首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 105 毫秒
1.
Gas explosion in connected vessels usually leads to high pressure and high rate of pressure increase which the vessels and pipes can not tolerate. Severe human casualties and property losses may occur due to the variation characteristics of gas explosion pressure in connected vessels. To determine gas explosion strength, an experimental testing system for methane and air mixture explosion in a single vessel, in a single vessel connected a pipe and in connected vessels has been set up. The experiment apparatus consisted of two spherical vessels of 350 mm and 600 mm in diameter, three connecting pipes of 89 mm in diameter and 6 m in length. First, the results of gas explosion pressure in a single vessel and connected vessels were compared and analyzed. And then the development of gas explosion, its changing characteristics and relevant influencing factors were analyzed. When gas explosion occurs in a single vessel, the maximum explosion pressure and pressure growth rate with ignition at the center of a spherical vessel are higher than those with ignition on the inner-wall of the vessel. In conclusion, besides ignition source on the inner wall, the ignition source at the center of the vessels must be avoided to reduce the damage level. When the gas mixture is ignited in the large vessel, the maximum explosion pressure and explosion pressure rising rate in the small vessel raise. And the maximum explosion pressure and pressure rising rate in connected vessels are higher than those in the single containment vessel. So whenever possible, some isolation techniques, such as fast-acting valves, rotary valves, etc., might be applied to reduce explosion strength in the integrated system. However, when the gas mixture is ignited in the small vessel, the maximum explosion pressures in the large vessel and in the small vessel both decrease. Moreover, the explosion pressure is lower than that in the single vessel. When gas explosion happens in a single vessel connected to a pipe, the maximum explosion pressure occurs at the end of the pipe if the gas mixture is ignited in the spherical vessel. Therefore, installing a pipe into the system can reduce the maximum explosion pressure, but it also causes the explosion pressure growth rate to increase.  相似文献   

2.
建立球形容器与管道、2个球形容器与管道组成的2种形式的连通容器试验装置,研究初始压力对连通容器甲烷-空气混合物泄爆压力的影响。结果表明:连通容器内泄爆超压随初始压力增加而增大,并与初始压力近似成线性关系;对于2个球形容器与管道组成的连通容器,起爆容器的泄爆超压始终小于传爆容器;泄爆方式和点火方式对连通容器泄爆超压有较大影响,大容器点火时,2个容器的泄爆压力差随初始压力增加而增大,但小容器点火时,2个容器的泄爆压力差随初始压力的增加变化较小;初始压力对不同结构和尺寸的连通容器的泄爆压力的影响不同,当令初始压力对大容器点火时,小容器内泄爆压力受影响最大,而当对单球形容器与管道组成的连通容器的小容器点火时,小容器内泄爆压力受影响最小。  相似文献   

3.
为提高多障碍物房间的人员疏散效率,利用场域元胞自动机模型并融合经典遗传算法,对2出口和4出口的多障碍物房间进行布局优化和疏散仿真研究。研究结果表明:利用遗传算法可快速寻找最优座椅布局,连排座椅设置在远离出口侧可有效减轻行人疏散时的拥堵程度;经过遗传算法优化后的座椅布局可协调疏散人群到达出口的时间,从而缓解出口通行压力,提高整体疏散效率,保障行人在大型多障碍物房间内的疏散安全。  相似文献   

4.
建筑火灾区域模拟竖孔流动的计算   总被引:2,自引:0,他引:2  
本文根据建筑火灾双层区域模拟思想,给出其常微分控制方程组,并分析了其压力求解方法,然后,运用伯努力利方程推导了相邻房间通过矩形竖孔(门或窗)的质量流率计算公式,还讨论了竖孔流动中性面产生条件。在此基础上,结合一两房间、两孔建筑中烟气运动实例,运用C.W.Gear刚性稳定算法对火灾发展及烟气流动过程进行了数值模拟;给出各竖孔中性面位置、数量和各主环境之间通过竖孔的质量流率;还给出各房间气体平均温升、  相似文献   

