首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polychlorinated biphenyls (PCBs) are a persistent environmental issue worldwide. This study summarizes the results obtained from a bench‐scale test of remediating PCB‐impacted soil. The research aimed to evaluate the effectiveness of extracting the PCB Aroclor 1260 from soil, transferring it to a liquid matrix, and then treating the PCB‐containing liquid using an Activated Metal Treatment System, a technology developed by NASA based on zero valent magnesium (ZVMg). The soil was from a former electrical plant area impacted by PCBs. The initial concentration of untreated soil contained an average of 4.7 ± 0.15 mg/kg of Aroclor 1260. The results showed that the mass transfer phenomena is possible using ethanol as a liquid matrix, reaching transfer results up to 93 percent. The ZVMg enabled the destruction of the Aroclor 1260, which reached 20 percent without any buildup of undesirable by‐products, such as less chlorinated PCBs.  ©2016 Wiley Periodicals, Inc.  相似文献   

2.
Thin sediment capping is a commonly used technique to prevent mobilization of contaminants from sediments into the environment. A 70‐m‐deep subaqueous confined disposal facility (CDF, 350,000 m2) at Malmøykalven, Oslofjord, which received dredged contaminated sediments from Oslo Harbor, was capped with 148,900 m3 of sand in 2009. This research serves as a case study regarding some of the key considerations involved with the cap placement and monitoring of the cap layer. Uncertainty is included in all the cap thickness monitoring methods and a combined use of them provided a better understanding of the cap coverage and structure at the site. An open water disposal model (STFATE) was used to simulate the behavior of the barge‐released cap material. The modeling results were consistent with field observations regarding the material spread, and the results provided insight into the relatively high material losses calculated. Better knowledge obtained of material settling resulted in cap properties and cap monitoring methods that are useful when planning similar operations. ©2015 Wiley Periodicals, Inc.  相似文献   

3.
Investigations conducted at three inactive hazardous waste sites in New York State have confirmed the co‐presence of polychlorinated hiphenyls (PCBs) and polychlorinated terphenyls (PCTs) in soils, sediments, and biota. The PCTs at all three sites were positively identified as Aroclor 5432, with the most probable source being the hydraulic fluid Pydraul 312A utilized for high‐temperature applications. The identification of the lower‐chlorinated PCT formulations in environmental samples is problematical, since PCT Aroclors 5432 and 5442 are not chromatographically distinct from the higher‐chlorinated (PCB) Aroclors 1254, 1260, 1262, and 1268 using conventional gas chromatography–electron capture detection. Results from this study indicate that U.S. Environmental Protection Agency (USEPA) approved PCB methods routinely utilized by most commercial laboratories based on Florisil adsorption column chromatography cleanup are inadequate to produce valid chromatographic separation and quantitative results with soils, sediment, and biota samples containing both PCBs and PCTs. The presence of co‐eluting PCBs and PCTs precludes accurate quantitation due to significant differences in PCB/PCT electron capture detector response factors, and the potential for misidentification of PCT Aroclors as higher chlorinated PCB Aroclors. A method based on alumina column adsorption chromatography was used, allowing for the accurate identification and quantitation of PCB and PCT Aroclors. The results of this study suggest that the utilization of alumina adsorption column separation may have applicability and regulatory significance to other industrially contaminated sites which historically used Pydraul 312A. Inferences.  相似文献   

4.
An active capping demonstration project in Washington, D.C., is testing the ability to place sequestering agents on contaminated sediments using conventional equipment and evaluating their subsequent effectiveness relative to conventional passive sand sediment caps. Selected active capping materials include: (1) AquaBlokTM, a clay material for permeability control; (2) apatite, a phosphate mineral for metals control; (3) coke, an organic sequestration agent; and (4) sand material for a control cap. All of the materials, except coke, were placed in 8,000‐ft test plots by a conventional clamshell method during March and April 2004. Coke was placed as a 1.25‐cm layer in a laminated mat due to concerns related to settling of the material. Postcap sampling and analysis were conducted during the first, sixth, and eighteenth months after placement. Although postcap sampling is expected to continue for at least an additional 24 months, this article summarizes the results of the demonstration project and postcap sampling efforts up to 18 months. Conventional clamshell placement was found to be effective for placing relatively thin (six‐inch) layers of active material. The viability of placing high‐value or difficult‐to‐place material in a controlled manner was successfully demonstrated with the laminated mat. Postcap monitoring indicates that all cap materials effectively isolated contaminants, but it is not yet possible to differentiate between conventional sand and active cap layer performance. Monitoring of the permeability control layer indicated effective reductions in groundwater seepage rates through the cap, but also showed the potential for gas accumulation and irregular release. All of the cap materials show deposition of new contaminated sediment onto the surface of the caps, illustrating the importance of source control in maintaining sediment quality. © 2006 Wiley Periodicals, Inc.  相似文献   

