首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Abstract

A major component of the Southern Oxidants Study (SOS) 1992 Atlanta Intensive was the measurement of atmospheric nonmethane hydrocarbons. Ambient air samples were collected and analyzed by a network of strategically located automated gas chromatography (GC) systems (field systems). In addition, an extensive canister sampling network was deployed. Combined, more than 3000 chromatograms were recorded. The SOS science team targeted for quantitative analysis 56 compounds which may be substantial contributors to ozone formation or used as air mass tracers. A quality assurance program was instituted to ensure that good measurements were being made throughout the network for each target compound. Common, high-quality standards were used throughout the network. The performance of individual field systems was evaluated during the intensive through the analysis of challenge mixtures. This methodology helped to identify and correct analytical problems as they arose.  相似文献   

2.
ABSTRACT

Profiles of the sources of nonmethane organic compounds (NMOCs) were developed for emissions from vehicles, petroleum fuels (gasoline, liquefied petroleum gas [LPG], and natural gas), a petroleum refinery, a smelter, and a cast iron factory in Cairo, Egypt. More than 100 hydrocarbons and oxygenated hydrocarbons were tentatively identified and quantified. Gasoline-vapor and whole-gasoline profiles could be distinguished from the other profiles by high concentrations of the C5 and C6 saturated hydrocarbons. The vehicle emission profile was similar to the whole-gasoline profile, with the exception of the unsaturated and aromatic hydrocarbons, which were present at higher concentrations in the vehicle emission profile. High levels of the C2-C4 saturated hydrocarbons, particularly n-butane, were characteristic features of the petroleum refinery emissions. The smelter and cast iron factory emissions were similar to the refinery emissions; however, the levels of benzene and toluene were greater in the former two sources. The LPG and natural gas emissions contained high concentrations of n-butane and ethane, respectively. The NMOC source profiles for Cairo were distinctly different from profiles for U.S. sources, indicating that NMOC source profiles are sensitive to the particular composition of petroleum fuels that are used in a location.  相似文献   

3.
Continuous measurements of total hydrocarbons (and other organic substances) and of methane were made in Cincinnati and Los Angeles for three-month periods. Some of the measurements were made during episodes of photochemical air pollution. Two instruments, one for measurement of total hydrocarbons and the other for methane, were operated in parallel. Both incorporated flame ionization detectors having greater sensitivity than commercial flame ionization instruments. The flame ionization analysis for methane was made specific by use of an adsorbent carbon column preceding the analyzer to retain all organic substances except methane. Subtracting the methane concentration values from those for total hydrocarbons gave nonmethane hydrocarbon concentrations. The data showed diurnal patterns of concentrations of methane and nonmethane hydrocarbons in the atmosphere. Average hourly values for methane were strikingly similar in Los Angeles and in Cincinnati (2.6 and 2.4 ppm, respectively); those for nonmethane hydrocarbons were four times as high in Los Angeles (3.0 and 0.8 ppm, respectively). A bimodal frequency distribution pattern of the concentrations suggested that atmospheric ventilation was either good or poor, with less than a random amount of time in intermediate stages. The width of the methane frequency distribution peak was about half the width of that for nonmethane hydrocarbons, indicating a different and more constant source for the former.  相似文献   

4.
A method for compound-specific stable carbon isotope analysis of atmospheric polycyclic aromatic hydrocarbons (PAHs) in carbonaceous aerosols is described. Atmospheric aerosol samples containing PAHs (C-10 to C-20) were collected on filters using a high-volume sampling technique, solvent extracted, taken through a cleanup procedure, separated by gas chromatography, oxidized to CO2 on-line, and introduced into an isotope ratio mass spectrometer for analysis. The method can be used to determine the isotope composition of a few nanograms of PAHs. This technique was used to analyse and compare the isotope composition of atmospheric PAHs from standards, as well as two samples from urban and rural locations. Isotopic variability in atmospheric PAHs is greater than measurement uncertainties which makes this a potentially useful technique for source identification when used together with concentration measurements.  相似文献   

5.
Abstract

Comprehensive field studies were initiated in 2002 to measure emissions of ammonia (NH3), hydrogen sulfide (H2S), carbon dioxide (CO2), methane (CH4), nonmethane hydrocarbons (NMHC), particulate matter <10 µm in diameter, and total suspended particulate from swine and poultry production buildings in the United States.

