共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Dana Swift Joe Rothermel Lance Peterson Brennon Orr Gordon H. Bures Jennifer Weidhaas 《补救:环境净化治理成本、技术与工艺杂志》2012,22(2):49-67
A field pilot test in which hydraulic fracturing was used to emplace granular remediation amendment (a mixture of zero‐valent iron [ZVI] and organic carbon) into fine‐grained sandstone to remediate dissolved trichloroethene (TCE)‐contaminated groundwater was performed at a former intercontinental ballistic missile site in Colorado. Hydraulic fracturing was used to enhance the permeability of the aquifer with concurrent emplacement of amendment that facilitates TCE degradation. Geophysical monitoring and inverse modeling show that the network of amendment‐filled fractures extends throughout the aquifer volume targeted in the pilot test zone. Two years of subsequent groundwater monitoring demonstrate that amendment addition resulted in development of geochemical conditions favorable to both abiotic and biological TCE degradation, that TCE concentrations were substantially reduced (i.e., greater than 90 percent reduction in TCE mass), and that the primary degradation processes are likely abiotic. The pilot‐test data aided in re‐evaluating the conceptual site model and in designing the full‐scale remedy to address a larger portion of the TCE‐contaminated groundwater plume. © 2012 Wiley Periodicals, Inc. 相似文献
3.
Soil contamination with persistent pesticides such as dichloro‐diphenyl‐trichloroethane (DDT) is a major issue at many brownfield sites. A technology that can be used to treat DDT‐contaminated soil using surfactants is to enhance the migration of the contaminants from the soil phase to the liquid phase, followed by the dechlorinating of the mobilized DDT in the liquid phase using zero‐valent iron (ZVI). The DDT degradation using ZVI occurs under anaerobic conditions via reductive reactions. The effect of the iron concentration on the dechlorination rate is assessed in the range of 1 to 40 percent (weight to volume) for remediation of a DDT‐contaminated site in Ontario, Canada. The optimum percentage of iron is found to be 20 percent at which the dechlorination rates of DDT and 1,1‐dichloro‐2,2‐bis(p‐chlorophenyl)ethane (DDD) were 4.5 and 0.6 mg/L/day, respectively. While mixing of the reaction solution is shown to be important in providing the iron surface available for the dechlorination reaction throughout the reaction solution, there is no significant difference between batch and fed‐batch mode of adding iron to the dechlorination process. Low pH values (pH = 3) increased the dechlorination rates of DDT and DDD to 6.03 and 0.75 mg/L/day, respectively at a 20 percent iron concentration, indicating increased dechlorination rates in acidic conditions. © 2010 Wiley Periodicals, Inc. 相似文献
4.
A pilot‐scale study was performed using a palladium‐catalyzed and polymer‐coated nanoscale zero‐valent iron (ZVI) particle suspension at the Naval Air Station in Jacksonville, Florida. A total of 300 pounds of nanoscale ZVI particle suspension was injected via a gravity feed and recirculated through a source area containing chlorinated volatile organic compounds (VOCs). The recirculation created favorable mixing and distribution of the iron suspension and enhanced the mass transfer of sorbed and nonaqueous constituents into the aqueous phase, where the contaminants could be reduced. Between 65 and 99 percent aqueous‐phase VOC concentration reduction occurred, due to abiotic degradation, within five weeks of the injection. The rapid abiotic degradation processes then yielded to slower biological degradation as subsequent decreases in ‐elimination parameters were observed—yet favorable redox conditions were maintained as a result of the ZVI treatment. Post‐treatment analyses revealed cumulative reduction of soil contaminant concentrations between 8 and 92 percent. Aqueous‐phase VOC concentrations in wells side gradient and downgradient of the source were reduced up to 99 percent and were near or below applicable regulatory criteria. These reductions, coupled with the generation of innocuous by‐products, indicate that nanoscale ZVI effectively degraded contamination and reduced the mass flux from the source, a critical metric identified for source treatment. A summary of this project was recently presented at the US EPA Workshop on Nanotechnology for Site Remediation in Washington, D.C., on October 21–22, 2005. This case study supplied evidence that nanoscale zero valent iron, an emerging remediation technology, has been implemented successfully in the field. More information about this workshop and this presentation can be found at www.frtr.gov/nano/index.htm. © 2006 Wiley Periodicals, Inc. 相似文献
5.
