首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metalliferous soils cover a relatively large surface area in Morocco, and up to now no hyperaccumulating plants have been identified on these mining or these industrial sites. The aim of this work was to assess the extent of metal accumulation by plants found in three mining areas in southern Morocco with the ultimate goal of finding metal hyperaccumulating species by using the MetPAD biotest. The biotest helps to obtain information on the selective metal toxicity of aqueous extracts from the plants. A strong metal toxicity, as revealed by the biotest is an indication of a hyperaccumulating plant. Toxicity tests were run concurrently with chemicals analyses of metals in plants and their water extracts. The chemical analyses allow the determination of the hyperaccumulated metal(s). Specimens of the plant species mainly growing on and in the vicinity of the three mines were sampled with their corresponding soils. The results show that all plants analyzed had lower heavy metal content and toxicity despite the relatively very high soil concentrations. A comparison of our results with the criterion used to classify the hyperaccumulator plants indicates that plants we collected from mining sites were hypertolerant but not hyperaccumulators. This was confirmed by transfer factors generally lower than 1. Nevertheless, these tolerant plants species can be used as tools for revegetation for erosion control in metals-contaminated sites (phytostabilization).  相似文献   

2.
Wang X  Liu Y  Zeng G  Chai L  Xiao X  Song X  Min Z 《Chemosphere》2008,72(9):1260-1266
In southern China revegetation and ecological restoration of many abandoned Mn tailings has become a major concern. To determine the major constraints for plant establishment and evaluate the feasibility of remediation, a comparative study was conducted on Mn tailings and rhizosphere soils at the boundary of the tailings pond. Both tailings and rhizosphere soils had neutral to slightly alkaline pH and normal electrical conductivity. They were both enriched with organic matter (6.8-9.2%), total N (1.77-5.94 g kg(-1)), available P (41.78-73.83 mg kg(-1)) and K (146.7-906.9 mg kg(-1)), suggesting the tailings were a nutrient rich substrate for revegetation. Mn tailings were clay textured, while rhizosphere soils were silty loam or clay loam. The compaction and anoxic nature of Mn tailings were considered to be the major constraints for plant establishment. Total Mn (31903 mg kg(-1)), Cd (119 mg kg(-1)), Cu (126 mg kg(-1)) and Zn (2490 mg kg(-1)) in tailings were all at phytotoxic levels, but did not differ significantly from those in rhizosphere soils. In both tailings and rhizosphere soils, percentages of water- and DTPA-extractable metals were less than 1% and 2% of the total metal pools, respectively. Sequential extraction revealed that the majority of Mn, Cu and Zn were associated with the residual fraction, while the majority of Cd occurred as Fe-Mn oxides. The natural succession of plants around Mn tailings formed a distinctive metal-tolerant plant community, mainly comprising nine species such as Cynodon dactylon and Humulus scandens and so on. All species studied could be good candidates for revegetation of Mn tailings.  相似文献   

3.
Lygeum spartum is a native species in semiarid Mediterranean areas that grows spontaneously on acid mine tailings. We aimed to study the suitability of this plant for phytostabilization. L. spartum was grown from both seeds and rhizomes in acid mine tailings with various fertilizer and lime treatments. Untreated soils had a solution pH of 2.9 with high concentrations of dissolved salts (Electrical Conductivity 25 dS m(-1)) and Zn (3100 mg L(-1)). Plants grown on untreated soil had high shoot metal concentrations (>4000 mg kg(-1)Zn). Liming increased the solution pH to 5.5 and reduced the dissolved salts by more than 75%, resulting in lower shoot metal accumulation. Plants grown from rhizomes accumulated less metal than those grown from seeds. Plants collected in the field had metal concentrations an order of magnitude less than plants raised in the growth chamber. These differences may be due to the higher moisture content and homogeneous nature of the soils used in the pot experiment.  相似文献   

4.
Metal accumulation in wild plants surrounding mining wastes   总被引:4,自引:0,他引:4  
Four sites were selected for collection of plants growing on polluted soil developed on tailings from Ag, Au, and Zn mines at the Zacatecas state in Mexico. Trace element concentrations varied between sites, the most polluted area was at El Bote mine near to Zacatecas city. The ranges of total concentration in soil were as follows: Cd 11-47, Ni 19-26, Pb 232-695, Mn 1132-2400, Cu 134-186 and Zn 116-827 mg kg(-1) air-dried soil weight. All soil samples had concentrations above typical values for non-polluted soils from the same soil types (Cd 0.6+/-0.3, Ni 52+/-4, Pb 41+/-3mg kg(-1)). However, for the majority of samples the DTPA-extractable element concentrations were less than 10% of the total. Some of the wild plants are potentially metal tolerant, because they were able to grow in highly polluted substrates. Plant metal analysis revealed that most species did not translocate metals to their aerial parts, therefore they behave as excluder plants. Polygonum aviculare accumulated Zn (9236 mg kg(-1)) at concentrations near to the criteria for hyperaccumulator plants. Jatropha dioica also accumulated high Zn (6249 mg kg(-1)) concentrations.  相似文献   

