首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
热解吸对土壤中POPs农药的去除及土壤理化性质的影响   总被引:1,自引:0,他引:1  
为探索土壤热解吸修复技术对POPs污染土壤的修复效果及修复后土壤可耕作性,选择北京某农药厂旧址的POPs农药污染土壤,研究了不同温度下热解吸处理后土壤中滴滴涕(DDTs)和六六六(HCHs)各组分的去除率以及土壤理化性质的变化。结果表明,热解吸修复技术可有效去除土壤中POPs农药,其中,p,p’-DDE与α-HCH组分去除率受热解吸温度的影响比其他组分更为明显。∑HCH与∑DDT在310℃、340℃时分别达到97%、99%的去除率,且此时土壤中的污染物含量低于我国《展览会用地土壤环境质量评价标准》,此后去除率受温度的影响不明显。热解吸温度对修复后土壤的理化性质有一定的影响,不同温度影响的程度各不相同,其中,有机质含量与全氮含量分别由0.78%、0.0352%降至0.14%、0.0107%;pH波动幅度较小,由7.80变至8.25;阳离子交换量变化存在波动,但呈整体下降趋势,由7.87 mg/kg降至5.00mg/kg;土壤中速效磷显著增加,由7.59 mg/kg升至21.8 mg/kg。而在最优温度条件下,土壤理化性质受热解吸温度的影响较小。由此可以说明,热解吸技术可以用于POPs污染土壤的修复,选择适当的热解吸温度对土壤的可耕作性影响有限,因而是一种潜在的绿色修复技术。  相似文献   

2.
以泡饮过的废弃茶叶为实验原料,通过不同热解温度(300、400、500和600℃)和热解时间(1 h和2 h)制备生物炭,探讨不同热解条件对茶叶渣生物炭(TSBC)的特性及其对镉(Cd)污染土壤钝化效果的影响。结果表明:热解温度的升高可明显增加TSBC的p H和比表面积,降低生物炭的产率、电导率和表面官能团的数量,使TSBC具有弱碱性、较大比表面积和较强的稳定性,对改良酸性土壤和吸附重金属存在一定潜力;而热解时间对其特性没有明显差异,与对照组相比,添加TSBC明显增加了Cd污染土壤的p H、有机碳(SOC)和可溶性有机碳(DOC)含量,但随着制备温度的升高,Cd污染土壤中SOC和DOC增加幅度逐渐降低。添加TSBC显著降低Cd污染土壤中可交换态镉的比例,当热解温度为500~600℃时降幅最显著,其下降比例与对照相比最高可达25.56%;残渣态镉比对照增加了0.88~1.18倍。因此,TSBC对镉污染土壤有较好的钝化效果,这为重金属污染土壤的修复和生活废弃物的资源化利用提供了理论依据。  相似文献   

3.
以我国某铬盐厂的铬污染土壤为研究对象,采用改进的BCR顺序提取法研究了粒径对不同修复工艺(异位淋洗、异位稳定化、湿法解毒)去除土壤中各形态Cr的影响。实验结果表明:粒径是影响铬渣污染土壤总铬和Cr(VI)去除的关键影响因素之一,粒径越细,越有利于3种异位修复工艺对土壤中Cr(Ⅵ)的去除或还原,粒径越细越有利于异位淋洗工艺对总铬的消减。粒径对水溶态Cr、酸溶态Cr的去除影响显著,粒径越细,水溶态Cr、酸溶态Cr的去除率越高,水溶态Cr和酸溶态Cr的分离或去除是不同异位修复工艺实现铬渣污染土壤中Cr(Ⅵ)高效去除的有效手段;粒径对可还原态Cr的去除影响不显著,pH是影响可还原态Cr去除的主要影响因素;粒径对可氧化态Cr含量提升显著,尤其是对异位稳定化和湿法解毒工艺,粒径越细,可氧化态Cr增大倍数越高;粒径对残渣态Cr的去除影响不显著。  相似文献   