Suzanne O' Hara Thomas Krug Jacqueline Quinn Christian Clausen Cherie Geiger 《补救:环境净化治理成本、技术与工艺杂志》2006,16(2):35-56
Emulsified zero‐valent iron (EZVI) is a surfactant‐stabilized, biodegradable emulsion that forms droplets consisting of a liquid‐oil membrane surrounding zero‐valent iron (ZVI) particles in water. This article summarizes the results obtained during the first field‐scale deployment of EZVI at NASA's Launch Complex 34 (LC34) located on Cape Canaveral Air Force Station, Florida, in August 2002 and presents the results of recent follow‐on laboratory tests evaluating the mechanisms, which contribute to the performance of the technology. The field‐scale demonstration evaluated the performance of EZVI containing nanoscale zero‐valent iron (NZVI) when applied to dense, nonaqueous phase liquid (DNAPL) trichloroethylene (TCE) in the saturated zone. Results of the field demonstration indicate substantial reductions in TCE soil concentrations (greater than 80 percent) at all but two soil boring locations and significant reductions in TCE groundwater concentrations (e.g., 60 percent to 100 percent) at all depths targeted with EZVI. Laboratory tests conducted in 2005 suggest that both NZVI particles and EZVI containing NZVI can provide significant reductions in TCE mass when used to treat TCE DNAPL in small test reactors. However, EZVI was able to reduce TCE concentrations to lower levels than were obtained with NZVI alone, likely as a result of the combined impact of sequestration of the TCE into the oil phase and degradation of the TCE with the NZVI. © 2006 Wiley Periodicals, Inc. 相似文献
6.
Sadika M. Baladi Catherine M. Lewis Amitava Ganguly Alvin G. Morrow Lisel R. Shoffner Robert F. Blundy Patrick F. Nakagawa Sara T. Mundy Larry Anderson Karen Adams 《补救:环境净化治理成本、技术与工艺杂志》2003,14(1):5-20
Enhanced bioremediation is quickly developing into an economical and viable technology for the remediation of contaminated soils. Until recently, chlorinated organic compounds have proven difficult to bioremediate. Environmentally recalcitrant compounds, such as polychlorinated biphenyls (PCBs) and persistent organic pesticides (POPs) such as dichlorodiphenyl trichloroethane (DDT) have shown to be especially arduous to bioremediate. Recent advances in field‐scale bioremedial applications have indicated that biodegradation of these compounds may be possible. Engineers and scientists at the Savannah River Site (SRS), a major DOE installation near Aiken, South Carolina, are using enhanced bioremediation to remediate soils contaminated with pesticides (DDT and its metabolites, heptachlor epoxide, dieldrin, and endrin) and PCBs. This article reviews the ongoing remediation occurring at the Chemicals, Metals, and Pesticides (CMP) Pits using windrow turners to facilitate microbial degradation of certain pesticides and PCBs. © 2003 Wiley Periodicals, Inc. 相似文献
7.
Kevin A. Morris 《补救:环境净化治理成本、技术与工艺杂志》2011,21(2):69-75
Pressure‐pulse injection tools are widely used in the oil and gas extraction industry to increase well production yields; however, they have been sparingly used in the environmental industry. These injection tools work by applying a pressure pulse to the subsurface that can open subsurface pore throats in unconsolidated material, increasing yields or increasing a radius of influence from a substrate injection. Collection trenches at an industrial site were installed to increase recovery of No. 2 fuel oil in the subsurface and maintain hydraulic control of the contaminant plume. However, after operating for seven years, significant reduction in recovery was observed. Diminished recovery was attributed to biofouling, iron fouling, and/or excessive scaling. A pilot test was conducted in 2009 to determine if a pressure‐pulse injection tool could be used to inject an antifouling agent and rehabilitate two of the site collection trenches. The pilot test was successful in increasing the transmissivity of both trenches, with an order‐of‐magnitude increase in groundwater recovery at Collection Trench 1 and a 50 percent increase in recovery at Collection Trench 2. The trench rehabilitation using the pressure‐pulse injection tool was conducted at two other site collection trenches in 2010 with similar success and is now proposed as part of regular maintenance of the trenches on an as‐needed basis. © 2011 Wiley Periodicals, Inc. 相似文献
8.
