首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Borer ET  Halpern BS  Seabloom EW 《Ecology》2006,87(11):2813-2820
Eutrophication and predator additions and extinctions are occurring in ecosystems worldwide. Although theory predicts that both will strongly alter the distribution of biomass in whole communities, empirical evidence has not been consolidated to quantitatively determine whether these theoretical predictions are generally borne out in real ecosystems. Here we analyze data from two types of trophic cascade studies, predator removals in factorial combination with fertilization and observed productivity gradients, to assess the role of top-down and bottom-up forces in structuring multi-trophic communities and compare results from these analyses to those from an extensive database of trophic cascade studies. We find that herbivore biomass declines and plant biomass increases in the presence of predators, regardless of system productivity. In contrast, while plants are increased by fertilization, this effect does not significantly increase herbivores in either the presence or absence of predators. These patterns are consistent among marine, freshwater, and terrestrial ecosystems and are largely independent of study size and duration. Thus, top-down effects of predation are transferred through more trophic levels than are bottom-up effects of eutrophication, showing strong asymmetry in the direction of control of biomass distribution in communities.  相似文献   

2.
Otto SB  Berlow EL  Rank NE  Smiley J  Brose U 《Ecology》2008,89(1):134-144
Declining predator diversity may drastically affect the biomass and productivity of herbivores and plants. Understanding how changes in predator diversity can propagate through food webs to alter ecosystem function is one of the most challenging ecological research topics today. We studied the effects of predator removal in a simple natural food web in the Sierra Nevada mountains of California (USA). By excluding the predators of the third trophic level of a food web in a full-factorial design, we monitored cascading effects of varying predator diversity and composition on the herbivorous beetle Chrysomela aeneicollis and the willow Salix orestera, which compose the first and second trophic levels of the food web. Decreasing predator diversity increased herbivore biomass and survivorship, and consequently increased the amount of plant biomass consumed via a trophic cascade. Despite this simple linear mean effect of diversity on the strength of the trophic cascade, we found additivity, compensation, and interference in the effects of multiple predators on herbivores and plants. Herbivore survivorship and predator-prey interaction strengths varied with predator diversity, predator identity, and the identity of coexisting predators. Additive effects of predators on herbivores and plants may have been driven by temporal niche separation, whereas compensatory effects and interference occurred among predators with a similar phenology. Together, these results suggest that while the general trends of diversity effects may appear linear and additive, other information about species identity was required to predict the effects of removing individual predators. In a community that is not temporally well-mixed, predator traits such as phenology may help predict impacts of species loss on other species. Information about predator natural history and food web structure may help explain variation in predator diversity effects on trophic cascades and ecosystem function.  相似文献   

3.
Bottom-up effects of plant genotype on aphids, ants, and predators   总被引:1,自引:0,他引:1  
Johnson MT 《Ecology》2008,89(1):145-154
Theory predicts that bottom-up ecological forces can affect community dynamics, but whether this extends to the effects of heritable plant variation on tritrophic communities is poorly understood. In a field experiment, I contrasted the effects of plant genotype (28 genotypes; 1064 plants), aphid density, and the presence/absence of mutualistic ants in affecting the per capita population growth of a specialist aphid herbivore, as well as the effects of plant genotype on the third trophic level. Plant genotype strongly affected aphid population growth rate, explaining 29% of the total variation in growth rate, whereas aphid density and ant-aphid interactions explained substantially less variation (< 2%) in aphid population growth rate. Plant genotype also had direct and indirect effects on the third trophic level, affecting the abundance of aphid-tending ants and the richness of predators. Multiple regression identified several heritable plant traits that explained 49% of the variation in aphid growth rate and 30% of the variation in ant abundance among plant genotypes. These bottom-up effects of plant genotype on tritrophic interactions were independent of the effects of either initial aphid density or the presence/absence of mutualistic ants. This study shows that plant genotype can be one of the most important ecological factors shaping tritrophic communities.  相似文献   