5.
As part of the EC funded Naturalhy project, two large scale experiments were conducted to study the hazard presented by the rupture of high pressure transmission pipelines conveying natural gas or a natural gas/hydrogen mixture containing approximately 22% hydrogen by volume. The experiments involved complete rupture of a 150 mm diameter pipeline pressurised to nominally 70 bar. The released gas was ignited and formed a fireball which rose upwards and then burned out. It was followed by a jet fire which continued to increase in length, reaching a maximum of about 100 m before steadily declining as the pipeline depressurised. During the experiments, the flame length and the incident radiation field produced around the fire were measured. Measurements of the overpressure due to pipeline rupture and gas ignition were also recorded. The results showed that the addition of the hydrogen to the natural gas made little difference to radiative characteristics of the fires. However, the fraction of heat radiated by these pipeline fires was significantly higher than that observed for above ground high pressure jet fires (also conducted as part of the Naturalhy project) which achieved flame lengths up to 50 m. Due to the lower density, the natural gas/hydrogen mixture depressurised more quickly and also had a slightly reduced power. Hence, the pipeline conveying the natural gas/hydrogen mixture resulted in a slightly lower hazard in terms of thermal dose compared to the natural gas pipeline, when operating at the same pressure.  相似文献   

6.
A novel mitigation system against hydrogen-air deflagrations in nuclear power plant buildings is proposed and developed through a series of field experiments using explosion vessels of different volume sizes. The mitigation system is installed on the outer surface of the vessels, and it comprises flame arrester and explosion air bag. The flame arrester is made by stacking 10–20 sheets of fine-mesh wire screens, and the air bag is connected for holding explosion gas. The successful mitigation mechanism is the sequence of pressure-rise reduction by the air bag expansion, flame quenching by the flame arrester, and the slow burning of the gas mixture sucked from the air bag back into the vessel due to the negative pressure caused by the rapid condensation of water vapor inside the vessel. Necessary conditions for the successful mitigation system are discussed, and the practical unit size of flame arrester sheet is recommended.  相似文献   

7.
A typical building consists of a number of rooms; often with windows of different size and failure pressure and obstructions in the form of furniture and décor, separated by partition walls with interconnecting doorways. Consequently, the maximum pressure developed in a gas explosion would be dependent upon the individual characteristics of the building. In this research, a large-scale experimental programme has been undertaken at the DNV GL Spadeadam Test Site to determine the effects of vent size and congestion on vented gas explosions. Thirty-eight stoichiometric natural gas/air explosions were carried out in a 182 m3 explosion chamber of L/D = 2 and KA = 1, 2, 4 and 9. Congestion was varied by placing a number of 180 mm diameter polyethylene pipes within the explosion chamber, providing a volume congestion between 0 and 5% and cross-sectional area blockages ranging between 0 and 40%. The series of tests produced peak explosion overpressures of between 70 mbar and 3.7 bar with corresponding maximum flame speeds in the range 35–395 m/s at a distance of 7 m from the ignition point. The experiments demonstrated that it is possible to generate overpressures greater than 200 mbar with volume blockages of as little as 0.57%, if there is not sufficient outflow through the inadvertent venting process. The size and failure pressure of potential vent openings, and the degree of congestion within a building, are key factors in whether or not a building will sustain structural damage following a gas explosion. Given that the average volume blockage in a room in a UK inhabited building is in the order of 17%, it is clear that without the use of large windows of low failure pressure, buildings will continue to be susceptible to significant structural damage during an accidental gas explosion.  相似文献   