4.
研究了东寨港红树林湿地潮间带沉积物中汞(Hg)、砷(As)的化学形态组成、垂直分布及理化性质对其形态转化的影响。结果表明:分别有80%和25%的沉积物样品中Hg和As超过背景值;YF采样点沉积物中Hg和As相对较高,XB采样点沉积物样品中Hg和As相对较低。Hg和As随深度的增加总体呈降低趋势。沉积物中Hg形态累积质量分数大致为:残渣态可氧化态可还原态酸溶态,As主要以残渣态存在。沉积物中Hg污染指数和迁移系数远大于As,受人类活动影响较大。YF采样点沉积物中Hg和As污染指数和迁移系数较其他采样点高,环境风险相对较大。不同采样点Hg和As形态与理化性质相关程度不同,无污染或轻度污染采样点沉积物中两种元素在一定程度上受沉积物pH、有机质及盐度影响,污染相对较重的YF采样点沉积物中Hg、As形态与沉积物pH、有机质及盐度的相关性较弱。  相似文献   

5.
在管式炉对Cd超积累植物东南景天(Sedum alfredii)进行热解,研究热解过程中Cd的迁移和形态转化,并在最佳温度条件下探究制备的东南景天生物炭对Cd的吸附作用。结果表明,随着温度上升,生物炭产率下降,挥发分增加;温度能影响Cd在气、液、固三相中的分布,温度升高能明显促进重金属由固相向气相迁移;生物炭中Cd形态受温度影响,随温度升高,对环境影响较大的水溶态和酸溶态Cd含量呈现出降低趋势,在700℃以上时,大部分Cd是以稳定的可氧化态、可还原态以及残渣态形式存在;800℃热解得到的东南景天生物炭对Cd具有一定的吸附效果,最高吸附量达到28.7mg/g。通过合理控制热解温度能够实现炭产物的稳定化,并可安全利用到重金属污染水体或者农田污染治理中。  相似文献   

6.
低温热解技术修复高浓度汞污染土壤(≥100 mg·kg~(-1))工程除汞效果可达70%以上,仍残留20%~30%的惰性汞,是否对农作物安全存在一定风险仍属未知。为此,以低温热解工程性修复前的高浓度汞污染农田土壤为对照,研究修复后土壤在原位大田条件下残留汞的形态变化及对几种常见作物生物产量、质量及汞在植物组织间迁移的影响。结果表明:低温热解过程未对土壤肥力造成影响,经低温热解修复后土壤中有机结合态汞降低64.07%,残渣态汞降低56.38%;高浓度汞污染抑制了作物生长,修复后土壤耕种作物生长状况得以明显改善,作物产量提高了2~3倍;所研究作物可食部分土豆肉、玉米粒及稻米,汞含量分别降低了51.2%、43.8%和53.79%;汞在植株中的分布情况为:根叶茎,残留汞对植株根系的胁迫最为严重,且植株的根和叶汞含量,相比修复前明显降低了2~5倍。  相似文献   

7.
选取成都东郊唯一的火力发电厂周围的稻田土为研究对象,对稻田土中各种形态汞的分布特征进行了调查与研究,探讨稻田土中汞的分布规律,为分析和判断稻田土中汞的迁移和转化行为及该区汞污染土壤的修复提供重要依据。结果表明,处于火力发电厂烟尘排污口下风向的1#、2#、3#、4#采样点土样受到了严重的汞污染,呈现出高含汞特征,总汞平均质量浓度在9~41mg/kg,平均值为24.546mg/kg,远远超出《土壤环境质量标准》(GB 15618—1995)二级标准所规定的限值(0.5mg/kg),而处于排污口上风向的5#、6#、7#、8#土样没有受到明显的汞污染,大部分土样的总汞含量与成都市土壤汞平均含量接近;1#、2#、3#、4#土样中5种形态汞的垂直分布均呈现出随着土壤深度增加而减少的特征;1#、2#、3#、4#土样中的各形态汞平均百分比为有机结合态汞>硝酸溶汞>残渣态汞>铁锰氧化态汞>水溶和可交换态汞,土壤中含有的大部分汞化学性质比较稳定,难以被植物吸收利用,而易被植物吸收利用的水溶和可交换态汞虽然仅占极小一部分,但含量还是高于成都市土壤中水溶和可交换态汞的背景值。  相似文献   