5.
Two control and eight field-contaminated, metal-polluted soils were inoculated with Eisenia fetida (Savigny, 1826). Three, 7, 14, 21, 28 and 42 days after inoculation, earthworm survival, body weight, cocoon production and hatching rate were measured. Seventeen metals were analysed in E. fetida tissue, bulk soil and soil solution. Soil organic carbon content, texture, pH and cation exchange capacity were also measured. Cocoon production and hatching rate were more sensitive to adverse conditions than survival or weight change. Soil properties other than metal concentration impacted toxicity. The most toxic soils were organic-poor (1-10 g C kg(-1)), sandy soils (c. 74% sand), with intermediate metal concentrations (e.g. 7150-13,100 mg Pb kg(-1), 2970-53,400 mg Zn kg(-1)). Significant relationships between soil properties and the life cycle parameters were determined. The best coefficients of correlation were generally found for texture, pH, Ag, Cd, Mg, Pb, Tl, and Zn both singularly and in multivariate regressions. Studies that use metal-amended artificial soils are not useful to predict toxicity of field multi-contaminated soils.  相似文献   

6.
Kim MJ  Ahn KH  Jung Y 《Chemosphere》2002,49(3):307-312
The main objective of the present study is to determine arsenic species in mine tailings by applying an ion exchange method. Three abandoned mines, Jingok, Cheonbo and Sino mines in Korea, which had produced mainly gold, were selected for the collection and analysis of the tailings. It was found that the arsenic speciation using an ion exchange method was effective to separate As(III) and As(V) in leachate of mine tailings. The concentration of As(V) was found to be 63-99% in the leachate, indicating that As(V) would be the major arsenic species in the mine tailings and the tailings were under oxic conditions. The total concentrations of arsenic and metal elements in the mine tailings were up to 62,350 mg/kg As, 40 wt.% Fe, 21,400 mg/kg Mn, and 7,850 mg/kg Al. Sulfate was the dominant anion throughout the leachate, reaching a maximum dissolved concentration of 734 mg/l. The results of XRD and SEM in the mine tailings showed that main arsenic-containing minerals were pyrite (FeS2) and arsenopyrite (FeAsS) which would be the source of arsenic contamination in the study area.  相似文献   

7.
Two heavy metal contaminated calcareous soils from the Mediterranean region of Spain were studied. One soil, from the province of Murcia, was characterised by very high total levels of Pb (1572 mg kg(-1)) and Zn (2602 mg kg(-1)), whilst the second, from Valencia, had elevated concentrations of Cu (72 mg kg(-1)) and Pb (190 mg kg(-1)). The effects of two contrasting organic amendments (fresh manure and mature compost) and the chelate ethylenediaminetetraacetic acid (EDTA) on soil fractionation of Cu, Fe, Mn, Pb and Zn, their uptake by plants and plant growth were determined. For Murcia soil, Brassica juncea (L.) Czern. was grown first, followed by radish (Raphanus sativus L.). For Valencia soil, Beta maritima L. was followed by radish. Bioavailability of metals was expressed in terms of concentrations extractable with 0.1 M CaCl2 or diethylenetriaminepentaacetic acid (DTPA). In the Murcia soil, heavy metal bioavailability was decreased more greatly by manure than by the highly-humified compost. EDTA (2 mmol kg(-1) soil) had only a limited effect on metal uptake by plants. The metal-solubilising effect of EDTA was shorter-lived in the less contaminated, more highly calcareous Valencia soil. When correlation coefficients were calculated for plant tissue and bioavailable metals, the clearest relationships were for Beta maritima and radish.  相似文献   

