首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
pH对活性污泥表面特性和形态结构的影响   总被引:5,自引:1,他引:5  
采用4个平行的序批式反应器,研究了不同pH下活性污泥絮体表面特性和形态结构的变化.结果表明:酸性条件下(pH=4.0,5.5)污泥产生的胞外聚合物总量较多,其中多糖和蛋白质的含量远大于中性(pH=7.0)和偏碱性条件(pH=9.0).污泥表面Zeta电位随pH的升岛而降低;pH对污泥相对疏水性的影响规律并不明显,EPS组成比例较EPS总量本身更易影响污泥表面相对疏水性;此外,在酸性条件下,丝状菌大量生长,导致污泥絮体的平均粒径增大,并且呈现双峰粒径分布,絮体分形维数较低,结构松散;在中性条件下,无明显丝状菌牛长,絮体平均粒径减小,分形维数较高,结构致密;偏碱性条件下,虽然没有出现大量丝状菌,但絮体平均粒径较中性条件略有增大,分形维数相应减小.  相似文献   

2.
本研究采用原子力显微镜(AFM)结合自制的膜探针以及Zeta电位仪通过分别测量不同有机污染物,即腐殖酸(HA)、牛血清蛋白(BSA)和海藻酸钠(SA)与微滤膜之间的粘附力以及相应污染物的Zeta电位,对高岭土在不同有机物微滤过程的影响进行了系统性研究。结果表明,高岭土对污染膜通量衰减的影响主要发生在膜过滤的初期阶段,其存在使HA污染膜的初期通量衰减幅度增加,BSA和SA污染膜的初期通量衰减幅度减缓;清洗后HA污染膜的通量恢复率降低,而BSA和SA污染膜的通量恢复率增大。而且,高岭土的存在使膜-HA之间的粘附力变大以及HA溶液的Zeta电位变小,膜-BSA、SA之间的粘附力变小以及相应污染物的Zeta电位都增大。因此,膜-污染物之间粘附力以及溶液的Zeta电位的变化可以指示膜污染的变化趋势。  相似文献   

3.
通过研究城市污水生物处理过程中可溶性微生物产物(SMP)和胞外聚合物(EPS)的光谱特性和荷电特征,进ー步阐明城市污水生物处理各阶段SMP和EPS的结构特征。结果表明:污水生物处理过程中SMP主要含有低激发波长类色氨酸和类腐殖酸,可能还含有高激发波长类色氨酸和类富里酸其中类腐殖酸物质在此过程中逐渐被降解。紧密黏附型胞外聚合物(TB-EPS)与松散附着型胞外聚合物(LB-EPS)主要含有类色氨酸、类富里酸和类腐殖酸。此外LB-EPS和TB-EPS还分别含有低激发波长类色氨酸和另一种类腐殖酸(λ_(Ex)/λ_(Em)=(420±425)nm/(470±475)nm)。SMP、LB-EPS和TB-EPS的荧光指数分别为1.78±2.13,1.57±1.68,1.21±1.40其来源分別主要是生物来源、生物来源和陆源、陆源。且LB-EPS的荧光指数在厌氧处理阶段降低表明其所含腐殖质的芳香性增强TB-EPS则相反。三者的Zeta电位值在-11~-24 mV内,且其绝对值随生物处理进行而降低其中TB-EEPS的Zeta电位值变化相对较小。  相似文献   

4.
通过聚合氯化铁(PFC)对高岭土悬浮颗粒的絮凝试验中浊度和Zeta电位的测试,发现低温时在相同的PFC投药量下随着碱化度(B)的增大,Zeta电位减小;在达到相同的浊度去除,低温时PFC的投加量要小于常温时,在相同的药剂投加量低温时Zeta电位要高于常温时;温度降低PFC水解和沉淀速度减小,使得PFC水解中间体更易与污染物反应,同时增强了电中和能力,减少了PFC的用量;温度的降低使得PFC的多核羟基络合物中间体水解程度减小而保持形态的时间延长,所以PFC比传统混凝剂FeCl3处理低温低浊水更有效。  相似文献   