8.
为了探究EDTA在土壤重金属污染治理中的优化处理方法,采用湿筛和水中重力沉降的方法,从人工Pb污染土壤(原土)中分离提取砂土、粉土和粘土,分析讨论了EDTA对土壤中Pb的去除效果,并从EDTA清洗前后土壤中Pb的BCR形态分布出发,分析了EDTA对不同粒径土壤中各形态Pb的去除效果。研究发现,实验用土壤中砂土、粉土和粘土含量分别为11.2%、75.6%和13.2%,EDTA浓度越高,土壤中Pb去除效果越好,且砂土中Pb最易被去除(~100%),粉土与原土其次(88.66%~96.50%),粘土最难被去除(64.78%~79.60%),但随着EDTA浓度增加,粒径对去除Pb的影响减弱。在土壤修复实践中,可通过利用不同浓度EDTA处理不同粒径土壤的方法达到优化效果。BCR形态分布说明外源性Pb进入土壤后主要以弱酸提取态和可还原态存在,EDTA清洗主要去除弱酸提取态和可还原态,粘土中的各形态去除率均最小。  相似文献   

9.
利用回转窑装置热解处理废锌锰电池,考察了热解温度、热解时间和载气流速对热解脱汞效果的影响,研究了汞被吸收的规律、尾气的成分以及废锌锰电池的物质形态变化.研究结果表明:在热解温度为690 ℃,热解时间为100min,载气流速为0.06 m3/h的条件下脱汞效果最好.热解时间对脱汞效果影响最大,热解温度次之,载气流速的影响很小.吸收液能完全吸收通过吸收瓶的尾气中含有的汞,其中95%以上的汞以单质形式存在.热解残渣中晶态物质多,金属元素呈低价态.  相似文献   

10.
热强化气相抽提技术(T-SVE)在修复半挥发性石油烃污染土壤方面极具应用潜力。本文基于实验室模拟T-SVE装置,研究了加热温度及土壤含水量、有机质对4种半挥发性石油烃(正十三烷、正十四烷、正十五烷和正十六烷)去除效率的影响,并对石油烃去除动力学进行了拟合。结果表明,温度决定性地影响了石油烃污染土壤的修复效率,污染土壤残留率与加热温度基本呈反比。石油烃去除过程符合Elovich和Freundlich热脱附动力学方程。加热温度为140℃时,土壤含水量(5%~30%)的增加降低了石油烃去除效率;当温度上升到180℃,石油烃去除率在土壤含水量5%~20%时也表现出降低趋势,但在土壤含水量为30%时反而达到最高值。土壤有机质含量增加明显降低了石油烃去除率,尤其对于辛醇-水分配系数值高的石油烃;当加热温度从140℃升高到220℃,土壤有机质对石油烃污染去除的限制明显降低。实验获得结果可为T-SVE技术修复石油烃污染的工程设计提供参考。  相似文献   

11.
Concentrations of different chlorinated compounds were measured in mussels incubated in two polluted watercourses, a river (the River Kymijoki) and a lake (Lake Vanaja) for four weeks in summer 1995. The sum concentrations of polychlorinated phenols (PCP) and biphenyls (PCB) were both about 1 μg/g lipid weight (lw) in Lake Vanaja mussels, while in the River Kymijoki mussels PCPs were non-detectable and PCBs were measured 120 ng/g lIw. The concentrations of toxic polychlorinated dibenzo-p-dioxin (PCDD) and dibenzofuran (PCDF) congeners ranged between <17 and 370 pg/g Iw in Lake Vanaja mussels and between <38 and 11,000 pg/g lw in the River Kymijoki mussels. Polychlorinated diphenyl ethers (PCDE) were detected in the mussels incubated in the River Kymijoki (0.4–1.1 ng/g Iw), but not in those incubated in Lake Vanaja. Polychlorinated phenoxyanisoles (PCPA) were measured 33 ng/g lw and polychlorinated phenoxyphenols (PCPP) 300 ng/g lw in the mussels incubated in the River Kymijoki. PCPAs were also detected in reference samples, which were sediment and pike from the River Kymijoki and Baltic salmon, seal and white-tailed sea eagle.  相似文献   