5.
With the emergence of risk‐based corrective action decisions, there is interest in the use of more natural techniques that may be as protective as the traditional removal, landfill, or capping approaches for impoundment closure. The use of phytoremediation is one of the more promising techniques. This article presents the results of a three‐year field‐pilot phytoremediation study that involved the use of plants to enhance sludge dewatering at an inactive natural gas‐cracking wastewater lagoon. The dewatering was accompanied by contaminant reduction of benzene, toluene, xylene (BTX), and naphthalene concentrations to below the cleanup goals. Meanwhile, the concentration reductions of three or more ring polynuclear aromatic hydrocarbons (PAHs) varied between 30 percent and 60 percent, except for dibenz[a,h]anthracene. The residual PAHs in the sludge are not leaching. Parallel laboratory studies suggest a reduced PAH availability and mobility in the unsaturated zone sludge. © 2002 Wiley Periodicals, Inc.  相似文献   

6.
The Muggah Creek estuary in Sydney, Nova Scotia, received liquid and solid wastes from a steel mill and its associated coke ovens for approximately 100 years. This resulted in pollution of soils and sediments with polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), heavy metals, and other pollutants, including those in untreated domestic wastewaters. The Canadian federal and Nova Scotia provincial governments organized the Sydney Tar Ponds Agency (STPA) to develop a remediation approach for the Coke Ovens site soils and Sydney Tar Ponds sediments. The STPA developed a remediation approach for the Sydney Tar Ponds sediments, involving solidification/stabilization (S/S) through mixing cement and other materials into the sediments, and then capping them as a waste pile. High‐density polyethylene (HDPE) plastic sheeting vertical barriers are proposed to be used to divert groundwater and surface water from entering into the S/S‐treated sediments and to collect any water and associated pollutants released from the S/S‐treated sediments. The Coke Ovens site soils are proposed to be landfarmed to reduce some of the PAHs and other pollutants and then capped with a layer of soil. This remediation program is estimated to cost on the order of $400 million (CAN). This article presents a review of the significant potential problems with the STPA proposed remediation strategy of the Sydney Tar Ponds sediments and Coke Ovens site soils. © 2006 Wiley Periodicals, Inc.  相似文献   

7.
In situ treatability studies are being conducted to evaluate various in situ technologies to manage groundwater contamination at the NASA Marshall Space Flight Center in Huntsville, Alabama. The focus of these studies is to evaluate remediation options for contaminated (mostly aerobic) groundwater occurring within the basal portion of a clayey residuum called the rubble zone. The tension‐saturated media and unsaturated media lying above the rubble zone are also being treated where they make up a significant component of the contaminant mass. An in situ chemical reduction field pilot test was implemented (following bench‐scale tests) during July and August 2000. The test involved the injection of zero‐valent iron powder in slurry form, using the FeroxSM process patented by ARS Technologies, Inc. The pilot test focused on trichloroethene (TCE)‐contaminated groundwater within the rubble zone. Maximum pre‐injection concentrations of about 72,800 micrograms per liter (μg/l) were observed and no secondary sources are believed to exist beneath the area. The potential presence of unexploded ordnance forced an implementation strategy where source area injections were completed, as feasible, followed by overlapping injections in a down gradient alignment to create a permeable reactive zone for groundwater migration. Eight post‐injection rounds of groundwater performance monitoring were completed. The results are encouraging, in terms of predicted responses and decreasing trends in contaminant levels. © 2003 Wiley Periodicals, Inc.  相似文献   

