首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our objective was to evaluate distribution and accumulation of trace elements (TEs) in surface sediments along the Hooghly (Ganges) River Estuary, India, and to assess the potential risk with view to human health. The TE concentrations (mg kg?1 dry weight) exhibited a wide range in the following order: Al (31.801 ± 15.943) > Fe (23.337 ± 7584) > Mn (461 ± 147) > S (381 ± 235) > Zn (54 ± 18) > V (43 ± 14) > Cr (39 ± 15) > As (34 ± 15) > Cu (27 ± 11) > Ni (24 ± 9) > Se (17 ± 8) > Co (11 ± 3) > Mo (10 ± 2) > Hg (0.02 ± 0.01). Clay, silt, iron, manganese and sulphur were important for the accumulation of TE in the sediments as confirmed by factor analysis and Pearson correlation. The accumulation and dispersal of TEs were most likely to be governed by both tide-induced processes and anthropogenic inputs from point and non-point sources. Enrichment factor analysis and geoaccumulation index revealed serious contamination of the sediments with Se and As, while comparing the consensus-based sediment quality guidelines (SQGs), adverse biological effects to benthic fauna might be caused by As, Cu, Ni and Cr. This investigation may serve as a model study and recommends continuous monitoring of As, Se, Cu, Ni and Cr to ascertain that SQGs with respect to acceptable levels of TEs to safeguard geochemical health and ecology in the vicinity of this estuary.  相似文献   

2.
European floodplain soils are frequently contaminated with potentially toxic inorganic substances. We used a multi-surface model to estimate the aqueous concentrations of Cd, Cu, Ni, Pb and Zn in three Mollic Fluvisols from the Central Elbe River (Germany). The model considered complexation in solution and interactions with soil organic matter (SOM), a clay mineral and hydrous Al, Fe and Mn oxides. The amounts of reactive metals were derived from extraction with 0.43 M HNO3. Modelling was carried out as a function of pH (soil pH ± 1.4) because it varies in floodplain soils owing to redox processes that consume or release protons. The fraction of reactive metals, which were dissolved according to the modelling, was predominantly <1%. Depending on soil properties, especially pH and contents of SOM and minerals of the clay fraction, the modelled concentrations partially exceeded the trigger values for the soil–groundwater pathway of the German soil legislation. This differentiation by soil properties was given for Ni, Pb and Zn. On the other hand, Cd was more mobile, i.e., the trigger values were mostly exceeded. Copper represented the opposite, as the modelling did not predict exceeding the trigger values in any horizon. Except for Pb and partially Zn (where oxides were more important), SOM was the most important adsorbent for metals. However, given the special composition and dynamics of SOM in mollic horizons, we suggest further quantitative and qualitative investigations on SOM and on its interaction with metals to improve the prediction of contaminant dynamics.  相似文献   

3.
Elevated concentrations of potentially toxic elements (PTEs) are usually found in areas of intense industrial activity. Thriasio Plain is a plain near Athens, Greece, where most of the heavy industry of the country has been situated for decades, but it also is a residential and horticultural area. We aimed at measuring the levels of PTEs in soils and indigenous plant species and assessing the health risk associated with direct soil ingestion. Samples of soils at roadsides and growing plants were collected from 31 sites of that area. Concentrations of Al, As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, V and Zn were measured in both soils (as pseudo-total) and aerial plant tissues. We found that As, Cd, Cr, Cu, Ni, Pb and Zn were higher than maximum regulatory limits. Element concentrations in plants were rather lower than expected, probably because indigenous plants have developed excluder behaviour over time. Copper and Zn soil-to-plant coefficients were highest among the other elements; for Cu this was unexpected, and probably associated with recent Cu-releasing industrial activity. Risk assessment analysis indicated that As was the element contributing more than 50 % of the health risk related to direct soil ingestion, followed by Cr, Pb, and, surprisingly, Mn. We concluded that in a multi-element contamination situation, elevated risk of PTEs (such as As, Cr and Pb) may reduce the tolerance limits of exposure to less-toxic elements (here, Mn).  相似文献   