12.
Book review     
The Pesticide Manual ‐ A World Compendium, 8th Edition, C.R. Worthing, Editor and S.B. Walker, Assistant Editor, British Crop Protection Council, BCPC Publications Sales, Bear Farm, Binfield, Bracknell, Berkshire RG12 5QE, England. 1987, 1100 pp., UK £50; Overseas £56. ISBN 0–948404–01–9.  相似文献   

13.
Abstract

The pH‐disappearance rate profiles were determined at ca. 25°C for 24 insecticides at 4 or 5 pH values over the range 4.5 to 8.0 in sterile phosphate buffers prepared in water‐ethanol (99: 1 v/v). Half‐lives measured at pH 8 were generally smaller than at lower pH values. Changes in half lives between pH 8.0 and 4.5 were largest (>1000x) for the aryl carbamates, carbofuran and carbaryl, the oxime carbamate, oxamyl, and the organophosphorus insecticide, trichlorfon. In contrast, half lives of phorate, terbufos, heptachlor, fensulfothion and aldicarb were affected only slightly by pH changes. Under the experimental conditions described half lives at pH8 varied from 1–2 days for trichlorfon and oxamyl to >1 year for fensulfothion and cyper‐methrin. Insecticide persistence on alumina (acid, neutral and basic), mineral soils amended with aluminum sulfate or calcium hydroxide to different pH values and four natural soils of different pH was examined. No correlation was observed between the measured pH of these solids and the rate of disappearance of selected insecticides applied to them. These observations demonstrate the difficulty of extrapolating the pH dependent disappearance behaviour observed in homogeneous solution to partially solid heterogeneous systems such as soil.  相似文献   

14.
Organochlorine compounds in a three-step terrestrial food chain   总被引:1,自引:0,他引:1  
The concentrations of 15 organochlorine chemicals (PCBs and pesticides) were studied in a Central European oak wood food chain system: Great tit (Parus major), caterpillars (Tortrix viridana, Operophtera brumata, Erannis defoliaria), and oak-leaves (Quercus robur). Juvenile tits receive organochlorines from the mother via egg transfer and, eventually to a greater extent, from the caterpillar food source during nestling period. The concentrations of PCB 153 (2,2′,4,4′,5,5′-hexachlorobiphenyl, the most abundant in this study) was found in leaf material at ca. 1 ng/g, in caterpillars 10 ng/g, and in bird eggs 170 ng/g on an average and on a dry mass basis.  相似文献   

15.
Abstract

The active ingredients in commercial formulations of malathion, oxamyl, carbaryl, diazinon, and chlorpyrifos diluted to “spray tank”; concentrations with buffered distilled or natural water of pH 4–9 were stable for at least 24 hr. Formulations of trichlorfon were not stable at pH 7 or above but disappearance rates were slower than for the pure chemical in homogeneous solution. Cupric ion was observed to be an effective catalyst for the hydrolysis of a variety of pure organophosphorus insecticides but did not catalyze hydrolysis of the active ingredients of the formulations examined. Increasing the dilution of the formulation increased the susceptibility of malathion, oxamyl, and carbaryl to hydrolysis.  相似文献   

16.
The ability of two biodegradable surfactants, polyoxyethylene (20) sorbitan monooleate (Tween 80) and sodium dihexyl sulfosuccinate (Aerosol MA), to recover a representative dense non-aqueous-phase liquid (DNAPL), trichloroethene (TCE), from heterogeneous porous media was evaluated through a combination of batch and aquifer cell experiments. An aqueous solution containing 3.3% Aerosol MA, 8% 2-propanol and 6 g/l CaCl(2) yielded a weight solubilization ratio (WSR) of 1.21 g TCE/g surfactant, with a corresponding liquid-liquid interfacial tension (IFT) of 0.19 dyn/cm. Flushing of aquifer cells containing a TCE-DNAPL source zone with approximately two pore volumes of the AMA formulation resulted in substantial (>30%) mobilization of TCE-DNAPL. However, a TCE mass recovery of 81% was achieved when the aqueous-phase flow rate was sufficient to displace the mobile TCE-DNAPL toward the effluent well. Aqueous solutions of Tween 80 exhibited a greater capacity to solubilize TCE (WSR=1.74 g TCE/g surfactant) and exerted markedly less reduction in IFT (10.4 dyn/cm). These data contradict an accepted empirical correlation used to estimate IFT values from solubilization capacity, and indicate a unique capacity of T80 to form concentrated TCE emulsions. Flushing of aquifer cells with less than 2.5 pore volumes of a 4% T80 solution achieved TCE mass recoveries ranging from 66 to 85%, with only slight TCE-DNAPL mobilization (<5%) occurring when the total trapping number exceeded 2 x 10(-5). These findings demonstrate the ability of Tween 80 and Aerosol MA solutions to efficiently recover TCE from a heterogeneous DNAPL source zone, and the utility of the total trapping number as a design parameter for a priori prediction of DNAPL mobilization and bank angle formation when flushing with low-IFT solutions. Given their potential to stimulate microbial reductive dechlorination at low concentrations, these surfactants are well-suited for remedial action plans that couple aggressive mass removal followed by enhanced bioremediation to treat chlorinated solvent source zones.  相似文献   