8.
为避免因火区封闭导致重大安全事故发生,通过采集某矿井1 d内3个不同监测点的大气压力变化情况,建立大气压力波动模型并分析计算,同时建立火区内外压差100,750 Pa情形下的氧浓度模型进而获得火区内侧氧气浓度因呼吸效应,在不同压差、体积大小火区、风阻、瓦斯涌出量、封闭时刻等多因素耦合影响下随时间的变化规律,以评估火区危险性。研究结果表明:井下大气随地面大气周期波动,封闭火区内、外侧之间的气压差因外界大气波动呈现16 h的余弦波动和8 h的线性波动周期变化;密闭质量好的火区具有更好地抗干扰性,内侧氧浓度的降低主要依靠瓦斯稀释;密闭质量差的火区,内侧氧浓度易受到火区涌出瓦斯、外界涌入大气双重影响;火区氧浓度在2%~12%之间波动,以至火区存在发生瓦斯爆炸的可能性;火区内外压差较大时,氧浓度波动变化幅度更大,危险作用持续时间更长。结合火区氧浓度波动模型,可有效地对矿井火区采取安全的防范措施,避免瓦斯爆炸事故发生。  相似文献   

9.
A study on the obstacle-induced variation of the gas explosion characteristics   总被引:13,自引:0,他引:13  
A study on the variation of the gas explosion characteristics caused by the built-in obstacles was conducted in enclosed/vented gas explosion vessels. It has been well known that the obstacles in pipes and long ducts would accelerate the flame propagation, and cause the transition from deflagration to detonation. In this study, the explosion characteristics and the flame behavior of vented explosions and constant-volume explosions were investigated. Experiments were carried out in a 270-liter and 36-liter hexahedron vessels filled with LPG–air mixture. The explosion characteristics of the gas mixture were determined by using a strain-responding pressure transducer. The flame behavior was recorded by using a high-speed video camera. The shape and the size of the obstacle, and the gas concentration, were adjusted in the experiments.

It can be seen from the experimental results that, instead of being accelerated, the flame propagation inside the explosion vessel is decelerated by the plate obstacles fixed at the bottom of the vessel. Also, the characteristics of the enclosed explosion are not so affected by the built-in obstacles as those of the vented explosion are. It is believed that the eddy-induced turbulence behind the obstacle decelerates the flame propagation.  相似文献   


10.
路长  李毅  潘荣锟 《火灾科学》2015,24(2):68-74
为研究管道截面对氢气/空气预混火焰形状与传播速度的影响,选用三个长度都为1m而截面尺寸不同的方形管道进行实验。实验结果表明,在截面为80mm×80mm的管道中,四种氢气浓度下预混火焰都发展形成了郁金香火焰。火焰传播速度呈现上升,下降,再上升的波动。在截面为100mm×100mm和150mm×150mm的管道中,只有在氢气浓度20%下形成郁金香火焰,并且传播速度也出现上述的波动。而在氢气浓度25%,30%,40%下,预混火焰都呈指尖形传至管口,未出现郁金香火焰,传播速度都是不断上升。三个管道对比中,截面为100mm×100mm的管道内火焰平均传播速度最快,且压力波第一峰值最大。  相似文献   

11.
模拟了泄漏场内典型房间的重气扩散过程。对比了不同泄漏孔位置及泄漏孔迎背风条件下房间内重气的扩散情况。数值模拟结果表明,当单一泄漏孔存在且泄漏孔迎风时,泄漏孔在高度方向上的尺寸对有毒有害重气在室内的扩散过程影响最为明显;当单一泄漏孔存在且泄漏孔背风时,房间内重气扩散缓慢,房间内相对安全;当前后墙都存在泄漏孔时,重气的扩散是最为迅速的,对于室内人员来说,这种情况也是最为危险的。  相似文献   