5.
混凝对正渗透过程中抗生素去除特性及膜污染的影响   总被引:1,自引:0,他引:1  
卢仙林  朱小彪 《环境工程学报》2019,13(12):2838-2844
为探明混凝预处理对正渗透去除抗生素的影响以及混凝对后续膜处理的影响,选用PAC、FeCl_3、Al_2(SO_4)_3对正渗透原料液进行混凝预处理,考察了混凝预处理对正渗透水通量、NaCl返混通量、抗生素截留率及膜污染的影响。结果表明:混凝预处理对正渗透过程中膜污染程度的影响由原料液中HA残留量以及Zeta电位共同决定;经混凝预处理后,原料液中腐殖酸残留量越多,正渗透过程中所形成的滤饼层越厚,原料液Zeta电位绝对值越低,形成的滤饼层越密实。滤饼层的形态影响正渗透的浓差极化作用,进而影响正渗透的运行特性及抗生素的截留效果,同时决定了膜清洗的难易程度。  相似文献   

6.
以模拟地下水为研究对象,进行了复配介质去除地下水中腐殖酸的实验研究。探讨了配比、粒径、固液比、pH和温度对腐殖酸去除效果的影响。腐殖酸的浓度通过紫外分光光度法测定。结果表明:在不加活性炭的条件下,H物质∶X物质∶Q物质=1∶8∶8时,其硬度较好;在初始pH=6.34、反应时间为4 h时,去除率可达到95%以上;当反应时间≤1 h时,去除率随粒径增大而减小,而当反应时间为2~6 h时,小粒径和中等粒径复配介质对腐殖酸去除率略高于大粒径;一定浓度范围内,腐殖酸的去除率与固液比呈正相关,但固液比增大时,并不能无限提高去除率,当固液比为1∶200~1∶50时,去除率呈现平台;pH对复配介质去除效果影响不大,而温度对腐殖酸的去除有显著影响,较低温度(16.8℃)下的去除率比较高温度(35.0℃)下的去除率高5%。该复配介质去除地下水中腐殖酸是有效可行的,可作为PRB(permeable reactive barrier,渗透反应格栅)的潜在反应介质。  相似文献   

7.
采用化学沉淀-分散剂法制备改性硅酸钙(modified calcium silicate,MCS),以进一步提高养殖废水厌氧处理过程中同步脱碳除磷能力。首先,本研究采用沉淀溶解理论解析MCS磷吸附特性机理,再将MCS投加到厌氧反应装置中,并通过测定污泥的颗粒粒径、表面EPS和Zeta电位变化,以深入探讨MCS对厌氧污泥特性的影响。结果表明:MCS与磷酸钙的沉淀转化能力最强,平衡常数K值高达7.8×105,而且发生的吸附沉淀反应不受其他离子的干扰;MCS投加到反应装置中,污泥颗粒平均粒径和D80累计粒径增幅分别达到72.46%和72.97%、EPS量增加了约11%、Zeta电位值由-19.8 m V降到了-3.6 m V,因此MCS投加到反应器中不仅增大了污泥的颗粒粒径,还可缩短了污泥颗粒化的时间并增强污泥的活性。  相似文献   

8.
聚合氯化铁絮凝处理低温低浊水的研究   总被引:8,自引:0,他引:8  
通过聚合氯化铁(PFC)对高岭土悬浮颗粒的絮凝试验中浊度和Zeta电位的测试,发现低温时在相同的PFC投药量下随着碱化度(B)的增大,Zeta电位减小;在达到相同的浊度去除,低温时PFC的投加量要小于常温时,在相同的药剂投加量低温时Zeta电位要高于常温时;温度降低PFC水解和沉淀速度减小,使得PFC水解中间体更易与污染物反应,同时增强了电中和能力,减少了PFC的用量;温度的降低使得PFC的多核羟基络合物中间体水解程度减小而保持形态的时间延长,所以PFC比传统混凝剂FeCl3处理低温低浊水更有效。  相似文献   

