首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was undertaken to obtain information about the behavior of sulfentrazone in soil by evaluating the sorption and desorption of the herbicide in different Brazilian soils. Batch equilibrium method was used and the samples were analyzed by high performance liquid chromatography. Based on the results obtained from the values of Freundlich constants (Kf), we determined the order of sorption (Haplic Planosol < Red-Yellow Latosol < Red Argisol < Humic Cambisol < Regolitic Neosol) and desorption (Regolitic Neosol < Red Argisol < Humic Cambisol < Haplic Planosol < Red-Yellow Latosol) of sulfentrazone in the soils. The process of pesticide sorption in soils was dependent on the levels of organic matter and clay, while desorption was influenced by the organic matter content and soil pH. Thus, the use of sulfentrazone in soils with low clay content and organic matter (low sorption) increases the probability of contaminating future crops.  相似文献   

2.
The sorption behavior of the insecticide thiamethoxam [3-(2-chloro-1,3-thiazol-5-ylmethyl)-5-methyl-1,3,5-oxadiazinan-4-ylidene(nitro)amine] on three Indian soils with different physico-chemical properties was investigated. The soils represent the major grapevine growing areas of India, where the vineyards frequently receive thiamethoxam applications as foliar spray, soil drenching and through drip irrigation for the management of various insect pests. The rate constants for adsorption and desorption at two different temperatures were obtained from the Lindstrom model, which simultaneously evaluated adsorption and desorption kinetics. The data for rate constants, activation energies, enthalpy of activation, entropy of activation and free energy indicated physical adsorption of thiamethoxam on soil. The adsorptivity of different soils might be attributed to the organic matter and clay contents. A good fit to the linear and Freundlich isotherms was observed for both adsorption as well as desorption. Thiamethoxam could be categorized as a chemical with medium leaching potential.  相似文献   

3.
Isoxaflutole is a new pre-emergence corn herbicide that undergoes rapid conversion to a diketonitrile derivative (DKN) in soils. Sorption-desorption studies were conducted in five different soils varying in physical and chemical properties. A batch equilibration technique was used with total initial aqueous solution concentrations of DKN at 0.25, 0.75, 2.0, 8.0, 25, 75, 150, and 250 mg l(-1). After the sorption process, two subsequent desorptions were conducted with an equilibration period of 7 days. A high correlation existed between the desorption coefficient, K(Fd) and the organic matter content of soils (r(2)=0.844 for the first desorption and r(2)=0.861 for the second desorption), while the clay content did not greatly influence the desorption of DKN. Although the sorption of DKN was generally reversible, a sorption-desorption hysteresis was apparent in all soils. The site energy distribution curves emphasized the fact that DKN binds tightly to soils with higher organic matter content and greater proportion of DKN was retained by those soils  相似文献   

4.
5.
Abstract

The sorption and desorption characteristics of four herbicides (diuron, fluometuron, prometryn and pyrithiobac‐sodium) in three different cotton growing soils of Australia was investigated. Kinetics and equilibrium sorption and desorption isotherms were determined using the batch equilibrium technique. Sorption was rapid (> 80% in 2 h) and sorption equilibrium was achieved within a short period of time (ca 4 h) for all herbicides. Sorption isotherms of the four herbicides were described by Freundlich equation with an r2 value > 0.98. The herbicide sorption as measured by the distribution coefficient (Kd) values ranged from 3.24 to 5.71 L/kg for diuron, 0.44 to 1.13 L/kg for fluometuron, 1.78 to 6.04 L/kg for prometryn and 0.22 to 0.59 L/kg for pyrithiobac‐sodium. Sorption of herbicides was higher in the Moree soil than in Narrabri and Wee Waa soils. When the Kd values were normalised to organic carbon content of the soils (KoC), it suggested that the affinity of the herbicides to the organic carbon increased in the order: pyrithiobac‐sodium < fluometuron < prometryn < diuron. The desorption isotherms were also adequately described by the Freundlich equation. For desorption, all herbicides exhibited hysteresis and the hysteresis was stronger for highly sorbed herbicides (diuron and prometryn) than the weakly sorbed herbicides (fluometuron and pyrithiobac‐sodium). Hysteresis was also quantified as the percentage of sorbed herbicides which is not released during the desorption step ω = [nad / nde ‐1] x 100). Soil type and initial concentration had significant effect on ω. The effect of sorption and desorption properties of these four herbicides on the off‐site transport to contaminate surface and groundwater are also discussed in this paper.  相似文献   