A Before‐ After Control‐ Impact Paired (BACIP) model was used to evaluate the effectiveness of phytoremediation treatment on reduction of bentazon concentrations in shallow groundwater at a study site in Louisiana. Two different statistical approaches were made to evaluate the impact to this test site from the remediation program through time. Data were evaluated by Bayesian analysis of variance test methods. Data sets were unique in that the control data used for impact evaluation, as compared to before and after data, were compiled from groundwater upgradient monitoring wells existing prior to remediation. The statistical model supports the hypothesis that the phytoremediation program has positively impacted groundwater at the study site. © 2006 Wiley Periodicals, Inc. 相似文献
9.
An Accelerated Remediation Technologies (ART) In‐Well Technology pilot test was performed to evaluate the removal of chlorinated volatile organic compounds (VOCs) from groundwater. The ART In‐Well Technology was installed in one well located in the source area where dense nonaqueous‐phase liquid has been identified and VOC concentrations exceed 140,000 μg/L. Monitoring wells at the site were positioned between 10 and 170 feet from the ART test well. Overall, VOC concentrations from samples collected from the groundwater monitoring wells and in the vapors extracted for discharge from the ART treatment well were analyzed over the testing period. Monitoring results showed that concentrations of perchloroethylene were reduced in the closest monitoring well to nondetectable concentrations within 90 days. The cumulative removal of chlorinated VOCs from the ART test well over the six‐month pilot test period exceeded 9,500 pounds based on air monitoring data. The ART technology proved effective and cost‐efficient in reducing contaminant concentrations and removing a large mass of contamination from the subsurface in a short period of time. The radius of influence of the ART technology at the site was estimated to range between 65 and 170 feet. © 2007 Wiley Periodicals, Inc. 相似文献
10.
An Erratum has been published for this article in Remediation 16(1) 2005, 155–157. Water‐level data collection is a fundamental component of groundwater investigations and remediation. While the locations and depths of monitored wells are important, the frequency of data collection may have a large impact on conclusions made about site hydrogeology. Data‐logging water‐level probes may be programmed to record water levels at frequent intervals, providing site decision makers with abundant, detailed information on the response of an aquifer to both anticipated and unforeseen stresses. In this study, a network of movable probes has provided several years of hourly water‐ level data. The understanding of the site's phytoremediation system has been enhanced by the continuous data, but subsequent insights into an unexpected situation regarding the site's infrastructure have been the most valuable result of the monitoring program. © 2005 Wiley Periodicals, Inc. 相似文献
11.
Jessica Witt 《补救:环境净化治理成本、技术与工艺杂志》2006,16(4):123-132
This article focuses on the results of a delineation of radioactive contaminants using expedited field characterization equipment at the Department of Energy's Savannah River Site in South Carolina. The objective of the study was to delineate a potential contamination area in the TNX Inner Swamp using cost‐effective field sampling equipment that would give results in a timely manner. The expedited field characterization equipment used was the In Situ Object Counting System (ISOCS) and the Model 935 Surveillance and Measurement System (SAM 935). The study involved an area of approximately 200 acres with 89 surveyed locations. Originally, the contaminant of concern was thorium‐232 because of the health risk to future on‐site workers. As the fieldwork progressed, there were no exceedances in thorium‐232 activities; however, there was one slight exceedance of uranium‐238. The delineation was established from using the ISOCS and SAM 935 sampling equipment in addition to soil sampling from the 0‐ to 1‐foot interval. There was a strong correlation in the analytical data from both the ISOCS and SAM 935 measurements. Thus, this type of sampling characterization is beneficial for determining the extent of contamination at hazardous waste sites. © 2006 Wiley Periodicals, Inc. 相似文献
12.