4.
Barber NA  Marquis RJ 《Ecology》2011,92(3):699-708
Ecological communities are structured by both deterministic, niche-based processes and stochastic processes such as dispersal. A pressing issue in ecology is to determine when and for which organisms each of these types of processes is important in community assembly. The roles of deterministic and stochastic processes have been studied for a variety of communities, but very few researchers have addressed their contribution to insect herbivore community structure. Insect herbivore niches are often described as largely shaped by the antagonistic pressures of predation and host plant defenses. However host plants are frequently discrete patches of habitat, and their spatial arrangement can affect herbivore dispersal patterns. We studied the roles of predation, host plant quality, and host spatial proximity for the assembly of a diverse insect herbivore community on Quercus alba (white oak) across two growing seasons. We examined abundances of feeding guilds to determine if ecologically similar species responded similarly to variation in niches. Most guilds responded similarly to leaf quality, preferring high-nitrogen, low-tannin host plants, particularly late in the growing season, while bird predation had little impact on herbivore abundance. The communities on the high-quality plants tended to be larger and, in some cases, have greater species richness. We analyzed community composition by correlating indices of community similarity with predator presence, leaf quality similarity, and host plant proximity. Birds did not affect community composition. Community similarity was significantly associated with distance between host plants and uncorrelated with leaf quality similarity. Thus although leaf quality significantly affected the total abundance of herbivores on a host plant, in some cases leading to increased species richness, dispersal limitation may weaken this relationship. The species composition of these communities may be driven by stochastic processes rather than variation in host plant characteristics or differential predation by insectivorous birds.  相似文献   

5.
Underwood N  Halpern SL 《Ecology》2012,93(5):1026-1035
How insect herbivores affect plant performance is of central importance to basic and applied ecology. A full understanding of herbivore effects on plant performance requires understanding interactions (if any) of herbivore effects with plant density and size because these interactions will be critical for determining how herbivores influence plant population size. However, few studies have considered these interactions, particularly over a wide enough range of densities to detect nonlinear effects. Here we ask whether plant density and herbivores influence plant performance linearly or nonlinearly, how plant density affects herbivore damage, and how herbivores alter density dependence in transitions between plant size classes. In a large field experiment, we manipulated the density of the herbaceous perennial plant Solanum carolinense and herbivore presence in a fully crossed design. We measured plant size, sexual reproduction, and damage to plants in two consecutive years, and asexual reproduction of new stems in the second year, allowing us to characterize both plant performance and rates of transition between plant size classes across years. We found nonlinear effects of plant density on damage. Damage by herbivores and plant density both influenced sexual and asexual reproduction of S. carolinense; these effects were mostly mediated via effects on plant size. Importantly, we found that herbivores altered the pattern of linear density dependence in some transition rates (including survival and asexual reproduction) between plant size classes. These results suggest that understanding the ecological or evolutionary effects of herbivores on plant populations requires consideration of plant density and plant size, because feedbacks between density, herbivores, and plant size may complicate longer-term dynamics.  相似文献   

6.
Many plant species defend themselves against herbivorous insects indirectly by producing and releasing induced volatiles to attract natural enemies of the herbivores. In this paper, we consider the recruitment of natural enemies attracted by plant-induced volatiles and introduce the An–Liu–Johnson–Lovett model into the Lotka–Volterra model in an attempt to add this missing vital link in tritrophic interaction. Increase in attraction strength of plant-induced volatiles to the natural enemy leads to high fluctuation amplitude of plant biomass and herbivore population. When the attack strength of natural enemies reaches a certain level, fluctuation amplitude of plant biomass and herbivore population will decrease and plant biomass will approach to its environmental carrying capacity. The simulation demonstrates that plant volatile compounds induced by insects have led to the introduction of a third tritrophic level, e.g., natural enemies, into the plant–herbivore system, resulting in the coexistence of plants, insects, and natural enemies during the evolution process.  相似文献   