6.
The sorption and desorption characteristics of four herbicides (diuron, fluometuron, prometryn and pyrithiobac-sodium) in three different cotton growing soils of Australia was investigated. Kinetics and equilibrium sorption and desorption isotherms were determined using the batch equilibrium technique. Sorption was rapid (> 80% in 2 h) and sorption equilibrium was achieved within a short period of time (ca 4 h) for all herbicides. Sorption isotherms of the four herbicides were described by Freundlich equation with an r2 value > 0.98. The herbicide sorption as measured by the distribution coefficient (Kd) values ranged from 3.24 to 5.71 L/kg for diuron, 0.44 to 1.13 L/kg for fluometuron, 1.78 to 6.04 L/kg for prometryn and 0.22 to 0.59 L/kg for pyrithiobac-sodium. Sorption of herbicides was higher in the Moree soil than in Narrabri and Wee Waa soils. When the Kd values were normalised to organic carbon content of the soils (Koc), it suggested that the affinity of the herbicides to the organic carbon increased in the order: pyrithiobac-sodium < fluometuron < prometryn < or = diuron. The desorption isotherms were also adequately described by the Freundlich equation. For desorption, all herbicides exhibited hysteresis and the hysteresis was stronger for highly sorbed herbicides (diuron and prometryn) than the weakly sorbed herbicides (fluometuron and pyrithiobac-sodium). Hysteresis was also quantified as the percentage of sorbed herbicides which is not released during the desorption step (omega = [nad/nde - 1] x 100). Soil type and initial concentration had significant effect on omega. The effect of sorption and desorption properties of these four herbicides on the off-site transport to contaminate surface and groundwater are also discussed in this paper.  相似文献   

7.
Smeds A  Saukko P 《Chemosphere》2003,53(9):1123-1130
Brominated flame retardants and phenolic compounds, of which several have been shown to exhibit endocrine disrupting effects, were screened in extracts of Finnish human adipose tissue samples. The samples were collected during autopsy from 39 subjects, of which 23 were males and 16 females. The samples were homogenised and extracted, and then cleaned-up by preparative gel permeation chromatography. The phenolic compounds were determined in silylated extracts. A total of 21 individual compounds were analysed in the extracts by gas chromatography-mass spectrometry (HRGC-LRMS) in the selected ion monitoring mode. The most commonly occurring compounds were 4-octylphenol diethoxylate, 4,4'-dihydroxybiphenyl, and 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), but also some other alkylphenols, pentabromophenol, and 2,2',4,4',5-penta- and 2,2',4,4',5,5'-hexabromodiphenyl ether could be detected in 1-6 samples. The concentrations were ranging from trace amounts to 71 ng/g of lipid weight. The mean concentration of BDE-47 was 1.20 ng/g lipids, however, in 15 of the samples the concentration was below the detection limit. Compared to other European studies the average concentration of BDE-47 obtained in this study is at the lower end of the reported concentrations.  相似文献   