4.
In order to investigate the ecological and human health risks of metal(loid)s (Cu, Pb, Zn, Ni, Cd, Mn, Cr, and As) in peri-urban soils, 43 surface soil samples were collected from the peri-urban area around Nanjing, a megacity in China. The average contents were 1.19, 67.8, 37.6, 105, 167, 44.6, 722, and 50.8 mg kg?1 for Cd, Cr, Ni, Pb, Zn, Cu, Mn, and As, respectively. A significant positive correlation was found between Cu, Pb, Zn, Cd, Mn, and As (p < 0.01), and Cr had a significant positive correlation with Ni (p < 0.01). Geoaccumulation indices indicate the presence of Cd and As contamination in all of the peri-urban soil samples. Potential ecological risk indices show that the metal(loid)s in the soil could result in higher ecological risks. Cd is the main contributor to the risk, followed by As. The levels of Cu, Pb, Zn, Cd, Mn, and As in stomach and intestinal phases show a positive linear correlation with their total contents. Mn, Zn, Ni, Cd, and Pb in stomach phase showed higher bioaccessibility, while in intestinal phase, Cu, Cr, and As had the higher bioaccessibility. The carcinogenic risk in children and adults posed by As, Pb, and Cr via ingestion was deemed acceptable. The non-carcinogenic risks posed by these metal(loid)s via ingestion to children are higher than to adults and mainly result from As.  相似文献   

5.
This study investigated two digestion methods (USEPA 3051: microwave, HNO3 or Hossner: hot plate, HF–H2SO4–HClO4) for heavy metals analysis in contaminated soil surrounding Mahad AD'Dahab mine, Saudi Arabia. Moreover, contamination metal levels were estimated. The Hossner and USEPA 3051 methods showed, respectively, average total contents of 17.2 and 18.1 mg kg?1 for Cd, 11.6 and 10.6 mg kg?1 for Co, 45.7 and 34.7 mg kg?1 for Cr, 1030 and 1100 mg kg?1 for Cu, 33,300 and 27,400 mg kg?1 for Fe, 963 and 872 mg kg?1 for Mn, 33.2 and 22.8 mg kg?1 for Ni, 791 and 782 mg kg?1for Pb, and 6320 and 2870 mg kg?1 for Zn. A lack of significant differences and a high correlation coefficient (>90%) for Cd, Pb and Cu between the two digestion methods suggest that the total-recoverable method (USEPA 3051) may be equivalent to the total-total digestion method (Hossner) for determining these metals in the studied soil. However, significantly higher concentrations of Cr, Fe, Ni and Zn were found by the Hossner method comapred with the USEPA 3051 method. The soil samples have very or extremely high levels of Zn, Cu, Cd and Pb contamination, indicating very high potential ecological risk.  相似文献   

6.
Low birth weight (LBW) is associated with a number of maternal environmental exposures during pregnancy. This study explored the association between soil metal concentrations around the home where the mother lived during pregnancy and the outcome of LBW. We used a retrospective cohort of 9,920 mother–child pairs who were insured by Medicaid during pregnancy and lived in ten residential areas, where we conducted soil sampling. We used a grid that overlaid the residential areas and collected soil samples at the grid intersections. The soil was analyzed for the concentration of eight metals [arsenic (As), barium (Ba), chromium (Cr), copper (Cu), lead (Pb), manganese (Mn), nickel (Ni), and mercury (Hg)], and we then used Bayesian Kriging to estimate the concentration at the actual maternal addresses, since we had the GIS coordinates of the homes. We used generalized additive modeling, because the metal concentrations had nonlinear associations with LBW, to develop the best fitting multivariable model for estimating the risk of LBW. The final model showed significant associations for female infants, maternal smoking during pregnancy, non-white mothers, Cu, and As with LBW. The As variable was nonlinear in relation to LBW, and the association between higher concentrations of As with LBW was strong (p = 0.002). We identified a statistically significant association between soil concentrations of arsenic around the home of pregnant women and an increased risk of LBW for her infant.  相似文献   