7.
Indirect effects of trophic interactions on biodiversity can be large and common, even in complex communities. Previous experiments with dominant understory Piper shrubs in a Costa Rican rain forest revealed that increases in herbivore densities on these shrubs caused widespread seedling mortality as a result of herbivores moving from Piper to seedlings of many different plant genera. We tested components of the Janzen-Connell hypothesis by conducting focused studies on the effects of specialist and generalist Piper herbivores on local seedling diversity. Whereas specialist herbivores are predicted to increase mortality to neighboring seedlings that are closely related to the source plant, true generalists moving from source plants may cause density-dependent mortality of many species, and possibly increase richness if new species replace abundant species that have been thinned by herbivores. Therefore, we hypothesized that seedling richness would be greater in understory control plots created in patches of Piper that had normal densities of generalist herbivores compared to plots from which we removed generalist herbivores manually from all Piper shrubs. After 15 months, generalist-herbivore-removal plots had > 40% fewer seedlings, > 40% fewer species, and 40% greater seedling evenness, on average, than control plots with generalist herbivores intact. Using a complementary approach in unmanipulated plots in four forests, we used path analysis to test for a positive association between seedling diversity and herbivore damage on Piper species. In unmanipulated plots, for both generalist and specialist herbivores, our data were significant fits to the causal model that Piper herbivores decrease evenness and increase plant species richness, corroborating the experimental results. Because herbivores changed how individuals were apportioned among the species and families present (lower evenness), one interpretation of these associations between herbivores on Piper shrubs and local seedling richness is that high seedling mortality in dominant families allowed the colonization or survival of less common species. If interspecific or apparent competition allowed for a relative increase in species richness, then the Janzen-Connell hypothesis may extend its predictions to generalist seedling predators. We speculate that apparent competition may explain some of the deviations from neutral model predictions, especially at small scales.  相似文献   

8.
Hines J  Megonigal JP  Denno RF 《Ecology》2006,87(6):1542-1555
Historically, terrestrial food web theory has been compartmentalized into interactions among aboveground or belowground communities. In this study we took a more synthetic approach to understanding food web interactions by simultaneously examining four trophic levels and investigating how nutrient (nitrogen and carbon) and detrital subsidies impact the ability of the belowground microbial community to alter the abundance of aboveground arthropods (herbivores and predators) associated with the intertidal cord grass Spartina alterniflora. We manipulated carbon, nitrogen, and detrital resources in a field experiment and measured decomposition rate, soil nitrogen pools, plant biomass and quality, herbivore density, and arthropod predator abundance. Because carbon subsidies impact plant growth only indirectly (microbial pathways), whereas nitrogen additions both directly (plant uptake) and indirectly (microbial pathways) impact plant primary productivity, we were able to assess the effect of both belowground soil microbes and nutrient availability on aboveground herbivores and their predators. Herbivore density in the field was suppressed by carbon supplements. Carbon addition altered soil microbial dynamics (net potential ammonification, litter decomposition rate, DON [dissolved organic N] concentration), which limited inorganic soil nitrogen availability and reduced plant size as well as predator abundance. Nitrogen addition enhanced herbivore density by increasing plant size and quality directly by increasing inorganic soil nitrogen pools, and indirectly by enhancing microbial nitrification. Detritus adversely affected aboveground herbivores mainly by promoting predator aggregation. To date, the effects of carbon and nitrogen subsidies on salt marshes have been examined as isolated effects on either the aboveground or the belowground community. Our results emphasize the importance of directly addressing the soil microbial community as a factor that influences aboveground food web structure by affecting plant size and aboveground plant nitrogen.  相似文献   