This paper focuses on the quasicontinuous gas concentration measurement at multiple locations among paired barns in seven states. Documented principles, used in air pollution monitoring at industrial sources, were applied in developing quality assurance (QA) project plans for these studies. Air was sampled from multiple locations with each gas analyzed with one high quality commercial gas analyzer that was located in an environmentally controlled on-farm instrument shelter. A nominal 4 L/min gas sampling system was designed and constructed with Teflon wetted surfaces, bypass pumping, and sample line flow and pressure sensors. Three-way solenoids were used to automatically switch between multiple gas sampling lines with ≥10 min sampling intervals. Inside and outside gas sampling probes were between 10 and 115 m away from the analyzers. Analyzers used chemiluminescence, fluorescence, photoacoustic infrared, and photoionization detectors for NH3, H2S, CO2, CH4, and NMHC, respectively. Data were collected using personal computer-based data acquisition hardware and software. This paper discusses the methodology of gas concentration measurements and the unique challenges that livestock barns pose for achieving desired accuracy and precision, data representativeness, comparability and completeness, and instrument calibration and maintenance.  相似文献   

6.
Abstract

Leakages of liquefied petroleum gas (LPG) are suspected to contribute greatly to ozone (O3) formation in Mexico City. We tested such a hypothesis by outdoor captive-air irradiation (CAI) experiments in the two largest Mexican metropolitan areas: Guadalajara (GMA) in 1997 and Mexico City (MCMA) in 2000. O3 was monitored in each city for 20 days (8:00 a.m.–6:00 p.m.) in smog chambers containing unaltered morning air or morning air enriched with either commercial LPG or LPG synthetic mixture 60/40 (propane and butane). Tested additions of both components were 35% (by volume) in GMA and 60% (by volume) in MCMA. The addition effects on O3 (max) were compared with effects from diluting LPG components or total nonmethane hydrocarbons (tNMHCs) by 50%. Diluting tNMHCs had the greatest absolute effect at both cities: it lowered O3 (max) by 24% in GMA and 55% in MCMA. Adding commercial LPG increased O3 (max) by 6% in GMA and 28% in MCMA; whereas adding LPG synthetic mixture 60/40 caused a similar increase in O3 (max), 4 and 21% in GMA and MCMA, respectively. Compared with dilution of tNMHCs, dilution of LPG-associated compounds had a smaller decreasing effect on O3 (max), only 4% in GMA and 15% in MCMA. These results show that commercial LPG and LPG synthetic mixture 60/40 affect O3 formation to a lesser extent than estimated previously.  相似文献   

7.
The addition of a freeze-out step in liquid nitrogen prior to analysis by gas chromatography with flame ionization detection permits the accurate determination of C2 and higher hydrocarbons in the part per billion (ppb) range. Concentrations of C2 and higher hydrocarbons have been measured in commercial cylinders of nitrogen, helium and hydrogen. Using a 150 ml sample of gas, recovery of ppb concentrations is 95 to 100 percent.  相似文献   