8.
Thirty-three soil samples were collected from the Luling, Liuer, and Zhangji coal mines in the Huaibei and Huainan areas of Anhui Province, China. The samples were analyzed for antimony (Sb) by inductively coupled plasma-optical emission spectrometry (ICP-OES) method. The average Sb content in the 33 samples was 4 mg kg(-1), which is lower than in coals from this region (6.2 mg kg(-1)). More than 75% of the soils sampled showed a significant degree of Sb pollution (enrichment factors [EFs] 5-20). The soils collected near the gob pile and coal preparation plant were higher in Sb content than those collected from residential areas near the mines. The gob pile and tailings from the preparation plant were high in mineral matter content and high in Sb. They are the sources of Sb pollution in surface soils in the vicinity of coal mines. The spatial dispersion of Sb in surface soil in the mine region shows that Sb pollution could reach out as far as 350 m into the local environment conditions. Crops in rice paddies may adsorb some Sb and reduce the Sb content in soils from paddyfields. Vertical distribution of Sb in two soil profiles indicates that Sb is normally relatively immobile in soils.  相似文献   

9.
The enhancement of photodegradation efficiency using Pt-TiO2 catalyst   总被引:19,自引:0,他引:19  
Li FB  Li XZ 《Chemosphere》2002,47(10):1103-1111
The residues from the extraction of lead/zinc (Pb/Zn) ores of most Pb/Zn mines are permanently stored in tailings ponds, which require revegetation to reduce their environmental impact. This can only be done if the main constraints on plant establishment are evaluated. This can readily be done by field and greenhouse studies.

To test this, the properties of different tailings from Lechang Pb/Zn mine located at the north of Guangdong Province in southern China have been studied. Physical and chemical properties including concentrations of metals (Pb, Zn, Cd and Cu) in the tailings and soils collected from different sites have been measured. The results showed that tailings contain low nitrogen (0.016–0.075%), low-organic matter (0.58–1.78%), high salt (3.55–13.85 dS/m), and high total and diethylene–tetramine–pentaacetic acid (DTPA)-extractable metal concentrations (total: 1019–1642 μg g−1 Pb, 3078–6773 μg g−1 Zn, 8–23 μg g−1 Cd, and 85–192 μg g−1 Cu; DTPA-extractable: 59–178 μg g−1 Pb, 21–200 μg g−1 Zn, 0.30–1.5 μg g−1 Cd, and 4.3–12 μg g−1 Cu). Aqueous extracts of tailings/soils (10%, 20% and 30%, w/v) from different sites were prepared for testing their effects on seed germination and root elongation of a vegetable crop Brassica chinensis and a grass species Cynodon dactylon. It was found that root elongation provided a better evaluation of toxicity than seed germination. The ranking of toxicity using root elongation was: high-sulfur tailings>tailingdam>sparsely vegetated tailings>densely vegetated tailings>mountain soil for both plants. This order was consistent with DTPA-extractable Pb contents in the tailings and soils. B. chinensis seedlings were then grown in the mixtures of different proportions of tailings and farm soil for 4 weeks, and the results (dry weights of seedlings) were in line with the root elongation test. All these demonstrated that heavy metal toxicity, especially available Pb, low content of nutrient, and poor physical structure were major constraints on plant establishment and colonization on the Pb/Zn mine tailings.  相似文献   


10.
Mine tailings are one of the main environmental problems in post-mining landscapes and their removal is often complicated due to their high heavy metal content and dimensions. In this sense, using plant species for in situ stabilization may be an interesting and low cost option. Moreover, there are some plant species that have adapted to these conditions and are usually present at these contaminated sites. In this study, a mine tailing located in South-East Spain was investigated in order to establish lines for further phytostabilization research. A plot sampling design was carried out in order to characterize the soil properties. In addition, two plant species that have naturally colonized some parts of the tailing, Hyparrhenia hirta and Zygophyllum fabago, were sampled, including the analyses of their respective rhizospheric soils. The results of plot soil samples showed pH values from ultra acid to slightly alkaline. The electrical conductivity values were around 4dSm(-1) in plots with vegetation and 8dS m(-1) in the plot without vegetation. Total metal concentrations were high (4000 mg kg(-1) for Pb, 9000-15000 mg kg(-1) for Zn). DTPA- and water-extractable Zn were 5% and 3% of the total, respectively. H. hirta accumulated around 150 mg kg(-1) Pb in both shoots and roots. Zn concentration was 750 mg kg(-1) in Z. fabago shoots. DTPA-extractable Zn and Cu were positively correlated to plant uptake.  相似文献   