9.
Alba C  Bowers MD  Hufbauer R 《Ecology》2012,93(8):1912-1921
Optimal defense theory posits that plants with limited resources deploy chemical defenses based on the fitness value of different tissues and their probability of attack. However, what constitutes optimal defense depends on the identity of the herbivores involved in the interaction. Generalists, which are not tightly coevolved with their many host plants, are typically deterred by chemical defenses, while coevolved specialists are often attracted to these same chemicals. This imposes an "evolutionary dilemma" in which generalists and specialists exert opposing selection on plant investment in defense, thereby stabilizing defenses at intermediate levels. We used the natural shift in herbivore community composition that typifies many plant invasions to test a novel, combined prediction of optimal defense theory and the evolutionary dilemma model: that the within-plant distribution of defenses reflects both the value of different tissues (i.e., young vs. old leaves) and the relative importance of specialist and generalist herbivores in the community. Using populations of Verbascum thapsus exposed to ambient herbivory in its native range (where specialist and generalist chewing herbivores are prevalent) and its introduced range (where only generalist chewing herbivores are prevalent), we illustrate significant differences in the way iridoid glycosides are distributed among young and old leaves. Importantly, high-quality young leaves are 6.5x more highly defended than old leaves in the introduced range, but only 2x more highly defended in the native range. Additionally, defense levels are tracked by patterns of chewing damage, with damage restricted mostly to low-quality old leaves in the introduced range, but not the native range. Given that whole-plant investment in defense does not differ between ranges, introduced mullein may achieve increased fitness simply by optimizing its within-plant distribution of defense in the absence of certain specialist herbivores.  相似文献   

10.
Lau JA 《Ecology》2008,89(4):1023-1031
Biological invasions can have strong ecological effects on native communities by altering ecosystem functions, species interactions, and community composition. Even though these ecological effects frequently impact the population dynamics and fitness of native species, the evolutionary consequences of biological invasions have received relatively little attention. Here, I show that invasions impose novel selective pressures on a native plant species. By experimentally manipulating community composition, I found that the exotic plant Medicago polymorpha and the exotic herbivore Hypera brunneipennis alter the strength and, in some instances, the direction of natural selection on the competitive ability and anti-herbivore defenses of the native plant Lotus wrangelianus. Furthermore, the community composition of exotics influenced which traits were favored. For example, high densities of the exotic herbivore Hypera selected for increased resistance to herbivores in the native Lotus; however, when Medicago also was present, selection on this defense was eliminated. In contrast, selection on tolerance, another plant defense trait, was highest when both Hypera and Medicago were present at high densities. Thus, multiple exotic species may interact to influence the evolutionary trajectories of native plant populations, and patterns of selection may change as additional exotic species invade the community.  相似文献   

11.
Albarracin MT  Stiling P 《Ecology》2006,87(10):2673-2679
It has been suggested, but rarely tested, that the relative strength of top-down and bottom-up factors in communities varies along an environmental stress gradient. We compared the strength of bottom-up and top-down effects on the densities of insect herbivores along a range of sites of different salinities in west-central Florida. We used a 2 x 2 factorial design with plots divided into four treatments: (1) bottom-up manipulation, where fertilizer was applied to increase plant quality; (2) top-down manipulation, where sticky traps were used to reduce the effects of natural enemies (parasitoids); (3) bottom-up and top-down manipulation, where fertilizer was applied and sticky traps were used; and (4) control plots. These plots were established along a range of salinities among seven different sites containing the salt marsh plant Borrichia frutescens. In each plot, we determined the parasitism levels and abundances of the sap sucker Pissonotus quadripustulatus, the gall maker Asphondylia borrichiae, and the lepidopteran stem borer Argyresthia spp. Gall density, Pissonotus density, and stem borer density were significantly higher in lower salinity sites, suggesting a strong effect of environmental stress. There was a significant increase of galls and Pissonotus and a marginally significant increase of bored stems on fertilized plots but not on trapped plots. There was a significant interaction of site and fertilizer on gall parasitism. There were no interactions of either treatment with salinity on herbivore densities. The general lack of interaction between salinity level and other treatments on herbivore densities contrasts with our previous result where treatment effects did vary with salinity level on a large experimentally generated salinity gradient at one site. Thus, the results of the present paper suggest that, while environmental stress can modify top-down and bottom-up effects on herbivores at single sites, variation in site-to-site factors, possibly including clonal identity of plant, affects herbivore densities so much as to swamp out any observable interaction between environmental stress and top-down or bottom-up factors.  相似文献   

