首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 54 毫秒
1.
针对高硫矿石容易发生氧化自燃的危险,通常的灌浆、注砂、注惰气和喷洒阻化剂等技术还存在一些不足,提出一种以水泥灰为基料的三相泡沫来预防硫化矿石自燃的新技术。该技术是将水泥灰和水按一定的比例混合,同时加入一定比例的发泡剂和稳泡剂后,经物理机械方式发泡形成,集固、液、气三相材料的防灭火性能与一体。理论分析了水泥灰三相泡沫的形成与衰变机理,并通过正交试验,对三相泡沫的发泡倍数与半衰期进行研究,最后采用单因素实验,定量分析灰水质量比,发泡剂和稳泡剂浓度对三相泡沫稳定性能的影响,得到最佳泡沫配方。结果表明:当灰水质量比为1:5,发泡剂浓度为5g/L,稳泡剂浓度为8g/L时,制得的三相泡沫发泡倍数达到6倍,半衰期达到6h以上。  相似文献   

2.
为更好地解决煤矿采空区煤炭自燃问题,以十二烷基硫酸钠为主体进行发泡剂复配,通过泡沫性能测试实验,研制出高性能发泡剂.以纳米氢氧化铝作为固相颗粒,制备出发泡倍数高、稳定性强的纳米氢氧化铝三相泡沫,使用锥形量热仪研究其高温阻燃能力和消烟性能.实验结果表明:当纳米氢氧化铝的质量分数从0提高到1%时,泡沫体积从500 mL增长...  相似文献   

3.
基于水成膜泡沫灭火剂(AFFF),用微米级空心微珠颗粒作为泡沫稳定剂,制成三相泡沫,并研究了泡沫组成因素对发泡能力和泡沫稳定性的影响。采用控制变量法,研究了颗粒浓度、颗粒粒径、AFFF原液浓度对发泡倍数和析液时间的影响。颗粒加入对发泡能力有抑制作用;因为颗粒存在影响,三相泡沫的发泡能力随AFFF原液浓度增大而减小;40μm粒径颗粒的抑制作用相对20μm和60μm颗粒最小。颗粒浓度和AFFF原液浓度增加,能够提升三相泡沫稳定性,且泡沫析液时间随颗粒浓度增加呈指数规律变化。当AFFF原液浓度为3.0%、颗粒浓度为9%左右时,三相泡沫稳定时间约为两相泡沫的3倍,该配方三相泡沫有较好的稳定性。  相似文献   

4.
为研究油品火灾三相泡沫的发泡稳定与流动性能的关系,利用Waring-Blender方法对6种固相粉体制备三相泡沫,并分别以发泡高度、25%析液时间及表观粘度为参数,对其发泡稳定及流变性能进行表征,并通过Herschel-Bulkley方程对三相泡沫流变曲线进行拟合。实验结果表明,亲水及"两亲"粉体制备的三相泡沫具有较高的发泡高度及稳定性,疏水粉体制备的三相泡沫的发泡及稳定性能不足;流变测试结果显示三相泡沫属于屈服-假塑性流体且流变本构方程与Herschel-Bulkley方程拟合较好,其中亲水及"两亲"粉体制备的三相泡沫屈服-假塑性流体性质较疏水粉体制备的明显,表观粘度较大,流动性不足。  相似文献   

5.
为解决传统水成膜泡沫灭火剂(AFFF)对生态环境的不利影响,以天然表面活性剂无患子皂苷、碳氢表面活性剂椰油酰胺丙基甜菜碱(CAB)和十二烷基磺酸钠(SDS)作为发泡剂,探究黄原胶(XG)对3种表面活性剂复配体系泡沫性能的影响。采用多种方法研究泡沫溶液的表面张力、粘度、发泡性、泡沫稳定性、泡沫灭油火的有效性等性能。结果表明:XG的加入对泡沫溶液的表面张力影响很小,随着XG质量分数的增加,泡沫溶液的发泡性能略有下降,而粘度快速提高。XG质量分数对泡沫稳定性有显著影响。根据《泡沫灭火剂》(GB 15308—2006)0.25 m2油盘火试验,当XG质量分数为0.30%时,极大地提高了泡沫的灭火性能,灭火时间为88 s,相比无XG添加时减少20 s;100%抗烧时间比无XG添加时增加504 s。实验结果为XG在无氟泡沫灭火剂中的潜在应用提供了依据。  相似文献   