12.
A methodology to determine the laminar burning velocity from closed vessel gas explosions is explored. Unlike other methods which have been used to measure burning velocities from closed vessel explosions, this approach belongs to the category which does not involve observation of a rapidly moving flame front. Only the pressure–time curve is required as experimental input. To verify the methodology, initially quiescent methane–air mixtures were ignited in a 20-l explosion sphere and the equivalence ratio was varied from 0.67 to 1.36. The behavior of the pressure in the vessel was measured as a function of time and two integral balance models, namely, the thin-flame and the three-zone model, were fitted to determine the laminar burning velocity. Data on the laminar burning velocity as a function of equivalence ratio, pressure and temperature, measured by a variety of other methods have been collected from the literature to enable a comparison. Empirical correlations for the effect of pressure and temperature on the laminar burning velocity have been reviewed and two were selected to be used in conjunction with the thin-flame model. For the three-zone model, a set of coupled correlations has been derived to describe the effect of pressure and temperature on the laminar burning velocity and the laminar flame thickness. Our laminar burning velocities are seen to fall within the band of data from the period 1953–2003. A comparison with recent data from the period 1994–2003 shows that our results are 5–10% higher than the laminar burning velocities which are currently believed to be the correct ones for methane–air mixtures. Based on this observation it is concluded that the methodology described in this work should only be used under circumstances where more accurate methods can not be applied.  相似文献   

13.
Organic hydride hydrogen refueling stations have been remarked as stations that can employ a practicable method based on the organic chemical hydride system involving methylcyclohexane (MCH) for the transport of hydrogen. This station has advantages in that the storage and transportation of MCH does not require a large amount of energy compared to compressed and liquefied hydrogen, and the system can use existing infrastructure. This type of station involves some hazardous materials, and thus, scenario identifications and risk assessments have been performed by researchers. However, the sample of studies available have employed a conceptual design model, and they did not identify concrete scenarios triggered by internal factors. Therefore, the purpose of this study is to identify accidental scenarios caused by internal factors that can affect an organic hydride hydrogen refueling station. In this study, we used Hazard and Operability study (HAZOP) and examined safety measures for the scenarios. As a result of the HAZOP, 105 accidental scenarios were identified and classified into the two following groups; (i) the scenarios assumed that the substances were ignited after they were released to the atmosphere, and (ii) the scenarios assumed that the substances were ignited in the process before they were released. Significant scenarios in group (i) were MCH or toluene pool fires, hydrogen jet fires, vapor gas explosions, or flash fires. The significant scenarios classified in (ii) were newly identified in this study. The scenarios include the explosion of the explosive mixture formed by the gaseous phase of toluene and oxygen from the vent line connected to the tank due to the static electric charge in the tank. For each scenario, safety measures to prevent the progression of the accident scenario were examined with reference to the current laws and regulations in Japan.  相似文献   

14.
在可燃气体的输送、贮存、加工和使用过程中,容易发生可燃气体的燃烧和爆炸事故。文中基于有限体积方法,采用五阶WENO格式进行左右状态量的重构后,利用ROE格式进行空间离散,自行开发程序对甲烷氧气的气相爆轰波传播过程进行了数值研究。计算结果表明:在CH4质量分数为10%的混合气体中,高温高压气团可诱导气相发生爆轰,爆轰波以2133.3 m/s的速度传播。在带有障碍物的约束空间内,文中分析了障碍物不同高度、不同间距条件下爆轰波传播时波的绕射、马赫反射等现象,给出障碍物表面压力随时间变化历程和冲量值,揭示波与障碍物的相互作用机理以及由此引发流场的变化规律,为有效地控制可燃气体的燃烧速率、防治爆炸灾害的发生提供理论依据。  相似文献   

15.
Accidental gas explosions in industrial equipment are seldom initiated at atmospheric conditions. Furthermore, fuel–air mixtures are generally turbulent due to rotating parts or flows. Despite these considerations, few studies have been devoted to the analysis of explosion properties at conditions of temperature and pressure different from ambient and in the presence of turbulence; therefore, experiments are still needed, even at lab-scale, e.g. for the design of mitigation system as venting devices.In this work, experimental explosion tests have been performed in 5 l, cylindrical tank reactor with stoichiometric methane–air mixtures at initial pressure and temperature up to 600 kPa and 400 K, centrally ignited or top ignited, and with the effect of initial turbulence level by varying the velocity of the mechanical stirrer.  相似文献   