8.
A field pilot test in which hydraulic fracturing was used to emplace granular remediation amendment (a mixture of zero‐valent iron [ZVI] and organic carbon) into fine‐grained sandstone to remediate dissolved trichloroethene (TCE)‐contaminated groundwater was performed at a former intercontinental ballistic missile site in Colorado. Hydraulic fracturing was used to enhance the permeability of the aquifer with concurrent emplacement of amendment that facilitates TCE degradation. Geophysical monitoring and inverse modeling show that the network of amendment‐filled fractures extends throughout the aquifer volume targeted in the pilot test zone. Two years of subsequent groundwater monitoring demonstrate that amendment addition resulted in development of geochemical conditions favorable to both abiotic and biological TCE degradation, that TCE concentrations were substantially reduced (i.e., greater than 90 percent reduction in TCE mass), and that the primary degradation processes are likely abiotic. The pilot‐test data aided in re‐evaluating the conceptual site model and in designing the full‐scale remedy to address a larger portion of the TCE‐contaminated groundwater plume. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
Polychlorinated biphenyls (PCBs) came onto the scene as an environmental threat quickly after they were discovered in humans and wildlife by Jensen in 1966. By October 1970, it was reported that PCBs were “truly ubiquitous pollutants” as PCBs were found at detectable concentrations in environmental samples throughout the world. Before 1971, the U.S. Environmental Protection Agency (EPA) reported that 26% of PCBs sold were used in open‐end use applications, such as caulks, sealants, plasticizers, surface coatings, ink, adhesive, and carbonless paper. Processing and distribution of PCBs in commerce were largely banned in the U.S. after July 1979 with certain continued uses authorized by the EPA. While PCBs were banned a long time ago, the ban had no immediate tangible effect on the continued use of regulated levels of PCBs in buildings constructed before the bans were implemented. Legacy buildings with PCB‐containing building materials continue to represent potential sources of indoor air, dust, outdoor air, and soil contamination. Where PCBs are present in building materials, they have the potential to pose a risk to building occupants. Proper removal of PCB‐containing materials is a highly effective approach to abating the risk. The removal can range from targeting specific building PCB‐containing materials through demolition of the building. Engineering and administrative controls can also be useful tools when addressing the risks posed by PCB‐containing materials.  相似文献   

10.
A 50 ha known contaminated site in Bayonne, New Jersey, U.S.A. is permitted to receive up to 3 × 106 m3 of sediment dredged from navigation channels in the New York/New Jersey Harbor. Much of the sediment is expected to contain low to moderate concentrations of industrial and agricultural chemicals, including Polychlorinated Biphenyls (PCBs). The dredged material brought to the site is stabilized with cement and then placed as a capping and grading layer. The flux of PCBs from drying stabilized dredged material has been estimated from measurements of PCB air concentrations at two heights above the ground along with micrometeorological observations. A statistically significant gradient in PCB concentrations has been consistently measured in the first 3 m above the ground. Observed PCB fluxes were highest over freshly placed stabilized dredged sediment and decreased as it cured. The highest flux observed in this study was 7214 ng/m2/h, but during subsequent sampling intervals at the same site, the flux estimates decreased by an order of magnitude over a 5-day interval.  相似文献   

11.
This article presents the results of a pilot test that was conducted to determine the effectiveness of using steam‐enhanced dual‐phase extraction (DPE) at a former industrial site in New York. The pilot test proved that steam‐enhanced DPE was very effective at removing significant contaminant mass from the subsurface in a relatively short time period. Concentrations of volatile organic compounds and semivolatile organic compounds in the vapor stream and groundwater were successfully reduced, in some cases by orders of magnitude. Based on the results of the steam‐enhanced DPE pilot test, the final remedy for the site includes implementing this technology at selected areas as an alternative to DPE alone or other remedial alternatives, such as excavation or groundwater pump and treat. © 2003 Wiley Periodicals, Inc.  相似文献   

12.
This study evaluated pilot‐scale active caps composed of apatite, organoclay, biopolymers, and sand for the remediation of metal‐contaminated sediments. The active caps were constructed in Steel Creek, at the Savannah River Site near Aiken, South Carolina. Monitoring was conducted for 12 months. Effectiveness of the caps was based on an evaluation of contaminant bioavailability, resistance to erosion, and impacts on benthic organisms. Active caps lowered metal bioavailability in the sediment during the one‐year test period. Biopolymers reduced sediment suspension during cap construction, increased the pool of carbon, and lowered the release of metals. This field validation showed that active caps can effectively treat contaminants by changing their speciation, and that caps can be constructed to include more than one type of amendment to achieve multiple goals. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
An Accelerated Remediation Technologies (ART) In‐Well Technology pilot test was performed to evaluate the removal of chlorinated volatile organic compounds (VOCs) from groundwater. The ART In‐Well Technology was installed in one well located in the source area where dense nonaqueous‐phase liquid has been identified and VOC concentrations exceed 140,000 μg/L. Monitoring wells at the site were positioned between 10 and 170 feet from the ART test well. Overall, VOC concentrations from samples collected from the groundwater monitoring wells and in the vapors extracted for discharge from the ART treatment well were analyzed over the testing period. Monitoring results showed that concentrations of perchloroethylene were reduced in the closest monitoring well to nondetectable concentrations within 90 days. The cumulative removal of chlorinated VOCs from the ART test well over the six‐month pilot test period exceeded 9,500 pounds based on air monitoring data. The ART technology proved effective and cost‐efficient in reducing contaminant concentrations and removing a large mass of contamination from the subsurface in a short period of time. The radius of influence of the ART technology at the site was estimated to range between 65 and 170 feet. © 2007 Wiley Periodicals, Inc.  相似文献   

