首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pressure required for a chlorinated solvent to enter a geological medium can be calculated given knowledge of the characteristic pore size of the medium and the interfacial tension (IFT) and contact angle of the solvent-water-rock system. Using a centrifuge-based method, capillary pressure-saturation curves have been determined for 30 water-saturated samples of Permo-Triassic sandstones for the solvent tetrachloroethene (PCE). These curves have been successfully fitted using the van Genuchten function to determine PCE entry pressure for each of the sandstone samples. A plot of PCE entry pressures against average pore diameter shows a linear relationship in log-log space; however, observed values for PCE entry pressure are significantly lower than would be expected theoretically for a sandstone-PCE-water system. This may be explained either by a decrease in the IFT or an increase in the contact angle. The IFT may decrease during contact with sandstones due to hysteresis effects during imbibition and drainage of fluids, but this is unlikely to be sufficient to account for the low entry pressures observed. Therefore, it is inferred that the low observed PCE entry pressures are due to higher than expected PCE contact angles, and that the average pore-throat surface of the sandstones is more solvent wetting than would be expected. A weak acid extraction indicates the presence of calcite and dolomite in the sandstone cores, and a correlation is observed between carbonate content per unit porosity and a reduction in PCE entry pressure. It is suggested that these mineral phases are responsible for observed wettability changes and a conceptual model is proposed. One consequence of the lower observed entry pressures is that solvents are likely to penetrate deeper into the matrix of water-saturated sandstones than previously expected.  相似文献   

2.
The presence of surface-active solutes such as organic acids and bases may have a profound influence on the transport of organic liquid contaminants through their impact on the constitutive relationship of capillary pressure vs. saturation. This relationship is a function of the interfacial tension and wettability of the system, which, in turn, depend on the pH and the concentration of organic acids and bases that are present. This study examines the impact of pH and the concentration on the interfacial tension, contact angle, and capillary pressure of systems consisting of tetrachloroethylene, water, and quartz containing either octanoic acid or dodecylamine. In general, the ionic form of the solute tended to remain in the aqueous phase and reduced the capillary pressure through its impact on the interfacial tension and contact angle; on the other hand, the neutral form of the solute partitioned into the organic liquid phase and had a lesser impact on the capillary pressure for the same total mass of solute. A comparison of these data with data generated in previous research in similar systems where o-xylene was the organic liquid showed that the trends are analogous. Thus, the behavior of these two solvent systems seems to be driven primarily by the aqueous phase speciation of the solute, and the differences between the capillary pressure relationships for the two systems could be attributed to the pure system interfacial tension.  相似文献   

3.
Capillary pressure/saturation data are often difficult and time consuming to measure, particularly for non-water-wetting porous media. Few capillary pressure/saturation predictive models, however, have been developed or verified for the range of wettability conditions that may be encountered in the natural subsurface. This work presents a new two-phase capillary pressure/saturation model for application to the prediction of primary drainage and imbibition relations in fractional wettability media. This new model is based upon an extension of Leverett scaling theory. Analysis of a series of DNAPL/water experiments, conducted for a number of water/intermediate and water/organic fractional wettability systems, reveals that previous models fail to predict observed behavior. The new Leverett–Cassie model, however, is demonstrated to provide good representations of these data, as well as those from two earlier fractional wettability studies. The Leverett–Cassie model holds promise for field application, based upon its foundation in fundamental scaling principles, its requirement for relatively few and physically based input parameters, and its applicability to a broad range of wetting conditions.  相似文献   

4.
The composition of chlorinated hydrocarbon DNAPLs (dense non-aqueous phase liquids) from field sites can be substantially different than the material originally purchased for use as a solvent. Waste management practices at the U.S. Department of Energy's (DOE) Savannah River Site (SRS) included co-disposal of a wide range of organic and inorganic wastes. In 1991, a clear, orange-colored DNAPL was found in two wells near the SRS M-area settling basin. Waste effluent from the fuel and target fabrication facilities that were discharged to this settling basin included acids, caustics, metals and chlorinated solvents. The characterization of the SRS DNAPL suggests that numerous constituents partitioned into the DNAPL during its use as a solvent, co-disposal and ultimate migration through the subsurface. Trace constituents in the DNAPL include metals, from processing operations or co-disposal practices and subsurface minerals, high molecular weight hydrocarbons and alkyl esters, and acids. This complex mixture results in DNAPL-water interfacial properties that are substantially different than would be expected from a simple mixture of PCE and TCE. Under conditions when there is a high DNAPL to water volume ratio, a semi-rigid film accumulates on water droplets suspended in the DNAPL. It is concluded that the array of precipitated metal species comprising this film contributes to the interfacial tension that is over an order of magnitude lower than expected for a "clean" PCE/TCE mixture.  相似文献   