Raquel Barrena Gómez Felicitas Vázquez Lima Antoni Sánchez Ferrer 《Waste management & research》2006,24(1):37-47
Respiration is directly related to the metabolic activity of a microbial population. Micro-organisms respire at higher rates in the presence of large amounts of bioavailable organic matter while respiration rate is slower if this type of material is scarce. In the composting process respiration activity has become an important parameter for the determination of the stability of compost. It is also used for the monitoring of the composting process and it is considered an important factor for the estimation of the maturity of the material. A wide range of respirometric protocols has been reported based either on CO2 production, O2 uptake or release of heat. The most common methods are those based on O2 uptake. Respirometric assays are affected by a number of parameters including temperature, humidity, and both incubation and pre-incubation conditions. Results from respirometries are generally expressed as 'respiration indices', most of them with their own units and basis. In consequence, some confusion exists when referring and comparing respiration indices. This is particularly important because current and future legislations define and measure the biological stability of waste on the basis of respiration activity of the material. This paper discusses and compares most common respiration indices currently used. 相似文献
13.
14.
In 1994, the U.S. Department of Energy (DOE) initiated a contract reform program intended to strengthen oversight capabilities and encourage the creation of contract and incentive structures, which would effectively facilitate the treatment of onsite contamination and waste. The remedia‐tion and disposal of these legacy wastes is the core of the Department's environmental manage‐ment mission (Government Accountability Office [GAO], 2003). Despite a concerted effort toward achieving the goals of the reform, progress has been slow. Many projects continue to necessitate cost and time extensions above those originally agreed upon. Although the Department insti‐tuted an accelerated cleanup program in 2002, promising to shave some $50 billion and 35 years from its earlier cost and schedule projections, there have been delays in critical project areas that call into question the attainability of the proposed reductions (GAO, 2005). Numerous explana‐tions have been offered as to why achieving these goals has proven so difficult, many of which have concluded that flawed contracting practices are to blame. This article concludes that the root of the problem is much deeper and that the organizational criticisms aimed at DOE are as much a legacy as the waste itself. Although the focus of this article is on large former nuclear weapons sites, these types of contracting and organizational issues are often found at other gov‐ernment and private complex hazardous waste sites. © 2006 Wiley Periodicals, Inc. 相似文献
15.
The Use of Zero‐Valent Iron (ZVI) Technology to Promote DDT and Dieldrin Degradation at Point Pelee National Park 下载免费PDF全文
Point Pelee National Park (PPNP) is highly contaminated with dichlorodiphenyltrichloroethane (DDT) and dieldrin due to the historical use of these two persistent organochlorine pesticides. Zero‐valent iron (ZVI) technology with and without amendments has been successfully used in the past to promote organochlorine pesticides degradation in several locations in North America and Europe. In this study, the use of two commercially available ZVI products, DARAMEND® and EHC®, to promote DDT and dieldrin degradation in PPNP's soil and groundwater were investigated. DARAMEND® was applied to PPNP's soil in a laboratory experiment and in an in situ pilot‐scale plot. In both cases, DARAMEND® did not significantly increase DDT or dieldrin degradation in treated soils. The effectiveness of EHC® was tested in a laboratory experiment that simulated the park's groundwater environment using PPNP's pesticide contaminated soil. The result was consistent with the one reported for DARAMEND®, in that there was no significant increase in DDT or dieldrin degradation in any of the samples treated with EHC®. These results demonstrate that both of these ZVI commercially available products are not suitable for in situ remediation at PPNP. ©2017 Wiley Periodicals, Inc. 相似文献
16.
17.
Ed Gidman Royston Goodacre Bridget Emmett Lucy J. Sheppard Ian D. Leith Dylan Gwynn-Jones 《Water, Air, & Soil Pollution: Focus》2004,4(6):251-258
The potential for metabolic fingerprinting via Fourier-transform infrared (FT-IR) spectroscopy to provide a novel approach for the detection of plant biochemical responses to N deposition is examined. An example of spectral analysis using shoot samples taken from an open top chamber (OTC) experiment simulating wet ammonium deposition is given. Sample preparation involved oven drying and homogenisation via mill grinding. Slurries of a consistent dilution were then prepared prior to FT-IR analysis. Spectra from control, 8 and 16 kg N ha–1 yr–1 treatments were then subjected to cross-validated discriminant function analysis. Ordination diagrams showed clear separation between the three N treatments examined. The potential for using Calluna vulgaris (L.) Hull as a bioindicator of N deposition is further evident from these results. The results also clearly demonstrate the power of FT-IR in discriminating between subtle phenotypic alterations in overall plant biochemistry as affected by ammonium pollution. 相似文献
18.