12.
Morrison WE  Hay ME 《Ecology》2012,93(1):65-74
Increased herbivory at lower latitudes is hypothesized to select for more effective plant defenses. Feeding assays with seaweeds and salt marsh plants support this hypothesis, with low-latitude plants experiencing greater damage in the field and being less palatable than higher-latitude plants. We tested this hypothesis for freshwater macrophytes because they offered an independent plant lineage and habitat type for testing this general hypothesis and because the patchiness of consumer occupancy across isolated water bodies might produce local variance in herbivory that would override geographic variance and produce different results for this habitat type. When we fed eight congeneric pairs of live plants from four sites in Indiana vs. four sites in South Florida (-215 and 0 frost days/yr respectively) to three species of crayfishes and one species of snail, three of the four herbivores significantly preferred high-latitude to low-latitude plants. For two crayfishes that differed in feeding on live plants (one favoring high-latitude plants and one not), we retested feeding using foods composed of freeze-dried and finely ground plants, thus removing structural characteristics while retaining most chemical/nutritional traits. In this assay, both herbivores strongly preferred high-latitude plants, suggesting that lower-latitude plants had been selected for more deterrent chemical traits. When we collected 22 pairs of congeneric plants from 9 sites throughout Indiana vs. 13 sites in Central Florida (-215 and -95 frost days/yr respectively) and tested these in feeding assays with three crayfishes using dried, ground, and reconstituted plant material, we found a significant effect of latitude for only one of three species of herbivore. Overall, our results suggest a preference for high-latitude plants, but the strength of this relationship varied considerably across small scales of latitude that differed considerably in numbers of frost-free days. The difference in results suggests that large changes in frost frequency over small spatial scales may affect selection for plant defenses, that local variance in herbivory overrode differential selection at geographic scales, or that these possibilities interact when durations of cold weather periodically exclude herbivores from shallower habitats, producing heterogeneous selection for defenses at small spatial scales.  相似文献   

13.
Lau JA  Strengbom J  Stone LR  Reich PB  Tiffin P 《Ecology》2008,89(1):226-236
Resource abundance and plant diversity are two predominant factors hypothesized to influence the amount of damage plants receive from natural enemies. Many impacts of these environmental variables on plant damage are likely indirect and result because both resource availability and diversity can influence plant traits associated with attractiveness to herbivores or susceptibility to pathogens. We used a long-term, manipulative field experiment to investigate how carbon dioxide (CO2) enrichment, nitrogen (N) fertilization, and plant community diversity affect plant traits and the amount of herbivore and pathogen damage experienced by the common prairie legume Lespedeza capitata. We detected little evidence that CO2 or N affected plant traits; however, plants growing in high-diversity treatments (polycultures) were taller, were less pubescent, and produced thinner leaves (higher specific leaf area). Interestingly, we also detected little evidence that CO2 or N affect damage. Plants growing in polycultures compared to monocultures, however, experienced a fivefold increase in damage from generalist herbivores, 64% less damage from specialist herbivores, and 91% less damage from pathogens. Moreover, within diversity treatments, damage by generalist herbivores was negatively correlated with pubescence and often was positively correlated with plant height, while damage by specialist herbivores typically was positively correlated with pubescence and negatively associated with height. These patterns are consistent with changes in plant traits driving differences in herbivory between diversity treatments. In contrast, changes in measured plant traits did not explain the difference in disease incidence between monocultures and polycultures. In summary, our data provide little evidence that CO2 or N supply alter damage from natural enemies. By contrast, plants grown in monocultures experienced greater specialist herbivore and pathogen damage but less generalist herbivore damage than plants grown in diverse communities. Part of this diversity effect was mediated by changes in plant traits, many of which likely are plastic responses to diversity treatments, but some of which may be the result of evolutionary changes in response to these long-term experimental manipulations.  相似文献   

14.
15.
Plant traits are influenced by herbivore diet selection, but little is known about how traits are affected by different types of herbivores. We related eight traits of 27 subalpine shrub species in South Island, New Zealand, to damage of these shrubs by introduced red deer (Cervus elaphus) and native invertebrate herbivores using phylogenetically explicit modeling. Deer preferentially consumed species that grew quickly, were low in foliar tannins, or had high leaf area per unit mass. However, these traits did not trade off against each other; rather, they could be related to different multivariate defense strategies. Although the proportion of leaves damaged by leaf-chewing invertebrates also increased with stem growth, invertebrates did not damage the same fast growing species as those preferred by deer. Other traits may also be important in determining herbivore preferences, as suggested by the high proportion of variation in herbivory explained by phylogeny. Last, we found that the composition of invertebrate herbivore communities was more similar among closely related shrubs, and consequently, the range of invertebrate-plant associations may change if introduced deer shift plant composition toward slow-growing species. Overall, our results demonstrate the importance of herbivore type and coevolved interactions for the adaptive significance of plant traits.  相似文献   