6.
吕科宗  吴嫦 《火灾科学》2020,29(1):56-62
为研究三相泡沫流动性及灭火性能之间的关系,自主搭建了自流动性及灭火实验台架。利用空心玻璃微珠、2000目云母粉、2000目硅微粉及碳酸钙分别制备三相泡沫,检测其流动及灭火性能。实验结果表明,三相泡沫的流动性与其强施放条件下的灭火性能具有一定的关系。通过对比4种不同类别粉体制备的三相泡沫发现,流动性不足的三相泡沫,其灭火时间较长,但抗复燃能力较强;流动过快的三相泡沫,覆盖油面的能力较强,灭火时间较短,但其存在稳定性较差的缺点,可能会导致油品复燃。  相似文献   

7.
空心玻璃微珠三相泡沫抗溶抗烧性能实验研究   总被引:2,自引:0,他引:2  
研究了空心玻璃微珠添加量、泡沫液浓度和泡沫液性质对三相泡沫在油面的稳定性和抗烧性能影响规律.结果表明,空心玻璃微珠添加量越大,三相泡沫在油面的稳定性越差.泡沫液浓度和性质对三相泡沫在油面的稳定性有一定影响.添加微珠后三相泡沫的抗烧性能降低,与蛋白两相泡沫相比,空心微珠添加量为10mL、30mL和50mL时,ti缩短约26%、38%和42%,泡沫完全烧损时间也缩短约20%、28%和31%.  相似文献   

8.
泡沫除尘技术的研究与应用   总被引:9,自引:1,他引:8  
分析了泡沫除尘机理和泡沫除尘剂配方的要求,通过相似模型实验研究确定了泡沫发生器的结构和性能。研究表明,在给定发泡网材质形状和喷雾方式下,有一个最优的发泡网风速、供液量和泡沫液浓度。泡沫除尘技术在实际中其应用范围很广,对呼吸性粉尘除尘效率高  相似文献   

9.
杜文锋  何威 《火灾科学》2009,18(3):182-186
研究了氟碳表面活性剂添加量、氟碳表面活性剂性质和泡沫液浓度等对空心微珠三相泡沫在油面稳定性的影响,并在模拟燃烧装置上对比了添加氟碳表面活性剂前后三相泡沫的抗烧能力.结果表明,加入氟碳表面活性剂后,三相泡沫在油面的稳定性显著增强,且阴离子氟碳表面活性剂优于阳离子和两性离子表面活性剂.当阴离子氟碳表面活性剂、空心玻璃微珠和蛋白泡沫浓度分别为0.02%、6%和10%时,三相泡沫受热后表面形成黑色致密覆盖层,可有效隔绝热量向内部传递,使抗烧性得到明显提高.  相似文献   

10.
为改善泡沫灭火剂的高温稳定性和抗复燃性能,将石墨粉、膨润土和空心玻璃微珠按一定比例复配加入泡沫灭火剂中制备防灭火三相泡沫,利用自主设计的实验台架,研究其发泡、稳泡及油面热稳定性等主要性能,分析复配超细粉体对泡沫灭火剂稳定性的影响机理。实验证明,复配粉体的加入可使泡沫灭火剂在高温下的稳定时间延长10倍以上,粉体颗粒会在泡沫表面形成一层致密壳层,增强泡沫的隔热阻燃性能,石墨粉的存在使壳层更加致密且增强了泡沫的流动性,但会对泡沫的发泡性能产生较大的影响,当空心玻璃微珠和石墨粉的添加质量比为5∶2时,整体效果较好。  相似文献   