9.
以剪切乳化机为主体,设计、加工了一套采油污水室内再现配置装置,探讨了含油量、剪切强度(与流量同比变化,下同)等不同配置条件下的再现采油污水粒度分布、乳化度、Zeta电位和粘度等性能参数以及乳化机前后的压力损失.结果表明,该采油污水再现配置装置,能满足不同性质采油污水的配置要求,剪切乳化机的压力损失随着剪切强度的增大而明显升高,而随含油量增大没有明显的变化趋势,呈现出基本稳定的状态.较大的剪切强度创造了湍流流体条件,强化了分散相颗粒之间的碰撞聚结行为,因而再现采油污水的乳化度随剪切强度增大而降低,这种降低的程度又受含油量的影响:低含油量时剪切强度的影响明显,高含油量时这种影响逐渐减弱并趋于平缓.鉴于高含油量时趋于形成大粒径油珠,再现采油污水的乳化度随含油量增大而呈现略微的下降趋势,这种下降趋势的程度同时受剪切强度的影响:低剪切强度时含油量的影响较为明显,而高剪切强度时的剪切条件削弱了含油量的影响.Zeta电位随着剪切强度增大而不断增大,使得分散相颗粒带电绝对值降低,乳化体系有脱稳的趋势,导致颗粒间的碰撞聚结机会变大,与乳化度降低的趋势相吻合.剪切强度和含油量对再现采油污水粘度的影响不大.  相似文献   

10.
淀粉改性纳米四氧化三铁的制备及其除磷效能的研究   总被引:2,自引:1,他引:1  
以可溶性淀粉为改性剂,采用氧化沉淀法分别制备了可溶性淀粉改性Fe3O4以及纯Fe3O4,并研究了2种Fe3 O4粒径、表面性质以及除磷效能的差异。实验结果表明,淀粉改性使得纳米Fe3 O4粒径减小,粒径由60 nm减小到10nm左右;红外和Zeta电位结果表明淀粉在Fe3 O4粒子表面是化学吸附;2种纳米Fe3 O4对...  相似文献   

11.
This study investigated the breakthrough patterns of carboxymethyl cellulose- and polyacrylic acid-stabilized zero-valent iron (Fe(0)) nanoparticles (NZVI) from packed sand columns under a range of pore water velocities of 0.02, 0.2 and 1 cm min(-1) and NZVI influent concentrations of 0.1, 0.5 and 3 g L(-1). The NZVI effluent relative concentrations of both types of particles decreased with slower flow velocities and increasing particle concentrations. PAA-NZVI exhibited slower elution from the columns than CMC-NZVI under identical experimental conditions, and this is attributed to more rapid aggregation kinetics of PAA-NZVI. The elution patterns of PAA-NZVI showed a stronger trend of gradually increasing effluent concentrations with flushing of additional pore volumes, especially at low flushing velocities and higher influent particle concentrations and this phenomenon too can be attributed to increasing aggregate sizes with time which caused decreases in the values of the single collector efficiency and thus the deposition rate constant. A 7 nm increase in CMC-NZVI aggregate size over 60 min was observed using nanoparticle tracking analysis. The reduction in colloidal stability due to aggregation of CMC- and PAA-NZVI was verified using sedimentation tests, and it was found that PAA-NZVI were less stable than CMC-NZVI. There were also notable inherent differences in the two NZVI particles. The CMC-NZVI were monodisperse with a mean diameter of 5.7 ± 0.9 nm, whereas PAA-NZVI had a bimodal particle size distribution with a small sub-population of particles with mean size of 30 ± 21 nm and a more abundant population of 4.6 ± 0.8 nm diameter particles. Furthermore, PAA-NZVI had a lower surface potential. These characteristics are also responsible for the different elution patterns CMC- and PAA-NZVI.  相似文献   

12.
The effect of the consecutive annual additions of pig slurry at rates of 0 (control), 90 and 150 m3 ha(-1) y(-1) over a 4-year period on the binding affinity for Cu(II) of soil humic acids (HAs) and fulvic acids (FAs) was investigated in a field plot experiment under semiarid conditions. A ligand potentiometric titration method and a single site model were used for determining the Cu(II) complexing capacities and the stability constants of Cu(II) complexes of HAs and FAs isolated from pig slurry and control and amended soils. The HAs complexing capacities and stability constants were larger than those of the corresponding FA fractions. With respect to the control soil HA, pig-slurry HA was characterized by a much smaller binding capacity and stability constant. Amendment with pig slurry decreased the binding affinity of soil HAs. Similar to the corresponding HAs, the binding affinity of pig-slurry FA was much smaller while that of amended-soil FAs were slightly smaller when compared to the control soil FA. The latter effect was, however, more evident with increasing the amount of pig slurry applied to soil per year and the number of years of pig slurry application.  相似文献   