8.
Solid or sludgy hydrocarbon waste is a by-product of oil and gas exploration and production. One commonly used method of disposing of this waste is landfarming. Landfarming involves spreading hydrocarbon waste on soils, tilling it into the soil, and allowing it to biodegrade. We used a dynamic flux chamber to measure fluxes of methane, a suite of 54 nonmethane hydrocarbons, and light alcohols from an active and a remediated landfarm in eastern Utah. Fluxes from the remediated landfarm were not different from a polytetrafluoroethylene (PTFE) sheet or from undisturbed soils in the region. Fluxes of methane, total nonmethane hydrocarbons, and alcohols from the landfarm in active use were 1.41 (0.37, 4.19) (mean and 95% confidence limits), 197.90 (114.72, 370.46), and 4.17 (0.03, 15.89) mg m?2 hr?1, respectively. Hydrocarbon fluxes were dominated by alkanes, especially those with six or more carbons. A 2-ha landfarm with fluxes of the magnitude we observed in this study would emit 95.3 (54.3, 179.7) kg day?1 of total hydrocarbons, including 11.2 (4.3, 33.9) kg day?1 of BTEX (benzene, toluene, ethylbenzene, and xylenes).

Implications: Solid and sludgy hydrocarbon waste from the oil and gas industry is often disposed of by landfarming, in which wastes are tilled into soil and allowed to decompose. We show that a land farm in Utah emitted a variety of organic compounds into the atmosphere, including hazardous air pollutants and compounds that form ozone. We calculate that a 2-ha landfarm facility would emit 95.0 ± 66.0 kg day?1 of total hydrocarbons, including 11.1 ± 1.5 kg day?1 of BTEX (benzene, toluene, ethylbenzene, and xylenes).  相似文献   

9.
Bioethanol for use in vehicles is becoming a substantial part of global energy infrastructure because it is renewable and some emissions are reduced. Carbon monoxide (CO) emissions and total hydrocarbons (THC) are reduced, but there is still controversy regarding emissions of nitrogen oxides (NOx), aldehydes, and ethanol; this may be a concern because all these compounds are precursors of ozone and secondary organic aerosol (SOA). The amount of emissions depends on the ethanol content, but it also may depend on the engine quality and ethanol origin. Thus, a photochemical chamber was used to study secondary gas and aerosol formation from two flex-fueled vehicles using different ethanol blends in gasoline. One vehicle and the fuel used were made in the United States, and the others were made in Brazil. Primary emissions of THC, CO, carbon dioxide (CO2), and nonmethane hydrocarbons (NMHC) from both vehicles decreased as the amount of ethanol in gasoline increased. NOx emissions in the U.S. and Brazilian cars decreased with ethanol content. However, emissions of THC, CO, and NOx from the Brazilian car were markedly higher than those from the U.S. car, showing high variability between vehicle technologies. In the Brazilian car, formation of secondary nitrogen dioxide (NO2) and ozone (O3) was lower for higher ethanol content in the fuel. In the U.S. car, NO2 and O3 had a small increase. Secondary particle (particulate matter [PM]) formation in the chamber decreased for both vehicles as the fraction of ethanol in fuel increased, consistent with previous studies. Secondary to primary PM ratios for pure gasoline is 11, also consistent with previous studies. In addition, the time required to form secondary PM is longer for higher ethanol blends. These results indicate that using higher ethanol blends may have a positive impact on air quality.

Implications: The use of bioethanol can significantly reduce petroleum use and greenhouse gas emissions worldwide. Given the extent of its use, it is important to understand its effect on urban pollution. There is a controversy on whether there is a reduction or increase in PM emission when using ethanol blends. Primary emissions of THC, CO, CO2, NOx, and NMHC for both cars decreased as the fraction of ethanol in gasoline increased. Using a photochemical chamber, the authors have found a decrease in the formation of secondary particles and the time required to form secondary PM is longer when using higher ethanol blends.  相似文献   


10.
The Tibetan Plateau is suggested to be an important indicator region to study the global long-range atmospheric transport of persistent organic pollutants. In this study, atmospheric polycyclic aromatic hydrocarbons (PAHs) were studied in Lhasa City in the Tibetan Plateau, China. Air samples in gas and particle phases were concurrently collected by a modified high-volume air sampler from 5 August 2008 to 13 July 2009. The concentration of ∑16PAHs ranged from 18 to 160 ng?m?3 (with a geometric mean of 68 ng?m?3). The most abundant PAHs were phenanthrene and benzo(b)fluoranthene in gas and particle phases, respectively. Compared with other two similar studies in Beijing and Harbin, different temporal trends were found between gas and particle phases PAHs in Lhasa. The influences of meteorological parameters (ambient temperature and relative humidity) and air masses from China, India, Southeast Asia, and West Asia were the two important reasons for explaining the difference, which was confirmed by the 5-day backward trajectories. This is the first comprehensive study to provide the evidence for the different influences of long-range atmospheric transport on gas and particle phases PAHs pollution in the Tibetan Plateau.  相似文献   