14.
This study investigates the potential for perchlorate biodegradation in the sediments of the Las Vegas Wash area in Henderson, Nevada. The continuous transport of perchlorate from a contaminated seepage to the Las Vegas Wash, Lake Mead, and the Colorado River has resulted in considerable deposition of perchlorate along the sediments of the Las Vegas Wash. The contaminated sediments act as a distributed source of perchlorate, making efforts to stop the flow of perchlorate to the Colorado River very challenging. In this study, perchlorate‐ reducing bacteria were enumerated and microcosm tests were performed to investigate the role of indigenous microorganisms and the limitations to natural perchlorate biodegradation in the contaminated sediments. The results of microcosm tests revealed that, despite the high number of perchloratereducing bacteria present, natural perchlorate in the area appears to be limited by (1) high salinity levels, the presence of nitrate, and the low perchlorate concentrations present in the sediments and (2) an insufficient carbon source. However, the potential for in situ bioremediation of the sediments along the Wash area is considered to be high due to the presence of significant numbers of perchlorate‐ reducing bacteria and to the ease in which an additional carbon source could be provided to sustain nitrate and perchlorate biodegradation. The economics of this process are expected to be very favorable; however, detailed cost estimates, pilot‐scale testing, and permit applications are required before this concept can be applied. © 2005 Wiley Periodicals, Inc.  相似文献   

15.
A pile of pyrite cinders discharged from a former manufacturing facility rest upon the bottom of the St. Lawrence River adjacent to Clark Island. In situ capping was the selected remedy to control both the fine particle resuspension that produced a red mud cloud in the water, commonly formed on windy days, and the soluble metals concentrations originating from the pyrite pile. Metal mass balances around the pile allowed estimates of the pre‐capping release rates. Elevated concentrations above the pile were observed for eight metals; these included iron, lead, mercury, selenium, arsenic, copper, cadmium, and zinc. After iron, the highest concentration in the pyrite particles were cadmium and zinc present in the 1,000 mg/kg range. Mercury was the lowest at the 10 mg/kg level in the pyrite solids. For iron the soluble release rate was estimated to be 0.08 g/s, and the particle release was 0.8 to 1.2 g/s. A 30 cm cap consisting of particles 19 to 40 mm in diameter is proposed for the site. Its placement covers a ten‐hectare area and is expected to isolate the fine pyrite particles and prohibit their resuspension into the water column. Design estimates of steady state flux reduction efficiencies range from a low of 99.21 percent for iron to a high of 99.96 percent for copper. Breakthrough times to achieve these steady state flux reductions range from 100 to 3,800 years and metal porewater concentrations at 5 cm below the cap surface are estimated to be reduced by 83 percent. Although soluble metals will continue to be released from the pile zone, the flux of all the metals will be significantly reduced. © 2002 Wiley Periodicals, Inc.  相似文献   

16.
Perchlorate has been identified as a water contaminant in 14 states, including California, Nevada, New Mexico, Arizona, Utah, and Texas, and current estimates suggest that the compound may affect the drinking water of as many as 15 million people. Biological treatment represents the most‐favorable technology for the effective and economical removal of perchlorate from water. Biological fluidized bed reactors (FBRs) have been tested successfully at the pilot scale for perchlorate treatment at several sites, and two full‐scale FBR systems are currently treating perchlorate‐contaminated groundwater in California and Texas. A third full‐scale treatment system is scheduled for start‐up in early 2002. The in‐situ treatment of perchlorate through addition of specific electron donors to groundwater also appears to hold promise as a bioremediation technology. Recent studies suggest that perchlorate‐reducing bacteria are widely occurring in nature, including in groundwater aquifers, and that these organisms can be stimulated to degrade perchlorate to below the current analytical reporting limit (< 4 μg/l) in many instances. In this article, in‐situ and ex‐situ options for biological treatment of perchlorate‐contaminated groundwater are discussed and results from laboratory and field experiments are presented. © 2002 Wiley Periodicals, Inc.  相似文献   