17.
Abstract

One of the dominant tree species growing within and around the eastern portion of Los Alamos National Laboratory (LANL), Los Alamos, NM, lands is the pinon pine (Pinus edulis). Pinon pine is used for firewood, fence posts, and building materials and is a source of nuts for food—the seeds are consumed by a wide variety of animals and are also gathered by people in the area and eaten raw or roasted. This study investigated the (1) concentration of 3H, 137Cs, 90Sr, totU, 238Pu, 239, 240Pu, and241 Am in soils (0‐ to 12‐in. [31 cm] depth underneath the tree), pinon pine shoots (PPS), and pinon pine nuts (PPN) collected from LANL lands and regional background (BG) locations, (2) committed effective dose equivalent (CEDE) from the ingestion of nuts, and (3) soil to PPS to PPN concentration ratios (CRs). Most radionuclides, with the exception of 3H in soils, were not significantly higher (p < 0.10) in soils, PPS, and PPN collected from LANL as compared to BG locations, and concentrations of most radionuclides in PPN from LANL have decreased over time. The maximum net CEDE (the CEDE plus two sigma minus BG) at the most conservative ingestion rate (10 lb [4.5 kg]) was 0.0018 mrem (0.018 μSv); this is far below the International Commission on Radiological Protection (all pathway) permissible dose limit of 100 mrem (1000 μSv). Soil‐to‐nut CRs for most radionuclides were within the range of default values in the literature for common fruits and vegetables.  相似文献   

18.
Degradation and sorption/desorption are important processes affecting the leaching of pesticides through soil. This research characterized the degradation and sorption of imidacloprid (1-[(6-chloro-3-pyridinyl)-methyl]-N-nitro-2-imidazolidinimine) in Drummer (silty clay loam) and Exeter (sandy loam) surface soils and their corresponding subsurface soils using sequential extraction methods over 400 days. By the end of the incubation, approximately 55% of imidacloprid applied at a rate of 1.0 mg kg?1 degraded in the Exeter sandy loam surface and subsurface soils, compared to 40% of applied imidacloprid within 300 days in Drummer surface and subsurface soils. At the 0.1 mg kg?1 application rate, dissipation was slower for all four soils. Water-extractable imidacloprid in Exeter surface soil decreased from 98% of applied at day 1 to > 70% of the imidacloprid remaining after 400 d, as compared to 55% in the Drummer surface soil at day 1 and 12% at day 400. These data suggest that imidacloprid was bioavailable to degrading soil microorganisms and sorption/desorption was not the limiting factor for biodegradation. In subsurface soils > 40% of 14C-benzoic acid was mineralized over 21 days, demonstrating an active microbial community. In contrast, cumulative 14CO2 was less than 1.5% of applied 14C-imidacloprid in all soils over 400 d. Qualitative differences in the microbial communities appear to limit the degradation of imidacloprid in the subsurface soils.  相似文献   

19.
Abstract

Five organophosphorous insecticides: Leptophos, EPN, Cyano‐fenphos, trichloronate and salithion proved to cause irreversible ataxia not only to chicken but also to mice and sheep. TOCP was included as a reference. Cyanofenphos blocked the catecholamine B‐receptor binding activity with 3H‐norepinephrine at a level similar to that of the specific inhibitor propranolol in the mouse heart preparation. In the lamb heart preparation, the B‐receptor was more sensitive to Leptophos, salithion and TOCP than to propranolol. The six compounds and their oxons were screened for their in‐vitro inhibition to monamine oxidase (MAO), acetyl cholinesterase (AChE) and neurotoxic esterase (NTE) in the brain of either mouse, lamb or chicken. It is believed that their AChE inhibition stands for their acute toxicity, while NTE inhibition is responsible for their paralytic ataxia.  相似文献   