8.
Sorption and desorption of sulfadiazine in soil and soil-manure systems   总被引:10,自引:0,他引:10  
Sulfadiazine is a widely used veterinary medicine that has high potential to enter the environment, especially the soil compartment by the application of manure on agricultural land and grass land or by the deposition of dung pats on pasture. Once it reaches the soil environments, it may enter into surface and ground water. Therefore, sorption-desorption behavior of sulfadiazine was studied under laboratory conditions in five different soils varying in their physicochemical properties. A batch equilibration technique was used with initial aqueous solution concentration of sulfadiazine at 5, 0.5, 0.05, and 0.005 microg mL(-1). Sorption-desorption data in soils with and without manure were well fitted with Freundlich model in log form (r(2), 0.99). A sorption-desorption hysteresis effect was apparent in all soils. A significant amount of sulfadiazine was found tightly bound to the soil particles and did not desorb after the desorption process. Moreover, presence of manure enhanced hysteresis effect. Hysteresis coefficient (H) value from soils in absence of manure (0.9-1.0) increased to the soils in presence of manure (0.9-1.8). Soils in the absence of manure showed low level of K(D Sorp.) values ranging from 0.1 to 24.3, suggesting low level sorption of sulfadiazine with appreciable risk of run-off and leaching, and in turn, surface and ground water contamination. However, presence of manure increased the sorption tendency of sulfadiazine significantly (K(D Sorp.), 6.9-40.2). K(D) values pertaining to desorption cycle increased from 1.2-90.4 to 10.4-167.3 in absence and presence of manure, respectively.  相似文献   

9.
Chen S  Nyman MC 《Chemosphere》2007,66(8):1523-1534
The sorption and desorption behavior of benzidine in eight solvent-sediment systems were studied using a batch method. The solvents tested included deionized water (DI), calcium chloride solution (CaCl2), sodium hydroxide solution (NaOH), acetonitrile (ACN), a mixture of acetonitrile and ammonium acetate solution (ACN-NH4OAc), methanol (MeOH), ammonium acetate solution (NH4OAc) and hydrochloric acid solution (HCl). Three sets of sorption isotherm experiments were conducted separately in these eight solvents with seven days, three weeks, and two months of contact times, respectively. The results demonstrated nonlinear benzidine sorption phenomena in all eight solvents with higher sorption affinities for sediment sites in the aqueous solvents than in the organic solvents. The results from the desorption experiments revealed that the benzidine desorption efficiencies in the solvents decreased in an order, which was approximately the reverse order of its sorption affinity. Results also suggested that hydrophobic partitioning and covalent binding processes dominated in the desorption experiments, while cation exchange process had little effect on desorption of benzidine. A three-stage model was subsequently applied to simulate the desorption data in the selected solvents of ACN, ACN-NH4OAc and NaOH, respectively. The rapidly desorbing initial fractions were about 0.13-0.20, 0.15-0.26, and 0.18-0.25 for ACN, ACN-NH4OAc and NaOH, respectively. Finally, the sorbed concentrations of benzidine in slowly and very slowly desorbing domains in the selected solvents were correlated with the maximum sorption capacities obtained from the Langmuir sorption isotherm model. The maximum sorption capacities of benzidine were found to be comparable to the amount of benzidine residing in the slowly and very slowly desorbing domains.  相似文献   

10.
Sorption of sulfadiazine on Brazilian soils   总被引:1,自引:0,他引:1  
Antimicrobials, among them sulfonamides are widely used in veterinary medicine and can contaminate the environment. The degree to which antimicrobials adsorb onto soil particles varies widely, as does the mobility of these drugs. Sulfadiazine (SDZ) was used to study the adsorption–desorption in Brazilian soil–water systems, using batch equilibrium experiments. Sorption of SDZ was carried out using four types of soils. Adsorption and desorption data were well fitted with Freundlich isotherms in log form (r > 0.999) and (0.984 < r < 0.999), respectively. An adsorption–desorption hysteresis phenomenon was apparent in all soils ranging from 0.517 to 0.827. The experimental results indicate that the Freundlich sorption coefficient (KF) values for SDZ ranged from 0.45 to 2.6 μg1?1/n (cm3)1/n g?1.  相似文献   