5.
A previously developed pore network model is used here to study the spontaneous and forced secondary imbibition of a NAPL-invaded sediment, as in the displacement of NAPL by waterflooding a mixed-wet soil. We use a 3D disordered pore network with a realistic representation of pore geometry and connectivity, and a quasi-static displacement model that fully describes the pore-scale physics. After primary drainage (NAPL displacing water) up to a maximum capillary pressure, we simulate secondary imbibition (water displacing NAPL). We conduct a parametric study of imbibition by varying systematically the controlling parameters: the advancing contact angles, the fraction of NAPL-wet pores, the interfacial tension, and the initial water saturation. Once the secondary imbibition is completed, the controlling displacement mechanisms, capillary pressures, relative permeabilities, and trapped NAPL saturations are reported. It is assumed that NAPL migrates into an initially strongly water-wet sediment, i.e., the receding contact angles are very small. However, depending on the surface mineralogy and chemical compositions of the immiscible fluid phases, the wettability of pore interiors is altered while the neighborhoods of pore corners remain strongly water-wet-resulting in a mixed-wet sediment. Here, we compare three different levels of wettability alteration: water-wet (advancing contact angles (20 degrees to 55 degrees), intermediate-wet (55 degrees to 120 degrees), and NAPL-wet (120 degrees to 155 degrees). The range of advancing contact angles and the fraction of NAPL-wet pores have dramatic effects on the NAPL-water capillary pressures and relative permeabilities. The spatially inhomogeneous interfacial tension has a minor impact on the trapped NAPL saturation and relative permeability to NAPL, and a slight effect on the relative permeability to water. The initial water saturation has a slight effect on the two-phase flow characteristics of water-wet sediments; however, with more NAPL-wet pores in the sediment, it starts to have a profound effect on the water and NAPL relative permeabilities.  相似文献   

6.
Conventional methods of sampling groundwater in Chalk aquifers sample the mobile water in the fissures only and not the non-mobile water held in the microporous matrix. However, the microporous matrix can play an important role in modifying groundwater quality by attenuating contaminant migration through diffusion exchange and, in the long term, by acting as a reservoir for contaminant retention.A method for extracting and analysing chalk pore waters for chlorinated solvents has been developed. Chalk pore water-depth profiles at the site of a spillage of tetrachloroethene demonstrated that the immiscible phase of the solvent had migrated to depths of 50 m, producing solvent concentrations in the matrix pore waters of up to 40,000 μg L−1.In addition, the pore water-depth profile indicated that the immiscible phase had ponded upon a less permeable horizon within the Chalk aquifer at shallow depths.  相似文献   

7.
Dense non-aqueous phase liquids (DNAPLs) present in the subsurface may contain surface active compounds that impact DNAPL migration and distribution. While a number of studies have revealed the role surface active compounds play in altering the wettability of quartz sand, few have considered the implications for other minerals common to contaminated sites. This study extends understanding of DNAPL/surfactant wettability to iron oxide surfaces. Specifically, quartz and iron oxide-coated sands in a tetrachloroethene (PCE)/water system containing the organic base (an organic molecule that acts as a base) dodecylamine (DDA) were compared at a variety of scales. Wettability of the minerals' surfaces, and the impact of wettability on capillary resistance to DNAPL entry, were assessed as a function of pH through: (i) advancing and receding contact angles, (ii) primary drainage capillary pressure-saturation experiments, and (iii) small, two-dimensional, flow cell experiments. The work revealed that, at neutral pH and under identical boundary capillary pressures, DNAPL invaded quartz sand but not iron oxide-coated sand; however, at low pH, DNAPL invaded both sands equally. These differences were demonstrated to be due to wettability alterations associated with the strength of attractive forces between DDA and the mineral surface, dictated by the isolectric point of the minerals and system pH. Observed differences in DNAPL invasion behavior were consistent with measured intrinsic contact angles and P(c)-S relationships, the latter requiring scaling by the operative contact angle inside the porous medium for a meaningful comparison. This study suggests that the distribution of minerals (and, more specifically, their isoelectric points), as well as the aqueous phase pH at a given site, may have a significant impact on the DNAPL source zone architecture.  相似文献   