7.
Heavy metals and soil microbes   总被引:1,自引:0,他引:1  
Heavy metal pollution is a global issue due to health risks associated with metal contamination. Although many metals are essential for life, they can be harmful to man, animal, plant and microorganisms at toxic levels. Occurrence of heavy metals in soil is mainly attributed to natural weathering of metal-rich parent material and anthropogenic activities such as industrial, mining, agricultural activities. Here we review the effect of soil microbes on the biosorption and bioavailability of heavy metals; the mechanisms of heavy metals sequestration by plant and microbes; and the effects of pollution on soil microbial diversity and activities. The major points are: anthropogenic activities constitute the major source of heavy metals in the environment. Soil chemistry is the major determinant of metal solubility, movement and availability in the soil. High levels of heavy metals in living tissues cause severe organ impairment, neurological disorders and eventual death. Elevated levels of heavy metals in soils decrease microbial population, diversity and activities. Nonetheless, certain soil microbes tolerate and use heavy metals in their systems; as such they are used for bioremediation of polluted soils. Soil microbes can be used for remediation of contaminated soils either directly or by making heavy metals bioavailable in the rhizosphere of plants. Such plants can accumulate 100 mg g?1 Cd and As; 1000 mg g?1 Co, Cu, Cr, Ni and 10,000 mg g?1 Pb, Mn and Ni; and translocate metals to harvestable parts. Microbial activity changes soil physical properties such as soil structure and biochemical properties such as pH, soil redox state, soil enzymes that influence the solubility and bioavailability of heavy metals. The concept of ecological dose (ED50) and lethal concentration (LC50) was developed in response to the need to easily quantify the influence of pollutants on microbial-mediated ecological processes in various ecosystems.  相似文献   

8.
The environmental impacts of Boroo gold mine project in Mongolia was evaluated by chemical characterization of trace element concentrations in water, soils and tailing dam sediment samples. The results showed that concentrations of B, Cd, Ni and Se in the water samples were within the accepted levels of the Mongolia water quality standard (MNS4586: 1998). However, the concentrations of Al, As, Cu, Mn, Fe, Pb, U and Zn were higher than the maximum allowable concentration especially in the monitoring and heap leach wells. The average concentrations of As, Cd, Cu, Ni, Pb and Zn in the tailing dam sediment were 4419, 58.5, 56.0, 4.8, 20.6 and 25.7 mg/kg, respectively. Generally, arsenic and heavy metals in the soil samples were within the acceptable concentrations of the soil standard of Mongolia (MNS 5850: 2008). The chemical characterization of As solid phase in tailing dam sediment showed that the majority of As were found in the residual fraction comprising about 74% of total As. Assessing the potential risk to humans, simple bioavailability extraction test was used to estimate bioavailability of arsenic and heavy metals, and the concentrations extracted from tailing dam sediment were; 288.2 mg/kg As, 7.2 mg/kg Cd, 41.1 mg/kg Cu, 13.5 mg/kg Pb, 4.7 mg/kg Ni and 23.5 mg/kg Zn, respectively. From these results, the Boroo gold mine project has presently not significantly impacted the environment, but there is a high probability that it may act as a source of future contamination.  相似文献   

9.
The Domingo Rubio tidal channel (Palos de la Frontera, Huelva, Spain) is an estuary located in the mouth of the Tinto River. The estuary is affected by different sources of pollution (waters of the Tinto River, contaminated with trace elements from the Iberian Pyrite belt, and effluent from the Huelva chemical industrial area). Soil and the most frequent plant species were collected in 2004 and 2006 at six different locations on the estuary. In general, N-Kjedahl, Total Organic Carbon values, salinity and contamination (total trace elements up to 1,000 mg kg−1 As, 6 mg kg−1 Cd, 2,500 mg kg−1 Cu, 1,900 mg kg−1 Pb and 1,300 mg kg−1 Zn) tended to increase downstream of the tidal channel. Soil biochemical properties were not negatively affected either by the high salinity or by trace element contamination. Despite the high values of the trace elements, analysed plant samples showed that Cu was the only metal that could be a serious risk for the food chain.  相似文献   