11.
This study was undertaken to determine sorption coefficients of eight herbicides (alachlor, amitrole, atrazine, simazine, dicamba, imazamox, imazethapyr, and pendimethalin) to seven agricultural soils from sites throughout Lithuania. The measured sorption coefficients were used to predict the susceptibility of these herbicides to leach to groundwater. Soil-water partitioning coefficients were measured in batch equilibrium studies using radiolabeled herbicides. In most soils, sorption followed the general trend pendimethalin > alachlor > atrazine approximately amitrole approximately simazine > imazethapyr > imazamox > dicamba, consistent with the trends in hydrophobicity (log K(ow)) except in the case of amitrole. For several herbicides, sorption coefficients and calculated retardation factors were lowest (predicted to be most susceptible to leaching) in a soil of intermediate organic carbon content and sand content. Calculated herbicide retardation factors were high for soils with high organic carbon contents. Estimated leaching times under saturated conditions, assuming no herbicide degradation and no preferential water flow, were more strongly affected by soil textural effects on predicted water flow than by herbicide sorption effects. All herbicides were predicted to be slowest to leach in soils with high clay and low sand contents, and fastest to leach in soils with high sand content and low organic matter content. Herbicide management is important to the continued increase in agricultural production and profitability in the Baltic region, and these results will be useful in identifying critical areas requiring improved management practices to reduce water contamination by pesticides.  相似文献   

12.
ABSTRACT

Neonicotinoids are the most widely applied class of insecticides in cocoa farming in Ghana. Despite the intensive application of these insecticides, knowledge of their fate in the Ghanaian and sub-Saharan African environment remains low. This study examined the behavior of neonicotinoids in soils from cocoa plantations in Ghana by estimating their sorption and degradation using established kinetic models and isotherms. Studies of sorption were conducted using the batch equilibrium method on imidacloprid, thiamethoxam, clothianidin, acetamiprid and thiacloprid, while degradation of imidacloprid, thiamethoxam and their respective deuterated counterparts was studied using models proposed by the European forum for coordination of pesticide fate and their use (FOCUS). Analytes were extracted using the quick, easy, cheap, effective, rugged and safe (QuEChERS) procedure and quantified by liquid chromatography-tandem mass spectrometry (LC–MS/MS). Average recoveries were high (≥ 85%) for all analytes. The findings from the study suggest that neonicotinoid insecticides may be persistent in the soils studied based on estimated half-lives > 150 days. The study also revealed generally low-sorption coefficients for neonicotinoids in soils, largely influenced by soil organic carbon.  相似文献   

13.
This study was undertaken to determine sorption coefficients of eight herbicides (alachlor, amitrole, atrazine, simazine, dicamba, imazamox, imazethapyr, and pendimethalin) to seven agricultural soils from sites throughout Lithuania. The measured sorption coefficients were used to predict the susceptibility of these herbicides to leach to groundwater. Soil-water partitioning coefficients were measured in batch equilibrium studies using radiolabeled herbicides. In most soils, sorption followed the general trend pendimethalin > alachlor > atrazine~ amitrole~ simazine > imazethapyr > imazamox > dicamba, consistent with the trends in hydrophobicity (log Kow) except in the case of amitrole. For several herbicides, sorption coefficients and calculated retardation factors were lowest (predicted to be most susceptible to leaching) in a soil of intermediate organic carbon content and sand content. Calculated herbicide retardation factors were high for soils with high organic carbon contents. Estimated leaching times under saturated conditions, assuming no herbicide degradation and no preferential water flow, were more strongly affected by soil textural effects on predicted water flow than by herbicide sorption effects. All herbicides were predicted to be slowest to leach in soils with high clay and low sand contents, and fastest to leach in soils with high sand content and low organic matter content. Herbicide management is important to the continued increase in agricultural production and profitability in the Baltic region, and these results will be useful in identifying critical areas requiring improved management practices to reduce water contamination by pesticides.  相似文献   