11.
Under contract to the U.S. Environmental Protection Agency, Research Triangle Institute has been conducting research to improve the precision, accuracy and limit of detection attainable with the EPA Method 25 nonmethane organic (NMO) analyzer. In Method 25, volatile organic carbon (VOC) samples are collected by drawing gas from an emitting source through a dry ice cooled sample trap and into an evacuated collection tank. The hydrocarbon concentration emitted from the source is determined on a per-carbon basis by catalytically converting the trap and tank sample fractions to CO2 and quantitating the amount of CO2 produced using the NMO analyzer. A reduction catalyst evaluation led to the selection of an NMO analyzer reduction catalyst which operates at a moderate temperature and displays no appreciable effect on peak shape. A gas chromatographlc column system which provides better permanent gas separation and hydrocarbon quantitation was also selected for use in the NMO analyzer.  相似文献   

12.
Acetaldehyde (CH3CHO) and acetone (CH3C(O)CH3) concentrations in ambient air, in snowpack air, and bulk snow were determined at Alert, Nunavut, Canada, as a part of the Polar Sunrise Experiment (PSE): ALERT 2000. During the period of continuous sunlight, vertical profiles of ambient and snowpack air exhibited large concentration gradients through the top ∼10 cm of the snowpack, implying a flux of carbonyl compounds from the surface to the atmosphere. From vertical profile and eddy diffusivity measurements made simultaneously on 22 April, acetaldehyde and acetone fluxes of 4.2(±2.1)×108 and 6.2(±4.2)×108 molecules cm−2 s−1 were derived, respectively. For this day, the sources and sinks of CH3CHO from gas phase chemistry were estimated. The result showed that the snowpack flux of CH3CHO to the atmosphere was as large as the calculated CH3CHO loss rate from known atmospheric gas phase reactions, and at least 40 times larger (in the surface layer) than the volumetric rate of acetaldehyde produced from the assumed main atmospheric gas phase reaction, i.e. reaction of ethane with hydroxyl radicals. In addition, acetaldehyde bulk snow phase measurements showed that acetaldehyde was produced in or on the snow phase, likely from a photochemical origin. The time series for the observed CH3C(O)CH3, ozone (O3), and propane during PSE 1995, PSE 1998, and ALERT 2000 showed a consistent anti-correlation between acetone and O3 and between acetone and propane. However, our data and model simulations showed that the acetone increase during ozone depletion events cannot be explained by gas phase chemistry involving propane oxidation. These results suggest that the snowpack is a significant source of acetaldehyde and acetone to the Arctic boundary layer.  相似文献   