11.
Wang S  Mulligan CN 《Chemosphere》2009,74(2):274-279
Arsenic and heavy metal mobilization from mine tailings is an issue of concern as it might pose potential groundwater or ecological risks. Increasing attention recently has been focused on the effects of natural organic matter on the mobility behavior of the toxicants in the environment. Column experiments were carried out in this research study to evaluate the feasibility of using humic acid (HA) to mobilize arsenic and heavy metals (i.e., Cu, Pb and Zn) from an oxidized Pb-Zn mine tailings sample collected from Bathurst, New Brunswick, Canada. Capillary electrophoresis analyses indicated that arsenate [As(V)] was the only extractable arsenic species in the mine tailings and the addition of HA at pH 11 did not incur the oxidation-reduction or methylation reactions of arsenic. A 0.1% HA solution with an initial pH adjusted to 11 was selected as the flushing solution, while distilled water (initial pH adjusted to 11) was used as the control to account for the mobilization of arsenic and the heavy metals by physical mixing and the effect of pH. It was found that the HA could significantly enhance the mobilization of arsenic and heavy metals simultaneously from the mine tailings. After a 70-pore-volume-flushing, the mobilization of arsenic, copper, lead and zinc reached 97, 35, 838 and 224 mg kg(-1), respectively. The mobilization of arsenic and the heavy metals was found to be positively correlated with the mobilization of Fe in the presence of the HA. Moreover, the mobilization of arsenic was also correlated well with that of the heavy metals. The mobilization of co-existing metals to some extent might enhance arsenic mobilization in the presence of the HA by helping incorporate it into soluble aqueous organic complexes through metal-bridging mechanisms. Use of HA in arsenic and heavy metal remediation may be developed as an environmentally benign and possible effective remedial option to reduce and avoid further contamination.  相似文献   

12.
Grain Cd concentrations were determined in wheat (Triticum aestivum L.) grown in 1999, 2001 and 2003, at six sludge cake field experiments. Three of these sites also had comparisons with Cd availability from metal amended liquid sludge and metal salts. Grain Cd concentrations in all years and at all sites were significantly linearly correlated with NH4NO3 extractable Cd and soil total Cd (P<0.001). Soil extractability was greater in the liquid sludge and metal salt experiments than in the cake experiments, as were grain Cd concentrations. Across all the sites, NH4NO3 extractable soil Cd was no better at predicting grain Cd than soil total Cd. Stepwise multiple linear regression analysis showed that soil total Cd, pH and organic carbon were the only significant (P<0.001) variables influencing wheat grain Cd concentrations, explaining 78% of the variance across all field experiments (1408 plots). This regression predicted that the current UK soil total Cd limit of 3 mg kg(-1) was not sufficiently protective against producing grain above the European Union (EU) grain Cd Maximum Permissible Concentration (MPC) of 0.235 mg Cd kg(-1) dry weight, unless the soil pH was > 6.8. Our predictions show that grain would be below the MPC with > 95% confidence with the proposed new EU draft regulations permitting maximum total Cd concentrations in soils receiving sludge of 0.5 mg kg(-1) for soils of pH 5-6, 1 mg kg(-1) for soils of pH 6-7, and 1.5 mg kg(-1) for soils of pH > or = 7.  相似文献   

13.
The distribution and chemical fractionation of heavy metals retained in mangrove soils receiving wastewater were examined by soil column leaching experiments. The columns, filled with mangrove soils collected from two swamps in Hong Kong and the People's Republic of China, were irrigated three times a week for 150 days with synthetic wastewater containing 4 mg l(-1) Cu, 20 mg l(-1) Zn, 20 mg l(-1) Mn and 0.4 mg l(-1) Cd. Soil columns leached with artificial seawater (without any heavy metals) were used as the control. At the end of the leaching experiments, soil samples from each column were divided into five layers according to its depth viz. 0-1, 1-3, 3-5, 5-10 and > 10 cm, and analyzed for total and extractable heavy metal content. The fractionation of heavy metals in the surface soil samples (0-1 cm) was investigated by the sequential extraction technique. In both types of mangrove soils, the surface layer (0-1 cm) of the columns receiving wastewater had significantly higher concentrations of total Cu, Cd, Mn and Zn than the control. Concentrations declined significantly with soil depth. The proportion of exchangeable heavy metals in soils receiving wastewater was significantly higher than that found in the control, about 30% of the total heavy metals accumulated in the soil masses of the treated columns were extracted by ammonium acetate at pH 4. The sequential extraction results show that in native mangrove soils (the soils without any treatment), the major portion of Cu, Zn, Mn and Cd was associated with the residual and precipitated fractions with very low concentrations in more labile phases. However, in mangrove soils receiving wastewater, a significantly higher percentage of Mn, Zn and Cd was found in the water-soluble and exchangeable fractions. Copper appeared to be more strongly adsorbed in mangrove soils than the other heavy metals. In general, heavy metal accumulation in the surface mangrove soils collected in Hong Kong was higher than those in the PRC, although the metals in the latter soil type were more strongly bound. These findings suggest that whether the heavy metal retained in managrove soils becomes a secondary source or a permanent sink would depend on the kinds of heavy metals and also the types of mangrove soils.  相似文献   