8.
A unique field experiment has been undertaken at the CFB Borden research site to investigate the development of dissolved chlorinated solvent plumes from a residual dense non-aqueous phase liquid (DNAPL) source. The "emplaced-source" tracer test methodology involved a controlled emplacement of a block-shaped source of sand containing chlorinated solvents below the water table. The gradual dissolution of this residual DNAPL solvent source under natural aquifer conditions caused dissolved solvent plumes of trichloromethane (TCM), trichloroethene (TCE) and perchloroethene (PCE) to continuously develop down gradient. Source dissolution and 3-D plume development were successfully monitored via 173 multilevel samplers over a 475-day tracer test period prior to site remediation research being initiated. Detailed groundwater level and hydraulic conductivity data were collected. Development of plumes with concentrations spanning 1-700,000 micrograms/1 is described and key processes controlling their migration identified. Plumes were observed to be narrow due to the weakness of transverse dispersion processes and long due to advection and significant longitudinal dispersion, very limited sorptive retardation and negligible, if any, attenuation due to biodegradation or abiotic reaction. TCM was shown to be essentially conservative, TCE very nearly conservative and PCE, consistent with its greater hydrophobicity, more retarded yet having a greater mobility than observed in previous Borden field tests. The absence of biodegradation was ascribed to the prevailing aerobic conditions and lack of any additional biodegradable carbon substrates. The transient groundwater flow regime caused significant transverse lateral plume movement, plume asymmetry and was likely responsible for most of the, albeit limited, transverse horizontal plume spreading. In agreement with the widespread incidence of extensive TCE and PCE plumes throughout the industrialized world, the experiment indicates such solvent plumes are likely to be highly mobile and persistent, at least in aquifers that are aerobic and have low sorption potential (low foc content).  相似文献   

9.
Recent laboratory and field studies have shown that injection of emulsified edible oils can provide an effective, low-cost alternative for stimulating anaerobic biodegradation processes. A pilot-scale permeable reactive bio-barrier (PRBB) was installed at a perchlorate and chlorinated solvent impacted site by injecting 380 L of commercially available emulsion (EOS) containing emulsified soybean oil, food-grade surfactants, lactate, and yeast extract through ten direct push injection wells over a two day period. Soil cores collected six months after emulsion injection indicate the oil was distributed up to 5 m downgradient of the injection wells. A previously developed emulsion transport model was used to simulate emulsion transport and retention using independently estimated model parameters. While there was considerable variability in the soil sampling results, the model simulations generally agreed with the observed oil distribution at the field site. Model sensitivity analyses indicate that increasing the injection flow rate or diluting the oil with more water will have little effect on final oil distribution in the aquifer. The only effective approach for enhancing the spread of emulsified oil away from the injection well appears to be injecting a greater mass of oil.  相似文献   

10.
A method is described to measure the potential for sorption and biotransformation of halogenated compounds in aquifers. Glass columns, 40 cm in length and with a volume of 130 ml, were filled with aquifer material under conditions to avoid contamination from surface bacteria. Poorly sorted fluvial aquifer soils from three locations in the Bay area of San Francisco were used for evaluation. Gravel larger than 5 mm in diameter and a portion of the clay and silt fraction were removed during column filling. The columns were operated aerobically or anaerobically. The fluid within a column was periodically replaced within 15 minutes with new fluid of defined composition by syringe pump at time intervals of days to weeks. Initially, bromide was used to characterize flow through properties and to determine pore volume. Break-through curves for chlorinated aliphatic compounds allowed determination of sorption behaviour during fluid exchange.During the first several exchanges, and in the absence of biotransformation, added chlorinated aliphatics were removed significantly by sorption until a steady state was achieved. Through mass balance, the extent of sorption could be estimated. The ratio of sorbed mass to solution mass for the aquifer materials evaluated were 2.2 ± 1.0 for 1,1,1-trichloroethane (TCA) and 4.5 ± 1.5 for 1,1-dichloroethane (DCA) in the chloroorganic concentration range used of 50–150 μg/l. In an anaerobic column, biotransformation of TCA to DCA was demonstrated.  相似文献   