10.
张红  贾贵芳  王亚男  李群  马丹炜 《生态环境》2010,19(8):1872-1875
采用悬空气法和土培法,研究了加拿大蓬(Erigeron canadensis L.)挥发油对蚕豆(Vacia faba L.)根尖细胞经不同载体的细胞毒性。结果表明:加拿大蓬挥发油对蚕豆根尖细胞的有丝分裂没有显著的影响,但显著抑制了幼根的生长,使根尖细胞产生了多种类型的染色体畸变,导致微核率升高。综合分析表明,加拿大蓬挥发油经土壤载体的化感作用大于经空气载体的化感作用,推测可能是土壤对挥发油的滞留作用增大了化感效应。  相似文献   

11.
Acid rain is a serious environmental problem worldwide. In the present study, we investigated the effect of acid rain (1:1 equivalent basis H2SO4:HNO3) at pH values of 2.0, 4.0 and 7.0 on the fractionation of heavy metals (Cd, Cu, Fe, Mn, Ni, Pb and Zn) and major elements (K, Na, Ca, and Mg) in contaminated calcareous soils over a 2084 h period. Heavy metals and major elements in soil samples were fractionated before and after 2084 h kinetic release using a sequential extraction procedure. Before kinetic studies the predominant fractions of K, Na, Ca, Mg, Cd and Ni were mainly associated with carbonate fraction (CARB), whereas Fe, Mn and Zn were associated with the Fe–Mn oxide fraction (Fe–Mn oxide). The highest percentage of Pb and Cu were found in the exchangeable (EXC) and organic matter (OM) fractions, respectively. After kinetic study using different simulated acid rain solutions, the major fractions of heavy metals (expect of Cu) and Na was the same as before release. Upon the application of different acid rain solutions, K and Mg were found dominantly in Fe–Mn oxide fraction, whereas Ca was in the EXC fraction. The results provide valuable information regarding metal mobility and indicated that speciation of metals (Cu and Zn) and major elements in contaminated calcareous soils can be affected by acid rain.  相似文献   

12.
The performance of Vicia faba L. in soil amended by different concentrations of fly ash has been studied. The parameters considered are seed germination, growth behaviour and nodulation frequency of the plant. Results revealed that while fly-ash amendment to the soil improved the growth performance at initial stages with application of lower concentrations, it was inhibitory at higher exposure concentrations. Although there was no difference in survival rates, but the seedling growth was reduced in comparison to control plants. Fly ash delayed the nodulation as lesser number of nodules was recorded at higher amendments. Results suggested feasibility of growing V. faba in fly ash contaminated area.  相似文献   

13.
Er3+和稀土多元复合肥对蚕豆根尖细胞的微核效应   总被引:7,自引:0,他引:7  
稀土元素是镧系金属元素的总称,在地壳中含量稀少,约占15×10-6.我国对稀土元素的开发利用较早,特别是农业上稀土多元复合肥常与农药一起使用,这对生物和环境的影响为人们所关注,给环境研究带来了新课题.目前对稀土元素的研究主要集中在地球化学、农业化学和...  相似文献   

14.
农药氰戊菊酯和三氟氯氰菊酯对蚕豆根尖细胞的遗传损伤   总被引:2,自引:0,他引:2  
采用蚕豆根尖微核技术研究了农药氰戊菊酯、三氟氯氰菊酯对蚕豆根尖细胞的遗传损伤.测定了不同浓度氰戊菊酯、三氟氯氰菊酯(5×10-10~5×10-2g·L-1)诱导下的蚕豆根尖细胞微核率、有丝分裂指数和染色体畸变率.结果表明,氰戊菊酯、三氟氯氰菊酯均能诱发较高的微核率,在一定浓度范围内,微核率随两种农药处理浓度的升高而增加,但随着处理浓度的进一步升高微核率反而呈下降趋势;两种农药均可使蚕豆根尖细胞有丝分裂指数增大;并能诱导蚕豆根尖细胞产生较高频率、多种类型的染色体畸变.氰戊菊酯和三氟氯氰菊酯对蚕豆根尖细胞具有明显的遗传毒性.  相似文献   