14.
某矿区土壤和地下水重金属污染调查与评价   总被引:3,自引:0,他引:3  
为了解湘南某矿区土壤和地下水重金属污染状况,对该矿区东河流域附近重金属污染源进行了调查,同时,对地下水和土壤样品进行了采样分析,结果表明:(1)该矿区东河流域附近的主要污染源有18个,其中有色金属选厂、尾矿库、采矿场和冶炼厂是排放重金属较多的污染源;(2)20个采样点中土壤重金属Pb、Cd、Zn、As和Hg大部分超过国家土壤环境质量标准(GB15618-1995),综合污染指数P综〉1,该矿区主要的重金属污染元素为Cd、As和Hg,且土壤中Cd、Zn和As的含量两两之间存在着极显著的正线性相关关系;(3)重金属元素在土壤中的纵向迁移不明显,该矿区附近20个采样点的地下水并未受到污染,综合污染指数P综〈1。20个采样点地下水Pb、Cd、Zn、As、Hg浓度均能达到地下水质量标准(GB/T14848.9)中的Ⅲ类标准。  相似文献   

15.
Heavy metal contamination of agricultural soils has received great concern due to potential risk to human health. Cadmium and Pb are largely released from abandoned or closed mines in Korea, resulting in soil contamination. The objective of this study was to evaluate the effects of eggshell waste in combination with the conventional nitrogen, phosphorous, and potassium fertilizer (also known as NPK fertilizer) or the rapeseed residue on immobilization of Cd and Pb in the rice paddy soil. Cadmium and Pb extractabilities were tested using two methods of (1) the toxicity characteristics leaching procedure (TCLP) and (2) the 0.1 M HCl extraction. With 5 % eggshell addition, the values of soil pH were increased from 6.33 and 6.51 to 8.15 and 8.04 in combination with NPK fertilizer and rapeseed residue, respectively, compared to no eggshell addition. The increase in soil pH may contribute to heavy metal immobilization by altering heavy metals into more stable in soils. Concentrations of TCLP-extracted Cd and Pb were reduced by up to 67.9 and 93.2 % by addition of 5 % eggshell compared to control. For 0.1 M HCl extraction method, the concentration of 0.1 M HCl-Cd in soils treated with NPK fertilizer and rapeseed residue was significantly reduced by up to 34.01 and 46.1 %, respectively, with 5 % eggshell addition compared to control. A decrease in acid phosphatase activity and an increase in alkaline phosphatase activity at high soil pH were also observed. Combined application of eggshell waste and rapeseed residue can be cost-effective and beneficial way to remediate the soil contaminated with heavy metals.  相似文献   

16.
Phytomanagement employs vegetation and soil amendments to reduce the environmental risk posed by contaminated sites. We investigated the distribution of trace elements in soils and woody plants from a large phytomanaged site, the Guadiamar Valley (SW Spain), 7 years after a mine spill, which contaminated the area in 1998. At spill-affected sites, topsoils (0-25 cm) had elevated concentrations of As (129 mg kg(-1)), Bi (1.64 mg kg(-1)), Cd (1.44 mg kg(-1)), Cu (115 mg kg(-1)), Pb (210 mg kg(-1)), Sb (13.8 mg kg(-1)), Tl (1.17 mg kg(-1)) and Zn (457 mg kg(-1)). Trace element concentrations in the studied species were, on average, within the normal ranges for higher plants. An exception was white poplar (Populus alba), which accumulated Cd and Zn in leaves up to 3 and 410 mg kg(-1) respectively. We discuss the results with regard to the phytomanagement of trace element contaminated sites.  相似文献   