11.
The self-organising map approach was used to assess the efficiency of chlorinated solvent removal from petrochemical wastewater in a refinery wastewater treatment plant. Chlorinated solvents and inorganic anions (11 variables) were determined in 72 wastewater samples, collected from three different purification streams. The classification of variables identified technical solvents, brine from oil desalting and runoff sulphates as pollution sources in the refinery, affecting the quality of wastewater treatment plant influent. The classification of samples revealed the formation of five clusters: the first three clusters contained samples collected from the drainage water, process water and oiled rainwater treatment streams. The fourth cluster consisted mainly of samples collected after biological treatment, and the fifth one of samples collected after an unusual event. SOM analysis showed that the biological treatment step significantly reduced concentrations of chlorinated solvents in wastewater.  相似文献   

12.
Wettability is a dominant parameter governing spontaneous imbibition. However less attention has been paid to the effect of wettability on the scaling of spontaneous imbibition data. Actually few models can include wettability in scaling of spontaneous imbibition data. To this end, a scaling model has been developed for NAPL (oil)-saturated porous media with different wettability based on the fluid flow mechanisms in porous media. Relative permeability, capillary pressure, initial water saturation, and wettability are considered in the scaling model. Theoretically this scaling model is suitable for both cocurrent and countercurrent spontaneous imbibition. The experimental data of countercurrent spontaneous water imbibition at different wettability cannot be scaled using the frequently used scaling model but can be scaled satisfactorily using the scaling model developed in this study. An analytical solution to the relationship between recovery and imbibition time for linear spontaneous imbibition has also been derived in the case in which gravity is ignored. The analytical solution predicts a linear correlation between the recovery by spontaneous water imbibition and the square root of imbibition time, which has been verified against experimental data.  相似文献   

13.
In situ, sequential, anaerobic to aerobic treatment of groundwater removed perchloroethene (PCE, 1.1 microM) and benzene (0.8 microM) from a contaminated aquifer. Neither aerobic nor anaerobic treatment alone successfully degraded both the chlorinated and non-chlorinated organic contaminants in the aquifer. After the sequential treatment, PCE, trichloroethene (TCE), vinyl chloride (VC), chloroethane (CA), and benzene were not detectable in groundwater. Desorption of residual aquifer contaminants was tested by halting the groundwater recirculation and analyzing the groundwater after 3 and 7 weeks. No desorption of the chlorinated contaminants or daughter products was observed in the treated portion of the aquifer. Sequential anaerobic to aerobic treatment was successful in remediating the groundwater at this test site and may have broad applications at other contaminated sites. Over the 4-year course of the project, the predominant microbial environment of the test site varied from aerobic to sulfate-reducing, to methanogenic, and back to aerobic conditions. Metabolically active microbial populations developed under all conditions, demonstrating the diversity and robustness of natural microbial flora in the aquifer.  相似文献   

14.
INTRODUCTION: Chlorinated ethanes and ethenes are among the most frequently detected organic pollutants of water. Their physicochemical properties are such that they can contaminate aquifers for decades. In favourable conditions, they can undergo degradation. In anaerobic conditions, chlorinated solvents can undergo reductive dechlorination. DEGRADATION PATHWAYS: Abiotic dechlorination is usually slower than microbial but abiotic dechlorination is usually complete. In favourable conditions, abiotic reactions bring significant contribution to natural attenuation processes. Abiotic agents that may enhance the reductive dechlorination of chlorinated ethanes and ethenes are zero-valent metals, sulphide minerals or green rusts. OXIDATION: At some sites, permanganate and Fenton's reagent can be used as remediation tool for oxidation of chlorinated ethanes and ethenes. SUMMARY: Nanoscale iron or bimetallic particles, due to high efficiency in degradation of chlorinated ethanes and ethenes, have gained much interest. They allow for rapid degradation of chlorinated ethanes and ethenes in water phase, but they also give benefit of treating dense non-aqueous phase liquid.  相似文献   

15.
Knowledge on the behaviour of disinfection by-products (DBPs) during aquifer storage and recovery (ASR) is limited even though this can be an important consideration where recovered waters are used for potable purposes. A reclaimed water ASR trial in an anoxic aquifer in South Australia has provided some of the first quantitative information at field-scale on the fate and transport of trihalomethanes (THMs) and haloacetic acids (HAAs). The results revealed that THM half-lives varied from <1 to 65 days, with persistence of chloroform being highest and bromoform lowest. HAA attenuation was rapid (<1 day). Rates of THM attenuation were shown to be highly dependent on the geochemical environment as evidenced by the 2-5 fold reduction in half-lives at the ASR well which became methanogenic during the storage phase of the trial, as compared to an observation well situated 4 m away, which remained nitrate-reducing. These findings agree with previous laboratory-based studies which also show persistence declining with increased bromination of THMs and reducing redox conditions. Modelling suggests that the chlorinated injectant has sufficient residual chlorine and natural organic matter for substantial increases in THMs to occur within the aquifer, however this is masked in some of the field observations due to concurrent attenuation, particularly for the more rapidly attenuated brominated compounds. The model is based on data taken from water distribution systems and may not be representative for ASR since bromide and ammonia concentrations in the injected water and the possible role of organic carbon in the aquifer were not taken into consideration. During the storage phase DBP formation potentials were reduced as a result of the removal of precursor material despite an increase in the THM formation potential per unit weight of total organic carbon. This suggests that water quality improvements with respect to THMs and HAAs can be achieved through ASR in anoxic aquifers.  相似文献   