16.
Wimp GM  Murphy SM  Finke DL  Huberty AF  Denno RF 《Ecology》2010,91(11):3303-3311
Numerous studies have examined relationships between primary production and biodiversity at higher trophic levels. However, altered production in plant communities is often tightly linked with concomitant shifts in diversity and composition, and most studies have not disentangled the direct effects of production on consumers. Furthermore, when studies do examine the effects of plant production on animals in terrestrial systems, they are primarily confined to a subset of taxonomic or functional groups instead of investigating the responses of the entire community. Using natural monocultures of the salt marsh cordgrass Spartina alterniflora, we were able to examine the impacts of increased plant production, independent of changes in plant composition and/or diversity, on the trophic structure, composition, and diversity of the entire arthropod community. If arthropod species richness increased with greater plant production, we predicted that it would be driven by: (1) an increase in the number of rare species, and/or (2) an increase in arthropod abundance. Our results largely supported our predictions: species richness of herbivores, detritivores, predators, and parasitoids increased monotonically with increasing levels of plant production, and the diversity of rare species also increased with plant production. However, rare species that accounted for this difference were predators, parasitoids, and detritivores, not herbivores. Herbivore species richness could be simply explained by the relationship between abundance and diversity. Using nonmetric multidimensional scaling (NMDS) and analysis of similarity (ANOSIM), we also found significant changes in arthropod species composition with increasing levels of production. Our findings have important implications in the intertidal salt marsh, where human activities have increased nitrogen runoff into the marsh, and demonstrate that such nitrogen inputs cascade to affect community structure, diversity, and abundance in higher trophic levels.  相似文献   

17.
Aquilino KM  Stachowicz JJ 《Ecology》2012,93(4):879-890
The importance of herbivores and of plant diversity for community succession and recovery from disturbance is well documented. However, few studies have assessed the relative magnitude of, or potential interactions between, these factors. To determine the combined effect of herbivory and surrounding algal species richness on the recovery of a rocky intertidal community, we conducted a 27-month field experiment assessing algal recruitment and succession in cleared patches that mimic naturally forming gaps in the ambient community. We crossed two herbivore treatments, ambient and reduced abundance, with monocultures and polycultures of the four most common algal species in a mid-high rocky intertidal zone of northern California. We found that both the presence of herbivores and high surrounding algal richness increased recovery rates, and the effect of algal richness was twice the magnitude of that of herbivores. The increased recovery rate of patches containing herbivores was due to the consumption of fast-growing, early colonist species that preempt space from perennial, late-successional species. Mechanisms linking algal richness and recovery are more numerous. In polycultures, herbivore abundance and species composition is altered, desiccation rates are lower, and propagule recruitment, survival, and growth are higher compared to monocultures, all of which could contribute the observed effect of surrounding species richness. Herbivory and species richness should jointly accelerate recovery wherever palatable species inhibit late-successional, herbivore-resistant species and recruitment and survival of new colonists is promoted by local species richness. These appear to be common features of rocky-shore seaweed, and perhaps other, communities.  相似文献   