13.
The acid-base properties of humic acids (HAs) and fulvic acids (FAs) isolated from liquid swine manure (LSM), soils amended with either 90 or 150 m(3)ha(-1)year(-1) of LSM for 7 years, and the corresponding unamended control soil were investigated by a current potentiometric titration method. The non-ideal competitive adsorption (NICA)-Donnan model for proton binding by two classes of binding sites (i.e., carboxylic- and phenolic-type groups) was fit to titration data, and a set of fitting parameters was obtained for each HA and FA sample. The NICA-Donnan model was shown to describe with a great degree of accuracy the behavior of experimental titration datasets, and highlighted important differences in the acid-base properties of the HAs and FAs examined. When compared to the unamended soil HA and FA, LSM-HA and LSM-FA, had smaller acidic functional group contents, larger proton binding affinities of both carboxylic- and phenolic-type groups, smaller heterogeneity of carboxylic-type groups, and smaller, in the case of HA, or similar, in the case of FA, heterogeneity of phenolic-type groups. Amendment with LSM caused a decrease of acidic functional group contents and a slight increase of proton binding affinities of carboxylic- and phenolic-type groups of soil HAs and FAs. Further, LSM application induced a decrease of the heterogeneity of carboxylic-type groups, whereas appeared not to affect substantially the heterogeneity of phenolic-type groups of LSM-amended soil HAs and FAs. These effects were more evident for HAs than for FAs and tended to slightly increase with increasing LSM amendment rate.  相似文献   

14.
Binding of two model polycyclic aromatic hydrocarbons (PAHs), phenanthrene and pyrene, by humic acids (HAs) isolated from an organic substrate at different stages of composting and a soil was investigated using a batch fluorescence quenching method and the modified Freundlich model. With respect to soil HA, the organic substrate HA fractions were characterized by larger binding affinities for both phenanthrene and pyrene. Further, isotherm deviation from linearity was larger for soil HA than for organic substrate HAs, indicating a larger heterogeneity of binding sites in the former. The composting process decreased the binding affinity and increased the heterogeneity of binding sites of HAs. The changes undergone by the HA fraction during composting may be expected to contribute to facilitate microbial accessibility to PAHs. The results obtained also suggest that bioremediation of PAH-contaminated soils with matured compost, rather than with fresh organic amendments, may result in faster and more effective cleanup.  相似文献   

15.
The effect of the consecutive annual additions of pig slurry at rates of 0 (control), 90 and 150 m3 ha(-1) yr(-1) after a 7-year period on the Cu(II) and Zn(II) binding behavior of soil HAs was investigated in a field experiment. A fluorescence titration method and a single site model were used for determining metal ion complexing capacities and stability constants of metal ion complexes of HAs isolated from pig slurry and unamended and amended soils. With respect to control soil HA, pig-slurry HA featured much smaller Cu(II) and Zn(II) binding capacities and stability constants. Pig-slurry application to soil decreased Cu(II) and Zn(II) complexing capacities and binding affinities of soil HA. These effects increased with increasing the rate per year of PS application to soil, and are expected to have a large impact on bioavailability, mobilization, and transport of Cu(II) and Zn(II) ions in pig slurry-amended soils.  相似文献   

16.
In order to investigate the influence of organic matter on arsenic retention, we used batch experiments at pH 7 to determine the adsorption of As(V) on three different solids: a crude, purified, Ca-exchanged kaolinite and two kaolinites coated with humic acids (HAs) having different nitrogen contents. We first examined the adsorption of each HA onto kaolinite, and then used the HA-kaolinite complexes to study As(V) adsorption. The results clearly show an influence of the HA coating on As adsorption. For example, with low initial As concentrations the solid/liquid partition coefficient (R(d)) for both HA complexes is greater than that for the crude kaolinite. We found that increasing the initial As concentrations decreased the R(d) values of the HA-coated kaolinites until finally they were the same as the crude kaolinite R(d) values. This suggests that adsorption occurs first on the HA sites and then, once the HA sites are saturated, on the remaining kaolinite sites. We also noted that the more reactive HA-kaolinite complex was the one with the highest N/C ratio. Comparing the amount of amine groups in the HA-kaolinite complexes with the total amount of adsorbed As indicates that the HA amine groups, due to their positive charge at pH 7, play a key role in the adsorption of As onto organic matter.  相似文献   

