PERSPECTIVE: The results of this pilot-study proved the feasibility of the method, however, should be corroborated by further investigations based on a sample set that allows for generalization of the findings and might even include other moss species. A comparison of technical measurements with the biomonitoring method could lead to a more general acceptance of the results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号