14.
Endocrine disrupters are of substantial concern, in large part because effects of these compounds on the growth and development of many aquatic organisms are unknown. We examined toxic effects of three substances (ethylbenzene, nonylphenol, and bisphenol A), that are known to be hormonally active in many animals, on growth and development of two species of freshwater sponge. A common developmental abnormality was observed when sponges were treated with each of these compounds. The three compounds also caused significant reductions in growth rates. Lower concentrations resulted in malformed water vascular systems in several replicates. The utility of freshwater sponge bioassays is discussed as it relates to understanding possible mechanisms of action of endocrine disrupters on aquatic invertebrates.  相似文献   

15.
Dang Z  Traas T  Vermeire T 《Chemosphere》2011,85(10):1592-1603
In a fish testing strategy, positive results of the fish short term reproduction assay (FSTR), often trigger a definitive test like the fish sexual development test (FSDT) or the fish full life cycle test (FFLC), entailing ethical and economic problems. This study analysed 137 studies encompassing 35 chemicals with different modes of actions (MOAs). Variability is quantified for MOA endpoints vitellogenin (VTG) and secondary sex characteristics (SSCs) as well as for apical endpoints. Two MOA endpoints could indicate estrogenic, anti-estrogenic, androgenic, anti-androgenic and steroidogenesis activities. Great variability, however, has been observed for chemicals with anti-androgenic and steroidogenesis activities, suggesting that TG229/230 may not be sensitive enough to detect these types of chemicals and may produce false negatives. Changes in apical endpoints like fecundity are not limited to endocrine disrupting chemicals (EDCs). Non-EDCs could induce the similar effects on these apical endpoints. If elucidating MOA is needed, targeted in vitro MOA tests are suggested. Positive in vitro MOA results trigger a definitive test, which could be used for confirmation of the MOA in vivo and for deriving a no observed effect concentration (NOEC). Based on positive MOA results of TG229, a definitive test such as the FSDT or the FFLC is still needed, because the current TG229 has limitation on the derivation of a NOEC. An extended TG229 with more power to detect reproduction effects, as recently proposed in the OECD test guideline program, would improve the possibility to derive a NOEC and increase its usefulness in risk assessment.  相似文献   

16.
Sediment sorption and desorption processes are important in determining the movement and fate of persistent organic compounds in aquatic systems. Batch experiments show that after an initial one week uptake period, continual release of Aroclor 1242 from sediment occurs over a six-month period. These observations suggest that a two-stage kinetic model, rather than the conventional equilibrium model, is more appropriate for representing sediment uptake and release processes. Additional batch studies were used to measure short- and long-term rate coefficients for these processes. Simulation studies, with multiple sediment and contaminant inputs, indicate that over a 16-day period a kinetic model better matches the experimental data than do three other equilibrium-based sorption/desorption models. Further long-term simulations demonstrate that the kinetic model, rather than equilibrium models, more adequately account for the persistence of organic contaminants in sediment.  相似文献   

17.
The sorption and desorption of Cu and Cd by two species of brown macroalgae and five species of microalgae were studied. The two brown macroalgae, Laminaria japonica and Sargassum kjellmanianum, were found to have high capacities at pHs between 4.0 and 5.0 while for microalgae, optimum pH lay at 6.7. The presence of other cations in solution was found to reduce the sorption of the target cation, suggesting a competition for sorption sites on organisms. Sorption isotherms obeyed the Freundlich equation, suggesting involvement of a multiplicity of mechanisms and sorption sites. For the microalgae tested, Spirulina platensis had the highest capacity for Cd, followed by Nannochloropsis oculata, Phaeodactylum tricornutum, Platymonas cordifolia and Chaetoceros minutissimus. The reversibility of metal sorption by macroalgae was examined and the results show that both HCl and EDTA solutions were very effective in desorbing sorbed metal ions from macroalgae, with up to 99.5% of metals being recovered. The regenerated biomass showed undiminished sorption performance for the two metals studied, suggesting the potential of such material for use in water and wastewater treatment.  相似文献   