11.
为了制备高热稳定性的三相泡沫,对白云母/硅微粉疏水改性。采用十六烷基三甲氧基硅烷(HTEOS)为改性剂,以接触角、粒度分析、FTIR为表征。在合成蛋白泡沫中按比例添加粉体制备三相泡沫,以自主设计可视化油池进行热稳定性试验并与两相泡沫对比。结果表明:改性白云母的性质为“两亲”,改性硅微粉表现为疏水;三相泡沫热稳定性高于两相泡沫,三相泡沫中,利用改性白云母制备的三相泡沫热稳定性最优,覆盖至破灭时间为1 905 s,而改性硅微粉制备的三相泡沫热稳定性不足,覆盖至破灭时间仅为983 s。  相似文献   

12.
针对现有硫化矿石自燃防治技术在应用中存在的不足,提出了采用氯化镁微胶囊泡沫防治硫化矿石自燃火灾的新思路。首先阐述了氯化镁微胶囊泡沫的特性与作用机理,然后通过实验,制备了微胶囊与微胶囊泡沫并以正交试验确定了制备微胶囊泡沫的最佳配方:微胶囊与水质量比为1∶5、ABS浓度为6 g/L、稳泡剂X浓度为6 g/L;最后采用对照实验,以温度与阻化率为优选依据,对氯化镁微胶囊泡沫、氯化镁溶液与水三者的阻化效果进行比较。结果表明在氯化镁微胶囊泡沫的作用下,硫化矿石堆的温度上升最慢,阻化率最高,达到81.6%,阻化效果优于其他两种阻化剂。  相似文献   

13.
泡沫液的发泡比和半衰期是表征起泡剂特性的基本物理量.选用十二烷基硫酸钠为典型的表面活性剂,测量了不同质量分数溶液的表面张力,得到试验条件下的临界胶束浓度(CMC)为0.25%,采用改进的Ross-Mile法、搅拌法和测压力法,在相同的环境下对同一溶液进行发泡试验,其中测压力法可以得到表征重力排液和扩散排液过程等泡沫破灭过程的定量数据.结果表明,发泡比因起泡方法的不同而有较大差异,在相同质量分数下,测压力法的起泡量最大而搅拌法的起泡量最小,3种方法所产生的发泡体积随质量分数的变化趋势一致,当表面活性剂质量分数≥0.25% (CMC)时,搅拌法、Ross-Mile法和测压力法的发泡体积比为1:1.25:1.36.3种方法所产生泡沫的半衰期随表面活性剂质量分数增加而增大,达到最大值后缓慢减小,有相似的变化趋势,测压力法、Ross-Mile法和搅拌法的半衰期之比约为1:3:6,分析了3种方法所产生泡沫的发泡比和半衰期差异的原因.  相似文献   

14.
煤炭开采面临煤自然发火等灾害的严重威胁,在分析现有防灭火技术特征的基础上,制备了1种水泥基泡沫材料。探讨了水泥基泡沫形成机理,包括水基泡沫与浆液扰流混合发泡,表面活性剂增加颗粒疏水性及颗粒稳定泡沫液膜,液膜中水泥、粉煤灰颗粒水化反应及促凝剂加速凝结固化。搭建了小型抑制煤堆自燃试验平台,开展了煤堆自燃温升变化及黄泥浆、无机凝胶、阻化泡沫、水泥基泡沫等防灭火介质降温效果试验,结果表明:水泥基泡沫具有向上堆积的能力,能对高温煤颗粒进行覆盖、包裹,并具有较好的热稳定性,总体降温性能最佳;压注后,监测时间0~900 s内,径向距离为0.1,0.2,0.3,0.4,0.5 m处温度分别从376.98,376.00,374.38,372.14,369.27 ℃下降到21,26,29,35,42 ℃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号