15.
In the Panasqueira mine area of central Portugal, some environmental media show higher metal(loid) concentrations when compared with the local geochemical background and the values proposed in the literature for these environmental media. In order to evaluate the effect of the external contamination on selected indexes of internal dose, As, Cd, Cu, Cr, Fe, Hg, Mg, Mn, Mo, Ni, Pb, S, Se, Si, and Zn were quantified by inductively coupled plasma mass spectrometry and inductively coupled plasma optical emission spectrometry in blood, urine, hair and nail samples from individuals environmentally (N = 41) and occupationally exposed (N = 41). A matched control group (N = 40) was also studied, and data from the three groups were compared. Results obtained agreed with those reported by environmental studies performed in this area, pointing to populations living nearby and working in the mine being exposed to metal(loid)s originated from mining activities. Arsenic was the element with the highest increase in exposed populations. The concentration of other elements such as Cr, Mg, Mn, Mo, Ni, Pb, S, Se, and Zn was also increased, although at a lesser extent, specifically in the individuals environmentally exposed and in females. These findings confirm the need for competent authorities to act as soon as possible in this area and implement strategies aimed to protect exposed populations and the entire ecosystem.  相似文献   

16.
In the developing world, vegetables are commonly grown in suburban areas irrigated with untreated wastewater containing potentially harmful elements (PHEs). In Pakistan, there is no published work on the bioaccessibility aspect of PHEs and dietary minerals (DMs) in sewage-irrigated soil or the vegetables grown on such soils in Pakistan. Several industrial districts of Pakistan were selected for assessment of the risk associated with the ingestion of vegetables grown over sewage-irrigated soils. Both the total and bioaccessible fraction of PHEs (Cd, Co, Cr, Ni, and Pb) and DMs (Fe, Cu, Mn, Zn, Ca, Mg, and I) in soils and vegetable samples were measured. The concentrations of these PHEs and DMs in sewage-irrigated and control soils were below published upper threshold limits. However, compared to control soils, sewage irrigation over the years decreased soil pH (7.7 vs 8.1) and enhanced dissolved organic carbon (1.8 vs 0.8 %), which could enhance the phyto-availability of PHEs and DMs to crops. Of the PHEs and DMs, the highest transfer factor (soil to plant) was noted for Cd and Ca, respectively. Concentrations of PHEs in most of the sewage-irrigated vegetables were below the published upper threshold limits, except for Cd in the fruiting portion of eggplant and bell pepper (0.06–0.08 mg/kg Cd, dry weight) at three locations in Gujarat and Kasur districts. The bioaccessible fraction of PHEs can reduce the context of dietary intake measurements compared to total concentrations, but differences between both measurements were not significant for Cd. Since the soils of the sampled districts are not overly contaminated compared to control sites, vegetables grown over sewage-irrigated soils would provide an opportunity to harvest mineral-rich vegetables potentially providing consumers 62, 60, 12, 104, and 63 % higher dietary intake of Cu, Mn, Zn, Ca, and Mg, respectively. Based on Fe and vanadium correlations in vegetables, it is inferred that a significant proportion of total dietary Fe intake could be contributed by soil particles adhered to the consumable portion of vegetables. Faecal sterol ratios were used to identify and distinguish the source of faecal contamination in soils from Gujranwala, Gujarat, and Lahore districts, confirming the presence of human-derived sewage biomarkers at different stages of environmental alteration. A strong correlation of some metals with soil organic matter concentration was observed, but none with sewage biomarkers.  相似文献   