18.
Leaching of acidic herbicides (2,4-D, flumetsulam, and sulfentrazone) in soils was estimated by comparing the original and modified AF (Attenuation Factor) models for multi-layered soils (AFi). The original AFi model was modified to include the concept of pH-dependence for Kd (sorption coefficient) based on pesticide dissociation and changes in the accessibility of soil organic functional groups able to interact with the pesticide. The original and modified models, considering soil and herbicide properties, were applied to assess the leaching potential of selected herbicides in three Brazilian soils. The pH-dependent Kd values estimated for all three herbicides were observed to be always higher than pH-independent Kd values calculated using average Koc data, and therefore the original AFi model overestimated the overall leaching potential for the soils studied.  相似文献   

19.
This study investigates the influence of the two different clay minerals kaolinite and smectite as well as of organic matter on the cation sorption and desorption behaviour of three imidazolium based ionic liquids -1-butyl-3-methyl-imidazolium tetrafluoroborate (IM14 BF(4)), 1-methyl-3-octyl-imidazolium tetrafluoroborate (IM18 BF(4)) and 1-butyl-3-methyl-imidazolium bis[(trifluoromethyl)sulfonyl]imide (IM14 (CF(3)SO(2))(2)N) - in soil. The German standard soil Lufa 2.2 - a natural soil classified as a loamy sand - was the basis substrate for the different soil compositions and also served as a reference soil. The addition of organic matter and clays increases the sorption of the substances and in particular smectite had striking effects on the sorption capacity for all three ionic liquids indicating that ionic interactions play an important role for sorption and desorption processes of ionic liquids in soil. One exception was for kaolinite-containing soils and the IM14 cation: with (CF(3)SO(2))(2)N(-) as an anion the sorption was identical at either 10 wt% or 15 wt% clay content, and with BF(4)(-) sorption was even lower at 15 wt% kaolinite than at 10 wt%. Desorption was weak for IM18 BF(4), presumably owing to the longer alkyl side chain. With regard to the influence of kaolinite on desorption, the same pattern was observed as it was found for the sorption of IM14 BF(4) and IM14 (CF(3)SO(2))(2)N.  相似文献   

20.
Abstract

The sorption of imidacloprid (l‐[(6‐chloro‐3‐pyridinyl)‐methyl]‐N‐nitro‐2‐imidazolid‐inimine) (IMI) and its metabolites imidacloprid‐urea (l‐[(6‐chloro‐3‐pyridinyl)‐methyl]‐2‐imidazol‐idinone) (IU), imidacloprid‐guanidine (l‐[(6‐chloro‐3‐pyridinyl)‐methyl]‐4,5‐dihydro‐lH‐imidazol‐2‐amine) (IG), and imida‐cloprid‐guanidine‐olefin ( 1 ‐[(6‐chloro‐3‐pyridinyl)methyl]‐lH‐imidazol‐2‐amine) (IGO) was determined on six typical Brazilian soils. Sorption of the chemicals on the soil was characterized using the batch equilibration method. The range and order of sorption (Kd) on the six soils was IG (4.75–134) > IGO (2.87–72.3) > IMI (0.55 ‐16.9) > IU (0.31–9.50). For IMI and IU, Kd was correlated with soil organic carbon (OC) content and CEC, the latter due to the high correlation between OC and cation exchange capacity (CEC) (R2=0.98). For IG and IGO, there was no correlation of sorption to clay, pH, OC or CEC due to the high sorption on all soils. Average Koc values were IU = 170, IMI = 362, IGO = 2433, and IG = 3500. Although Kd and Koc values found were consistently lower than those found in soils developed in non‐tropical climates, imidacloprid and its metabolites were still considered to be slightly mobile to immobile in Brazilian soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号