13.
Nonmethane hydrocarbons (NMHCs) are important precursors of ozone and other photo oxidants. We presented continuous hourly average concentrations of 45 C2–C10 NMHCs measured in urban area of Dallas, USA from 1996 to 2004. Most of the selected compounds are good variables with less noise. The top 10 species with high ozone-generating potential were identified according to their concentrations and reactivities. The ambient concentrations of abundant anthropogenic emission hydrocarbons measured in Dallas were about 2–4 times of the background values measured in the remote areas with adjacent latitude. The time series for anthropogenic emission hydrocarbons showed an obvious seasonal cycle with relatively high concentration in winter and low concentration in summer. The sinusoidal function with a linearly decreasing factor could well fit the time series of NMHCs. The phase of seasonal cycle for the aromatic hydrocarbons of toluene, m/p xylene and o-xylene that might come from both vehicle emission and solvent utilities evaporation was about 1 month earlier than that for alkanes and alkenes that mainly came from vehicle emission. Ambient NMHCs in Dallas decreased with a stable rate during 1996–2004. For most of compounds with high ozone-generating potential, the rate of ambient concentration decrease was higher or much higher than the rate of volatile organic compounds (VOCs) source emission reduction estimated by EPA's National Emission Inventory. On weekdays, the morning hydrocarbon concentration peak was coincident with morning traffic rush time in Dallas. Another concentration peak was delayed to afternoon traffic rush time. The characteristics of VOCs sources, photochemical removal processes and atmospheric dilution could be interpreted by the diurnal variations of benzene/ethylbenzene (B/E), toluene/ethylbenzene (T/E) and xylene/ethylbenzene (X/E). The ratio of VOC/NOx measured in Dallas was substantially smaller than that calculated for USA cities. Ozone formation in Dallas was VOC sensitive.  相似文献   

14.
15.
Heterogeneous chemical processes involving trace atmospheric gases with solid particulates, such as carbonaceous aerosol, are not well understood. In an effort to quantify some relevant carbon aerosol systems, the heterogeneous chemistry of NO2 with both commercial and freshly prepared hexane soot was investigated in an atmospheric reaction chamber. At approximately an atmosphere of total pressure (760 Torr) and under dry conditions (relative humidities⩽1%), kinetic measurements gave an uptake coefficient of (2.4±0.6)×10−8 for n-hexane soot when referenced to the BET surface area of the sample. Commercial carbon black samples were found to yield a similar uptake coefficient. The reaction of HNO3 with commercial carbon black was also investigated and gas phase NO2 was detected as a reaction product. Low-pressure Knudsen cell experiments were carried out to facilitate a quantitative comparison between the two different techniques. The agreement between our current results and previously reported values of the uptake coefficient, with different soot samples and under varied pressure and surface coverage conditions, are discussed along with the possible implications for atmospheric chemistry.  相似文献   

16.
The present study was conducted within the framework of R&D activities on the development of gasification and reforming technologies for energy and chemical recovery from biomass resources. Gasification of the Japanese cedar wood has been investigated under various operating conditions in a bench-scale externally heated updraft gasifier; this was followed by thermal reforming. Parametric tests by varying the residence times, gasification temperatures, equivalence ratios (ERs) and steam-to-carbon (S/C) ratios were performed to determine their effects on the product gas characteristics. Thermodynamic equilibrium calculations were preformed to predict the equilibrium gas composition and compared with the experimental value.We found that the product gas characteristics in terms of the H2/CO ratio, CO2/CO ratio, and CH4 and lighter hydrocarbons concentrations are significantly affected by the operating conditions used. Increasing the residence time decreased the CO2/CO ratio; however, a nominal effect was noticed on H2 concentration as a function of the residence time. At sufficient residence time, increasing the temperature led to higher H2 yields, CO efficiency and higher heating value (HHV) of the product gas. The presence of steam during gasification effectively enhanced the proportion of H2 in the product gas. However, higher S/C ratio reduced the HHV of the product gas. Increasing the ER from 0 to 0.3 increased the H2 yields and CO efficiency and decreased the HHV of the product gas.The evolution of CH4 and lighter hydrocarbons at low gasification temperatures was relatively higher than that at high temperature gasification. The evolution of CH4 and lighter hydrocarbons at high gasification temperatures hardly varied over the investigated operating conditions.  相似文献   