20.
Background, Aims and Scope The global problem concerning contamination of the environment as a consequence of human activities is increasing. Most of the environmental contaminants are chemical by-products and heavy metals such as lead (Pb). Lead released into the environment makes its way into the air, soil and water. Lead contributes to a variety of health effects such as decline in mental, cognitive and physical health of the individual. An alternative way of reducing Pb concentration from the soil is through phytoremediation. Phytoremediation is an alternative method that uses plants to clean up a contaminated area. The objectives of this study were: (1) to determine the survival rate and vegetative characteristics of three grass species such as vetivergrass, cogongrass and carabaograss grown in soils with different Pb levels; and (2) to determine and compare the ability of the three grass species as potential phytoremediators in terms of Pb accumulation by plants. Methods The three test plants: vetivergrass (Vetiveria zizanioides L.); cogongrass (Imperata cylindrica L.); and carabaograss (Paspalum conjugatum L.) were grown in individual plastic bags containing soils with 75 mg kg−1 (37.5 kg ha−1) and 150 mg kg−1 (75 kg ha−1) of Pb, respectively. The Pb contents of the test plants and the soil were analyzed before and after experimental treatments using an atomic absorption spectrophotometer. This study was laid out following a 3 × 2 factorial experiment in a completely randomized design. Results On the vegetative characteristics of the test plants, vetivergrass registered the highest whole plant dry matter weight (33.85–39.39 Mg ha−1). Carabaograss had the lowest herbage mass production of 4.12 Mg ha−1 and 5.72 Mg ha−1 from soils added with 75 and 150 mg Pb kg−1, respectively. Vetivergrass also had the highest percent plant survival which meant it best tolerated the Pb contamination in soils. Vetivergrass registered the highest rate of Pb absorption (10.16 ± 2.81 mg kg−1). This was followed by cogongrass (2.34 ± 0.52 mg kg−1) and carabaograss with a mean Pb level of 0.49 ± 0.56 mg kg−1. Levels of Pb among the three grasses (shoots + roots) did not vary significantly with the amount of Pb added (75 and 150 mg kg−1) to the soil. Discussion Vetivergrass yielded the highest biomass; it also has the greatest amount of Pb absorbed (roots + shoots). This can be attributed to the highly extensive root system of vetivergrass with the presence of an enormous amount of root hairs. Extensive root system denotes more contact to nutrients in soils, therefore more likelihood of nutrient absorption and Pb uptake. The efficiency of plants as phytoremediators could be correlated with the plants’ total biomass. This implies that the higher the biomass, the greater the Pb uptake. Plants characteristically exhibit remarkable capacity to absorb what they need and exclude what they do not need. Some plants utilize exclusion mechanisms, where there is a reduced uptake by the roots or a restricted transport of the metals from root to shoots. Combination of high metal accumulation and high biomass production results in the most metal removal from the soil. Conclusions The present study indicated that vetivergrass possessed many beneficial characteristics to uptake Pb from contaminated soil. It was the most tolerant and could grow in soil contaminated with high Pb concentration. Cogongrass and carabaograss are also potential phytoremediators since they can absorb small amount of Pb in soils, although cogongrass is more tolerant to Pb-contaminated soil compared with carabaograss. The important implication of our findings is that vetivergrass can be used for phytoextraction on sites contaminated with high levels of heavy metals; particularly Pb. Recommendations and Perspectives High levels of Pb in localized areas are still a concern especially in urban areas with high levels of traffic, near Pb smelters, battery plants, or industrial facilities that burn fuel ending up in water and soils. The grasses used in the study, and particularly vetivergrass, can be used to phytoremediate urban soil with various contaminations by planting these grasses in lawns and public parks. ESS-Submission Editor: Dr. Willie Peijnenburg (wjgm.peijnenburg@rivm.nl)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号