17.
平原典型垃圾焚烧厂周边土壤重金属分布特征及污染评价   总被引:3,自引:0,他引:3  
随着固体废弃物的增加,垃圾焚烧逐步成为城市垃圾处理应用一个较为理想可行的选择。垃圾焚烧不仅可以回收能源,且相对其他处理方式其减量效果显著。垃圾焚烧厂排出的尾气中的某些特定重金属可以通过大气干湿沉降进入土壤。采用XRF 荧光光谱仪、岛津原子吸收分光光度计和测汞仪测定了杭嘉湖平原的嘉兴垃圾焚烧厂周边土壤重金属的含量,利用地统计学方法分析了该区域74个土壤样品中Cr、Mn、Cu、Pb、Fe五种重金属元素浓度的空间分布,并采用单因子指数法和内梅罗综合指数法对该地区土壤进行污染评价。结果表明:该垃圾焚烧厂周边表层土壤上述5种重金属平均含量依次为174.05、707.76、47.68、41.95、39057.89 mg·kg-1。表层富集因子分析表明表层土壤中Cu和Pb的含量受到人为影响。因子分析将5种重金属分成3类,并揭示了3类金属在该区域具有不同的空间分布特征,Cr、Mn、Fe以土壤地球化学作用(37.88%方差贡献)为主导影响因素,Cu、Pb分别以农药施用作用为主(22.06%)、垃圾焚烧源尾气排放(22.74%)为主导影响因素。污染评价结果表明该区域土壤重金属复合污染程度为轻度污染,最大污染贡献来自于Pb(单因子污染指数高达2.16),厂区周边土壤中重金属存在累积效应,不容忽视。  相似文献   

18.
The concentration of heavy metals was analyzed each of 20 river water, suspended sediments and bed sediments along the stretch of Swarnamukhi River Basin. River water is not contaminated with heavy metals except Fe and Mn. Contamination factor in sediments shows considerable to very high degree contamination with Cr, Cu, Pb and Zn. The sources of these metals could be residential wastes, sewer outfall, fertilizers, pesticides (M-45 + carbondine) and traffic activities apart from natural weathering of granitic rocks present in the basin area. Principal component analyses indicate the interaction between metals in different media. The comparison of metals (Cu, Pb and Zn) in bed sediments of Swarnamukhi River with the Indian and world averages indicates that the values obtained in the basin are above the Indian averages and far below to the world averages. Average shale values and sediment quality guidelines point toward the enrichment and contamination of Cu, Cr, Pb and Zn to several fold leading to eco-toxicological risks in basin.  相似文献   

19.
为了初步探讨邻苯二甲酸二乙基己酯(Di-(2-ethylhexyl)phthalate,DEHP)对植物的毒害作用,采用不同浓度的DEHP溶液对蚕豆根部进行处理(终含量0、0.2、2、20、200mg·kg-(1细沙)),检测根尖微核率和对幼苗茎、叶SOD活性的影响.结果表明:对蚕豆根尖进行短期(6h)处理后,各DEHP处理组微核率随DEHP含量的升高呈显著上升趋势(与对照比较,p<0.05或p<0.01).处理7d后,随DEHP含量的升高(0~20mg·kg-(1细沙)),蚕豆幼苗茎、叶SOD活性均呈逐渐升高趋势;DEHP含量在20~200mg·kg-(1细沙)时,SOD活性均略有下降.以上结果表明DEHP对蚕豆种子具有遗传毒性,且能够对蚕豆幼苗产生氧化损伤.  相似文献   

20.
The response of green roselle (Hibiscus sabdariffa) to Cu/Pb contamination and manure application in soil was investigated using pot experiments. Subsamples of a mineral soil were treated with increasing doses (0–500 mg kg?1) of Cu/Pb only and/or amended (at 10% w/w) with poultry or swine manure. Roselle plants were grown, monitored for changes in growth rate and post-harvest aboveground dry biomass and tissue Cu/Pb concentrations were determined. The plants were typically greenish with linear growth profiles at all metal doses, indicating some level of tolerance. Dry biomass yields decreased as metal dose increased. Poultry manure enhanced roselle biomass yields better than swine manure. Tissue Cu/Pb concentrations increased linearly as metal doses increased in unamended soils; whereas nonlinear responses were observed in manure-amended soils. Soil-to-plant transfer factors, T f (%) indicated that Cu (13≤T f (% )≤60) was more phytoavailable to roselle than Pb (11≤T f (% )≤20). Tissue metal concentrations were modelled from soil pH, organic matter, plant available and pseudototal metal; but the models appeared more reliable with plant available metal as a covariate than with pseudototal metal content. These observations may become useful whenever phytoextraction is the remedial option for soils moderately contaminated by toxic metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号