Ed Gidman Royston Goodacre Bridget Emmett Lucy J. Sheppard Ian D. Leith Dylan Gwynn-Jones 《Water, Air, & Soil Pollution: Focus》2005,4(6):251-258
The potential for metabolic fingerprinting via Fourier-transform infrared (FT-IR) spectroscopy to provide a novel approach for the detection of plant biochemical responses to N deposition is examined. An example of spectral analysis using shoot samples taken from an open top chamber (OTC) experiment simulating wet ammonium deposition is given. Sample preparation involved oven drying and homogenisation via mill grinding. Slurries of a consistent dilution were then prepared prior to FT-IR analysis. Spectra from control, 8 and 16 kg N ha?1 yr?1 treatments were then subjected to cross-validated discriminant function analysis. Ordination diagrams showed clear separation between the three N treatments examined. The potential for using Calluna vulgaris (L.) Hull as a bioindicator of N deposition is further evident from these results. The results also clearly demonstrate the power of FT-IR in discriminating between subtle phenotypic alterations in overall plant biochemistry as affected by ammonium pollution. 相似文献
19.
James J. Pagano 《补救:环境净化治理成本、技术与工艺杂志》2000,11(1):5-16
Investigations conducted at three inactive hazardous waste sites in New York State have confirmed the co‐presence of polychlorinated hiphenyls (PCBs) and polychlorinated terphenyls (PCTs) in soils, sediments, and biota. The PCTs at all three sites were positively identified as Aroclor 5432, with the most probable source being the hydraulic fluid Pydraul 312A utilized for high‐temperature applications. The identification of the lower‐chlorinated PCT formulations in environmental samples is problematical, since PCT Aroclors 5432 and 5442 are not chromatographically distinct from the higher‐chlorinated (PCB) Aroclors 1254, 1260, 1262, and 1268 using conventional gas chromatography–electron capture detection. Results from this study indicate that U.S. Environmental Protection Agency (USEPA) approved PCB methods routinely utilized by most commercial laboratories based on Florisil adsorption column chromatography cleanup are inadequate to produce valid chromatographic separation and quantitative results with soils, sediment, and biota samples containing both PCBs and PCTs. The presence of co‐eluting PCBs and PCTs precludes accurate quantitation due to significant differences in PCB/PCT electron capture detector response factors, and the potential for misidentification of PCT Aroclors as higher chlorinated PCB Aroclors. A method based on alumina column adsorption chromatography was used, allowing for the accurate identification and quantitation of PCB and PCT Aroclors. The results of this study suggest that the utilization of alumina adsorption column separation may have applicability and regulatory significance to other industrially contaminated sites which historically used Pydraul 312A. Inferences. 相似文献
20.
Gerald C. Blount Cathleen C. Caldwell Joao E. Cardoso‐Neto Karen R. Conner G. T. Jannik Charles E. Murphy David C. Noffsinger Jeff A. Ross 《补救:环境净化治理成本、技术与工艺杂志》2002,12(3):43-61
Natural remediation is moving toward the forefront as engineers clean groundwater at the Savannah River Site (SRS), a major Department of Energy (DOE) installation near Aiken, South Carolina. This article reviews two successful, innovative remediation methods currently being deployed: biosparging to treat chlorinated solvents and phytoremediation to address tritium in groundwater. The biosparging system reintroduces oxygen into the groundwater and injects nutrient compounds for in‐situ remediation. The system has greatly reduced the concentrations of trichloroethylene (TCE) and vinyl chloride in wells downgradient from a sanitary landfill (SLF). Phytoremediation is an emerging technology that promises effective and inexpensive cleanup of certain hazardous wastes. Using natural processes, plants can break down, trap and hold, or transpire contaminants. This article discusses the use of phytoremediation to reduce the discharge of tritium to an on‐site stream at SRS. © 2002 Wiley Periodicals Inc. * 相似文献