18.
Long JD  Hamilton RS  Mitchell JL 《Ecology》2007,88(5):1232-1240
Species may compete indirectly by altering the traits of a shared resource. For example, herbivore-induced responses in plants may make plants more resistant or susceptible to additional herbivorous insect species. Herbivore-induced plant responses can significantly affect interspecific competition and herbivore population dynamics. These herbivore-herbivore indirect interactions have been overlooked in aquatic ecosystems where previous studies used the same herbivore species to induce changes and to assess the effects of these changes. We asked whether seaweed grazing by one of two herbivorous, congeneric snail species (Littorina obtusata or Littorina littorea) with different feeding strategies and preferences would affect subsequent feeding preferences of three herbivore species (both snails and the isopod Idotea baltica) and population densities of three herbivore species (both snails and a third periwinkle snail, Lacuna vincta). In addition, we measured phlorotannin concentrations to test the hypothesis that these metabolites function as induced defenses in the Phaeophyceae. Snail herbivory induced cue-specific responses in apical tissues of the seaweed Fucus vesiculosus that affected the three herbivore species similarly. When compared to ungrazed controls, direct grazing by Littorina obtusata reduced seaweed palatability by at least 52% for both snail species and the isopod species. In contrast, direct grazing by L. littorea did not decrease seaweed palatability for any herbivore, indicating herbivore-specific responses. Previous grazing by L. obtusata reduced populations of L. littorea on outplanted seaweeds by 46% but had no effect on L. obtusata populations. Phlorotannins, a potential class of inducible chemicals in brown algae, were not more concentrated in grazed seaweed tissues, suggesting that some other trait was responsible for the induced resistance. Our results indicate that marine herbivores may compete via inducible responses in shared seaweeds. These plant-mediated interactions were asymmetric with a specialist (L. obtusata) competitively superior to a generalist (L. littorea).  相似文献   

19.
Plant biomass and plant abundance can be controlled by aboveground and belowground natural enemies. However, little is known about how the aboveground and belowground enemy effects may add up. We exposed 15 plant species to aboveground polyphagous insect herbivores and feedback effects from the soil community alone, as well as in combination. We envisaged three possibilities: additive, synergistic, or antagonistic effects of the aboveground and belowground enemies on plant biomass. In our analysis, we included native and phylogenetically related range-expanding exotic plant species, because exotic plants on average are less sensitive to aboveground herbivores and soil feedback than related natives. Thus, we examined if lower sensitivity of exotic plant species to enemies also alters aboveground-belowground interactions. In a greenhouse experiment, we exposed six exotic and nine native plant species to feedback from their own soil communities, aboveground herbivory by polyphagous insects, or a combination of soil feedback and aboveground insects and compared shoot and root biomass to control plants without aboveground and belowground enemies. We observed that for both native and range-expanding exotic plant species effects of insect herbivory aboveground and soil feedback added up linearly, instead of enforcing or counteracting each other. However, there was no correlation between the strength of aboveground herbivory and soil feedback. We conclude that effects of polyphagous aboveground herbivorous insects and soil feedback add up both in the case of native and related range-expanding exotic plant species, but that aboveground herbivory effects may not necessarily predict the strengths of soil feedback effects.  相似文献   

20.
Mooney KA 《Ecology》2007,88(8):2005-2014
Insectivorous birds and ants co-occur in most terrestrial communities, and theory predicts that emergent properties (i.e., nonadditive effects) can determine their combined influence on arthropods and plants. In a three-year factorial experiment, I investigated whether the effects of birds on pine and its arthropods differed based on the presence of ants that were predators of most arthropods, but mutualists with tended aphid species. Birds and ants reduced the abundance of most herbivorous and carnivorous arthropods in an additive fashion, with the effects of ants being stronger than those of birds. In sharp contrast, the opposing influences of birds and ants on tended aphid species interacted strongly; ants only increased tended aphid abundance in the absence of birds, while birds only reduced their abundance in the presence of ants. This interaction was mirrored in total herbivore abundance because tended aphids dominated the herbivore community. I develop a novel lexicon to discuss the emergent properties from these effects of opposing sign (predation, mutualism). Despite having emergent effects on herbivores, birds indirectly increased pine wood and foliage growth to a similar extent whether or not ants were present, while ants had no detectable effects. Birds also indirectly increased the abundance of some pine phloem monoterpenes, but these effects differed based on the presence or absence of ants. Thus, I report on a novel yet possibly widespread indirect interaction between intraguild predators, herbivore mutualists, and plant traits (growth, secondary chemistry) mediated through a species-rich community of arthropods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号