16.
Knowledge on the behaviour of disinfection by-products (DBPs) during aquifer storage and recovery (ASR) is limited even though this can be an important consideration where recovered waters are used for potable purposes. A reclaimed water ASR trial in an anoxic aquifer in South Australia has provided some of the first quantitative information at field-scale on the fate and transport of trihalomethanes (THMs) and haloacetic acids (HAAs). The results revealed that THM half-lives varied from <1 to 65 days, with persistence of chloroform being highest and bromoform lowest. HAA attenuation was rapid (<1 day). Rates of THM attenuation were shown to be highly dependent on the geochemical environment as evidenced by the 2-5 fold reduction in half-lives at the ASR well which became methanogenic during the storage phase of the trial, as compared to an observation well situated 4 m away, which remained nitrate-reducing. These findings agree with previous laboratory-based studies which also show persistence declining with increased bromination of THMs and reducing redox conditions. Modelling suggests that the chlorinated injectant has sufficient residual chlorine and natural organic matter for substantial increases in THMs to occur within the aquifer, however this is masked in some of the field observations due to concurrent attenuation, particularly for the more rapidly attenuated brominated compounds. The model is based on data taken from water distribution systems and may not be representative for ASR since bromide and ammonia concentrations in the injected water and the possible role of organic carbon in the aquifer were not taken into consideration. During the storage phase DBP formation potentials were reduced as a result of the removal of precursor material despite an increase in the THM formation potential per unit weight of total organic carbon. This suggests that water quality improvements with respect to THMs and HAAs can be achieved through ASR in anoxic aquifers.  相似文献   

17.
The purpose of this investigation was to examine the proposition that creosote, emplaced in an initially water saturated porous system, can be removed from the system through Pickering emulsion formation. Pickering emulsions are dispersions of two immiscible fluids in which coalescence of the dispersed phase droplets is hindered by the presence of colloidal particles adsorbed at the interface between the two immiscible fluid phases. Particle trapping is strongly favoured when the wetting properties of the particles are intermediate between strong water wetting and strong oil wetting. In this investigation the necessary chemical conditions for the formation of physically stable creosote-in-water emulsions protected against coalescence by bentonite particles were examined. It was established that physically stable emulsions could be formed through the judicious addition of small amounts of sodium chloride and the surfactant cetyl-trimethylammonium bromide. The stability of the emulsions was initially established by visual inspection. However, experimental determinations of emulsion stability were also undertaken by use of oscillatory rheology. Measurements of the elastic and viscous responses to shear indicated that physically stable emulsions were obtained when the viscoelastic systems showed a predominantly elastic response to shearing. Once the conditions were established for the formation of physically stable emulsions a "proof-of-concept" chromatographic experiment was carried out which showed that creosote could be successfully removed from a saturated model porous system.  相似文献   