17.
Metal tolerance and phytoextraction potential of two common sorrel (Rumex acetosa L.) accessions, collected from a Pb/Zn contaminated site (CS, Lanestosa) and an uncontaminated site (UCS, Larrauri), were studied in fertilized and non-fertilized pots prepared by combining soil samples from both sites in different proportions (i.e., 0%, 33%, 66% and 100% of Lanestosa contaminated soil). The original metalliferous mine soil contained 20480, 4950 and 14 mg kg(-1) of Zn, Pb and Cd, respectively. The microcosm experiment was carried out for two months under greenhouse controlled conditions. It was found that fertilization increased mean plant biomass of both accessions as well as their tolerance. However, only the CS accession survived all treatments even though its biomass decreased proportionally according to the percentage of contaminated mine soil present in the pots. This metallicolous accession would be useful for the revegetation and phytostabilization of mine soils. Due to its high concentration and bioavailability in the contaminated soil, the highest values of metal phytoextracted corresponded to Zn. The CS accession was capable of efficiently phytoextracting metal from the 100% mine soil, indeed reaching very promising phytoextraction rates in the fertilized pots (6.8 mg plant(-1) month(-1)), similar to the ones obtained with hyperaccumulator plants. It was concluded that fertilization is certainly worth being considered for phytoextraction and revegetation with native plants from metalliferous soils.  相似文献   

18.
Nicotiana glauca transformed with TaPCS1 was tested for its application in phytoremediation. When plantlets were grown in mine soils containing Cu, Zn, and Pb (42, 2600, and 1500 mg kg(-1)) the plant showed high levels of accumulation especially of Zn and Pb. Adult plants growing in mine soils containing different heavy metal concentrations showed a greater accumulation as well as an extension to a wider range of elements, including Cd, Ni and B. The overexpressed gene confers up to 9 and 36 times more Cd and Pb accumulation in the shoots under hydroponic conditions, and a 3- and 6-fold increase in mining soils. When the hyperaccumulator Thlaspi caerulescens was compared, the results were higher values of heavy metal and Boron accumulation, with a yield of 100 times more biomass. Thlaspi was unable to survive in mining soils containing either a level higher than 11000 mg kg(-1) of Pb and 4500 mg kg(-1) of Zn, while engineered plants yielded an average of 0.5 kg per plant.  相似文献   

19.
Environmental Science and Pollution Research - It is known that the tailings of gold mines have brought serious heavy metal pollution; however, the heavy metal pollution caused by gold tailings in...  相似文献   

20.
Lai HY  Chen ZS 《Chemosphere》2005,60(8):1062-1071
Rainbow pink (Dianthus chinensis), a potential phytoextraction plant, can accumulate high concentrations of Cd from metal-contaminated soils. The soils used in this study were artificially added with different metals including (1) CK: original soil, (2) Cd-treated soil: 10 mg Cd kg(-1), (3) Zn-treated soil: 100 mg Zn kg(-1), (4) Pb-treated soil: 1000 mg Pb kg(-1), (5) Cd-Zn-treated soil: 10 mg Cd kg(-1) and 100 mg Zn kg(-1), (6) Cd-Pb-treated soil: 10 mg Cd kg(-1) and 1000 mg Pb kg(-1), (7) Zn-Pb-treated soil: 100 mg Zn kg(-1) and 1000 mg Pb kg(-1), and (8) Cd-Zn-Pb-treated soil: 10 mg Cd kg(-1), 100 mg Zn kg(-1), and 1000 mg Pb kg(-1). Three concentrations of 2Na-EDTA solutions (0 (control), 2, and 5 mmol kg(-1) soil) were added to the different metals-treated soils to study the influence of applied EDTA on single and combined metals-contaminated soils phytoextraction using rainbow pink. The results showed that the Cd, Zn, Pb, Fe, or Mn concentrations in different metals-treated soil solutions significantly increased after applying 5 mmol EDTA kg(-1) (p<0.05). The metal concentrations in different metals-treated soils extracted by deionized water also significantly increased after applying 5 mmol EDTA kg(-1) (p<0.05). Because of the high extraction capacity of both 0.005 M DTPA (pH 5.3) and 0.05 M EDTA (pH 7.0), applying EDTA did not significantly increase the Cd, Zn, or Pb concentration in both extracts for most of the treatments. Applying EDTA solutions can significantly increase the Cd and Pb concentrations in the shoots of rainbow pink (p<0.05). However, this was not statistically significant for Zn because of the low Zn concentration added into the contaminated soils. The results from this study indicate that applying 5 mmol EDTA kg(-1) can significantly increase the Cd, Zn, or Pb concentrations both in the soil solution or extracted using deionized water in single or combined metals-contaminated soils, thus increasing the accumulated metals concentrations in rainbow pink shoots. The proposed method worked especially well for Pb (p<0.05). The application of 2 mmol EDTA kg(-1) might too low to enhance the phytoextraction effect when used in silty clay soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号