17.
 Polychlorinated biphenyls (PCBs), a type of persistent organic pollutants (POPs), are considered to be endocrine disrupters. According to the Stockholm Convention on POPs, PCB detoxification is being accelerated globally. We have developed an environmentally sound chemical PCB detoxification plant using the ultraviolet ray/catalyst method. The purpose of this paper is to check the design methodology for the PCB detoxification plant by the application of probabilistic safety analysis. First, possible hazardous events were determined; second, the weakest points in these hazardous events were established; and third, the impact when failures arise at the weak points in the system were studied. We clarified the preventive measures as follows. To prevent PCBs leaking into the environment, select leak-tight valves for the piping containing PCBs, and reduce the number of valves. To prevent fire or explosions due to leaks of an inflammable mixture, select leak-tight valves, reduce the number of valves installed in the piping, and improve the reliability of the suppression tank in the isopropyl alcohol (IPA) recovery unit. Received: February 27, 2001 / Accepted: June 17, 2002  相似文献   

18.
A novel, multilayered shoreline cap was designed and installed to mitigate the release of petroleum light nonaqueous phase liquid (LNAPL) and dissolved‐phase groundwater constituents to the Willamette River in Portland, OR. Releases of LNAPL related to upland impacts caused occasional sheens on a portion of the river within the Portland Harbor Superfund Site. The frequency and volume of sheens decreased following the installation of an upland sheet pile barrier wall, but occasional sheens related to LNAPL impacts stranded downgradient of the wall continued–prompting the design of a shoreline remedy. Because the site is located within the Portland Harbor Superfund Site, the cap was designed to mitigate sheen and to meet the objectives specified in the Portland Harbor Record of Decision including limiting the discharge of certain dissolved‐phase constituents of interest. The cap design was the first instance of combining an oleophilic bio‐barrier to mitigate sheen and an activated carbon layer to capture dissolved‐phase constituents. No sheens have been visually observed since cap installation.  相似文献   

19.
Active sediment caps are being considered for addressing contaminated sediment areas in surface‐water bodies. A demonstration of an active cap designed to reduce advective transport of contaminants using AquaBlok® (active cap material) was initiated in a small study area of the Anacostia River in Washington, D.C. The cap remained physically stable, demonstrated the ability to divert groundwater flow, and was recolonized with native organisms after 30 months of monitoring following cap placement. However, the long‐term performance of active caps associated with harsh environmental conditions, hydrogeological settings, and subsurface gas production needs to be further evaluated. © 2008 Wiley Periodicals, Inc.  相似文献   

20.
In June 1992, SoilTech ATP Systems, Inc., completed the soil treatment phase of the Waukegan Harbor Superfund Project in Waukegan, Illinois, after approximately five months of operation. SoilTech successfully treated 12,700 tons of sediment contaminated with polychlorinated hiphenyls (PCBs) using a transportable SoilTech anaerobic thermal processor (ATP) system nominally rated at ten tons per hour throughput capacity. The SoilTech ATP technology anaerobically desorbs contaminants such as PCBs from solids and sludges at temperatures over 1,000° F. Principal products of the process are clean, treated solids and an oil condensate containing the hydrocarbon contaminants. At the Waukegan Harbor Superfund site, PCB concentrations in the sediments excavated and dredged from a ditch, lagoon, and harbor slip averaged 10,400 parts per million (ppm) (1.04 percent) and were as high as 23,000 ppm (2.3 percent). Treated soil was backfilled in an on-site containment cell. The removal efficiency of PCBs from the soil averaged 99.98 percent, relative to the project performance specification of 97 percent, and treated soil PCB concentrations were measured below 2 ppm. Approximately 30,000 gallons of PCB oil, desorbed from the feed material, were returned to the owner for subsequent off-site disposal. After modifications to the emissions control equipment, compliance with the 99.9999 percent destruction and removal efficiency (DRE) for PCBs in stack emissions required by the U.S. Environmental Protection Agency was achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号