18.
Phase diagrams were used for the formulation of alcohol–surfactant–solvent and to identify the DNAPL (Dense Non Aqueous Phase Liquid) extraction zones. Four potential extraction zones of Mercier DNAPL, a mixture of heavy aliphatics, aromatics and chlorinated hydrocarbons, were identified but only one microemulsion zone showed satisfactory DNAPL recovery in sand columns. More than 90 sand column experiments were performed and demonstrate that: (1) neither surfactant in water, alcohol–surfactant solutions, nor pure solvent can effectively recover Mercier DNAPL and that only alcohol–surfactant–solvent solutions are efficient; (2) adding salts to alcohol–surfactant or to alcohol–surfactant–solvent solutions does not have a beneficial effect on DNAPL recovery; (3) washing solution formulations are site specific and must be modified if the surface properties of the solids (mineralogy) change locally, or if the interfacial behavior of liquids (type of oil) changes; (4) high solvent concentrations in washing solutions increase DNAPL extraction but also increase their cost and decrease their density dramatically; (5) maximum DNAPL recovery is observed with alcohol–surfactant–solvent formulations which correspond to the maximum solubilization in Zone C of the phase diagram; (6) replacing part of surfactant SAS by the alcohol n-butanol increases washing solution efficiency and decreases the density and the cost of solutions; (7) replacing part of n-butanol by the nonionic surfactant HOES decreases DNAPL recovery and increases the cost of solutions; (8) toluene is a better solvent than D-limonene because it increases DNAPL recovery and decreases the cost of solutions; (9) optimal alcohol–surfactant–solvent solutions contain a mixture of solvents in a mass ratio of toluene to D-limonene of one or two. Injection of 1.5 pore volumes of the optimal washing solution of n-butanol–SAS–toluene–D-limonene in water can recover up to 95% of Mercier DNAPL in sand columns. In the first pore volume of the washing solution recovered in the sand column effluent, the DNAPL is in a water-in-oil microemulsion lighter than the excess aqueous phase (Winsor Type II system), which indicates that part of the DNAPL was mobilized. In the next pore volumes, DNAPL is dissolved in a oil-in-water microemulsion phase and is mobilized in an excess oil phase lighter than the microemulsion (Winsor Type I system). The main drawback of this oil extraction process is the high concentration of ingredients necessary for DNAPL dissolution, which makes the process expensive. Because mobilization of oil seems to occur at the washing solution front, an injection strategy must be developed if there is no impermeable limit at the aquifer base. DNAPL recovery in the field could be less than observed in sand columns because of a smaller sweep efficiency related to field sand heterogeneities. The role of each component in the extraction processes in sand column as well as the Winsor system type have to be better defined for modeling purposes. Injection strategies must be developed to recover ingredients of the washing solution that can remain in the soil at the end of the washing process. ©1997 Elsevier Science B.V.  相似文献   

19.
A new method for reductive dechlorination of polychlorinated dibenzo-p-dioxins (PCDDs) and remediation of contaminated soils is described that uses zerovalent iron as the dechlorination agent and subcritical water as reaction medium and extractive solvent. It is found that the zerovalent iron can be applied for stepwise dechlorination of octachlorinated dibenzo-p-dioxin (OCDD) on various matrixes in subcritical water. By using iron powder as matrix higher chlorinated congeners were practically completely reduced to less than tetra-substituted homologues. A significant part of residual OCDD, when it was spiked in to soils, and formed less chlorinated congeners are extracted with water in the given conditions. The solubility of OCDD was increased by a 4–6 orders over its solubility at ambient conditions. The new method of contentious-flow extraction is described.  相似文献   

20.
In situ chemical oxidation (ISCO) is an emerging technology for the destruction of some chlorinated solvents present in subsurface environments. A laboratory investigation using a physical model was designed to assess the effectiveness of using permanganate as an oxidant to reduce the mass of a perchloroethylene (PCE) pool. The physical model was filled with silica sand overlying a silica flour base, simulating a two-dimensional saturated sand zone overlying a capillary barrier. PCE was introduced into the model so that it rested on top of the silica flour base, forming a dense nonaqueous phase liquid pool. The experimental methodology involved flushing the model with a permanganate solution for 146 days. During this period, measurements of chloride were used to assess the extent of pool oxidation. Before and after the oxidant flush, the quasi-steady state dissolution from the PCE pool was evaluated. Additionally, tracer studies were completed to assess changes in the flow field due to the oxidation process. At the termination of the experiment nine soil cores extracted from the model were used to detect the presence of MnO2 deposits and to quantify the mass of PCE remaining in the system. Excavation of the remaining material in the model revealed that the MnO2 distribution throughout the model was consistent with that observed in the cores. The oxidant flush was concluded before all of the pure phase PCE had been completely oxidized; however, approximately 45% of the PCE mass was removed, resulting in a fourfold decrease in the quasi-steady state aqueous phase mass loading of PCE from the pool. Measurements of chloride during the oxidant flush and of PCE in the soil cores suggested that the oxidation reaction occurred primarily at the upgradient edge of the PCE pool. MnO2 deposits within the model aquifer decreased the velocity of water directly above the pool, and the overall mass transfer from the remaining PCE pool. The results of this experimental study indicate that ISCO using permanganate is capable of removing substantial mass from a DNAPL pool; however, the performance of ISCO as a pool removal technology will be limited by the formation and precipitation of hydrous MnO2 that occurs during the oxidation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号