17.
To suppress the coagulation of humic acid (HA) in aqueous solutions, HA was modified with hydrophilic amines, such as glucosamine or taurine. These amines were attached to carboxyl groups in HA via amide bond formation. The degree of modification (R(m)) was estimated to be 21-38%. Infrared spectra of the modified HAs were also consistent with the presence of amide bonds. Acid-base titration showed that the average acid-dissociation constant (pK(app)) of the HA samples was increased by the modification. The Ca(2+) binding capacity of HA decreased with an increase in R(m) value. Critical pH or Ca(2+) concentration, at which HA coagulation occurs, was increased as the result of the modification. These critical points for taurine-HA were higher than those for glucosamine-HA. This is mainly due to electrostatic repulsion by sulfonate groups in taurine. These results indicate that the coagulation of HA is suppressed by modifying the molecules with glucosamine or taurine.  相似文献   

18.
Controlled laboratory chlorination of acetaldehyde (ACD) under typical drinking water conditions (pH 6.7, 7.6 and 8.8, and temperature 4 degrees C and 21 degrees C) revealed that the formation of chloral hydrate (CH), the most common halogenated acetaldehyde (HAs), increased with contact time (0-10 days). However, at increased pH and temperature, CH reached maximum levels and subsequently broke down partially to chloroform and other unidentified compounds. After 10 days contact time, a maximum of 63% (molar) of the initial ACD consumed were converted into CH or chloroform (TCM). Various surveys of drinking water systems indicated that ACD is not the only precursor of CH. A suite of aldehydes (including ACD), and chlorinated disinfection by-products (including TCM and CH) were found in most distribution systems. The levels of bromide in source water impacted speciation of HAs. In addition to CH, brominated and other mixed (Cl/Br) acetaldehydes were detected in most samples; the speciation of HAs and THMs followed comparable trends. Similar to chloroform for trihalomethanes, CH contributed from as low as 5% to up to 60% of the total HAs. The bromine incorporation factors (BIF) in THMs and HAs were shown to increase with increasing bromide ion concentrations in the source water. Brominated THMs are more readily formed than their HA analogues; in fact, BIF values for THMs were 2-3 times higher than for the HAs. It was found that HAs may be as high as THMs in some drinking waters. As a result, the determination of the other target HAs, in addition to CH, is necessary for a better assessment of the pool of disinfection by-products in drinking water.  相似文献   

19.
It had been reported that iron and manganese oxides in steel slag enhanced the production of humic acid (HA) from low-molecular-weight compounds, such as phenolic acids, amino acids, and saccharides. In the present study, this function of steel slag was applied to the composting of raw organic wastes (ROWs). The degree of humification of HAs is an important factor in evaluating compost quality. Thus, HAs were extracted from the prepared composts and the humification parameters were determined, in terms of elemental compositions, acidic functional group contents, molecular weights, spectroscopic parameters from UV–vis absorption and 13C NMR spectra. The timing for adding steel slag affected the degree of humification of HAs in the composts. The weight average molecular weight of a HA when slag was added initially (29 kDa) was significantly higher than when slag was added after elevating the temperature of the compost pile (17–18 kDa). These results show that ROWs are decomposed to low-molecular-weight compounds after the pile temperature is elevated and the presence of slag enhances the polycondensation of these compounds to produce HAs with a higher degree of humification. Because the slag used in the present study contained several-tens ng g?1 to several μg g?1 of toxic elements (B, Cu, Cr, and Zn), leaching tests for these elements from the prepared composts were carried out. Levels for leaching boron from composts prepared by adding slag (0.2–0.4 mg L?1) were obviously higher than the corresponding levels without slag (0.05 mg L?1).  相似文献   

20.
Gigault J  Grassl B  Lespes G 《Chemosphere》2012,86(2):177-182
This work focuses on the influence of humic acids (HAs) on the fate of carbon nanotubes (CNTs) in aqueous media. This influence was demonstrated by mixing CNT powder with HAs in aqueous solution in varying concentrations. The aqueous media containing HAs and CNTs were size-characterized by asymmetrical flow field-flow fractionation (AsFlFFF) coupled with multi-angle light scattering (MALS). This coupling yielded information concerning the size distribution of single- and multi-walled CNTs (SWCNTs and MWCNTs) and HAs under different physico-chemical conditions that can occur in environmental water. HAs can disperse individual CNTs in aqueous media. However, the difference in the physical structure between SWCNTs and MWCNTs leads to significant differences in the quantity of HA that can adsorb onto the nanotube surface and in the stability of the CNT/HA complex. Compared with MWCNTs, SWCNTs suspended in HAs are less affected by changing ionic strength with respect to stability and the amount suspended.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号