17.
High mountains may serve both as condenser for vapor phase persistent organic pollutants (POPs) and as barrier/sink for particulate associated less volatile POPs. The fractionation of POPs along altitudinal profiles is of interest in understanding the role of high mountains in the atmospheric transport of POPs. In the present study, polycyclic aromatic hydrocarbons (PAHs) in a selected moss species, Hypnum plumaeformae WILS, from two altitudinal profiles on the northern slope of Nanling mountains in Southern China were analyzed and compared with those in air samples. The total PAH concentration in the mosses was 310–1340 ng g−1 dry weight, with phenanthrene being the most abundant. The distribution patterns of PAHs in the moss samples matched well with those in bulk atmosphere deposition in the adjacent source areas. The PAH distribution pattern in the mosses was a composite of both particle-associated and vapor phase PAHs, with heavy PAHs are susceptible to uptake/retention by mosses than light PAHs. A plot of log (Cmoss/Cair) against log Koa gave a good linear relationship in the log Kao range of 6.7–10.2. It is suggested that the widely spread moss, H. plumaeformae WILS, can be used as an effective tool in the biomonitoring of atmospheric PAHs pollution in East Asia. The concentrations of most PAHs in the mosses generally declined with increasing altitude. In addition, there was a shift in compound pattern with an increase in the proportion of light PAHs (2–3 rings), a decrease in heavy PAHs (5–6 rings) and a relatively stable content of 4-ring PAHs. A combination of particulate scavenging and cold condensation are proposed as the major mechanisms for the compositional fractionation of PAHs along the altitudinal profile.  相似文献   

18.
The first manned superpressure balloon has been developed to provide a means for accurately following a parcel of air, making physical and chemical measurements en route. The use of new high strength fabrics allows the construction of a balloon that contains its lifting gas (helium) under pressure, thereby providing long term flight stability unachieved by any other method. Three flights, each in excess of 30 hours duration, have already been achieved, demonstrating the ability of such vehicles to remain stably in a parcel of air without perturbing air chemistry in any way. Such a platform will allow the precise determination of air trajectories over many hundreds of miles. The use of trained observers on board will facilitate the collection of atmospheric data: ozone, NO*, SO2, temperature gradients, turbulence, and other.  相似文献   

19.
Measurements of the aromatic hydrocarbons (benzene, toluene, ethylbenzene and ortho(o)-xylene) at Niwot Ridge, Colorado have shown distinct correlations between the ratios of the concentrations of these compounds and the degree of direct urban influence. The major atmospheric removal mechanism of aromatic hydrocarbons is reaction with the hydroxyl radical, OH. This allows the decrease in the ratios of aromatic hydrocarbon concentrations to be related to the transport time and average OH number density within an air mass, if assumptions are made concerning background sources of aromatic hydrocarbons. Measured ratios of aromatic compounds at this site, along with ratios reported for several cities in the western United States, and estimates of transport times from these cities were used to calculate temporally and spatially averaged OH number densities. Hydroxyl radical number density estimates using toluene-, ethylbenzene-, and o-xylene-to-benzene ratios, were 1.2 ± 0.6 × 106, 1.0 ±0.8 × 106 and 0.48 ± 0.8 × 106 molecules cm−3, respectively. Considering the uncertainties in the assumptions used in the above estimates, we obtain a diurnal-average upper limit of 2.4 × 106 molecules cm−3. The correlations between measured ratios are found to yield slopes consistent with those predicted by experimental OH rate constants for benzene, toluene and ethylbenzene, and approximately a factor of two different in the case of benzene, toluene and o-xylene. The ratio of NOx: benzene was found to yield no correlation with toluene: benzene ratio for periods of westerly flow, but was well correlated with toluene: benzene ratio during periods of direct urban impact on the site (upslope easterly winds). The correlation of these ratios in urban plume air masses was consistent with NO2 + OH + M being the major daytime removal mechanism of NOx in the summertime.  相似文献   

20.
The hydrocarbon composition of atmospheric particulate matter from A Coruña city (Northwest Spain) has been studied. TSP (total suspended particulate) and PM10 (particulate matter with aerodynamic diameter <10 µm) samples were taken over 7 and 4 months at two stations located in residential and industrial sectors of A Coruña city, respectively. The levels of hydrocarbons found in atmospheric particulate samples of A Coruña city are higher than the ones found in other cities over the world. Ratios between the analysed compounds and their sources were established. Both anthropogenic and biogenic origins were found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号