16.
17.
This study investigates the effect of the ignition position on vented hydrogen-air deflagration in a 1 m3 vessel and evaluates the performance of the commercial computational fluid dynamics (CFD) code FLACS in simulating the vented explosion of hydrogen-air mixtures. First, the differences in the measured pressure-time histories for various ignition locations are presented, and the mechanisms responsible for the generation of different pressure peaks are explained, along with the flame behavior. Secondly, the CFD software FLACS is assessed against the experimental data. The characteristic phenomena of vented explosion are observed for hydrogen-air mixtures ignited at different ignition positions, such as Helmholtz oscillation for front ignition, the interaction between external explosion and combustion inside the vessel for central ignition, and the wall effect for back-wall ignition. Flame-acoustic interaction are observed in all cases, particularly in those of front ignition and very lean hydrogen-air mixtures. The predicted flame behavior agree well with the experimental data in general while the simulated maximum overpressures are larger than the experimental values by a factor of 1.5–2, which is conservative then would lead to a safe design of explosion panels for instance. Not only the flame development during the deflagration was well-simulated for the different ignition locations, but also the correspondence between the pressure transients and flame behavior was also accurately calculated. The comparison of the predicted results with the experimental data shows the performance of FLACS to model vented mixtures of hydrogen with air ignited in a lab scale vessel. However, the experimental scale is often smaller than that used in practical scenarios, such as hydrogen refueling installations. Thus, future large-scale experiments are necessary to assess the performance of FLACS in practical use.  相似文献   

18.
Evaluation of gas release rate through holes in pipelines   总被引:10,自引:0,他引:10  
A mathematical model of an accidental gas release in a long transmission pipeline is presented in terms of computational fluid mechanics. It was found that the hole model is suitable for the release of gas through a small hole, while the pipe model is suitable for the gas release through a hole corresponding to the complete breaking of the pipe. In this paper, a new model was proposed for a hole that lies between both these situations. The results of the example show that when the initial inside pressure is higher than 1.5 MPA, the mass of gas released during the sonic flow is more than 90% of the total mass of gas released. The average release rate of the total release process could be substituted by the average release rate of the sonic flow, or by 30% of the initial release rate. This approximation would become more accurate with the increase in the initial inside pressure.  相似文献   

19.
An investigation into the effects of vent ducts on reduced explosion pressures is described. Experiments were made using an 18.5m3 explosion vessel and a modified 20 1 sphere, with dusts having Kst values ranging from 144 bar ms−1 to 630 bar ms−1. The vent area/vessel volume ratio bursting pressure of the vent cover, and the length to diameter ratio of the vent duct have been varied. Straight vent ducts, and ducts containing sharp 45° and 90° bends have been used.A simple model to describe the effect of vent ducts on the reduced explosion pressure has been derived and compared with the experimental results. Agreement is shown to be satisfactory in nearly all cases. A comparison between the experimental results and guidance on the effect of vent ducts already available in the literature is discussed.  相似文献   

20.
On June 29th, 2009 the derailment of a freight train carrying 14 LPG (Liquefied Petroleum Gas) tank-cars near Viareggio, in Italy, caused a massive LPG release. A gas cloud formed and ignited triggering a flash-fire that resulted in 31 fatalities and in extended damages to residential buildings around the railway line. The vulnerability of the area impacted by the flash-fire emerged as the main factor in determining the severity of the final consequences. Important lessons learnt from the accident concern the need of specific regulations and the possible implementation of safety devices for tank-cars carrying LPG and other liquefied gases under pressure. Integrated tools for consequence assessment of heavy gas releases in urban areas may contribute to robust decision making for mitigation and emergency planning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号